1
|
Xie A, Shen X, Hong R, Xie Y, Zhang Y, Chen J, Li Z, Li M, Yue X, Quek SY. Unlocking the potential of donkey Milk: Nutritional composition, bioactive properties and future prospects. Food Res Int 2025; 209:116307. [PMID: 40253152 DOI: 10.1016/j.foodres.2025.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/27/2025] [Accepted: 03/15/2025] [Indexed: 04/21/2025]
Abstract
Donkey milk has garnered increasing attention due to its remarkable similarity to human milk and its diverse bioactive properties. Analysis of its composition shows that donkey milk is characterized by high lactose content, low protein, low fat, a balanced calcium-to‑phosphorus ratio, and abundant in vitamins C and D, making it a promising human milk alternative. Additionally, donkey milk contains a unique composition of whey proteins and polyunsaturated fatty acids, contributing to its beneficial health effects such as antimicrobial, anti-inflammatory, antioxidant, and hypoallergenic properties. This review provides a comprehensive analysis of the nutritional profile of donkey milk in comparison to other mammalian milk sources. Furthermore, it highlights its bioactive potential and discusses the current challenges and future opportunities for expanding its applications in the dairy and health industries. Despite its valuable properties, the development of donkey milk products remains limited due to low milk yield and high production costs. Further research and technological advancements are necessary to optimize its utilization and commercial potential.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiyao Hong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanfang Xie
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yumeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiali Chen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Jiangsu 213164, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, 1010, New Zealand; Riddet Institute, Centre for Research Excellence in Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
2
|
Amarjeet, Kumar U, Sodhi M, Kumar D, Vivek P, Niranjan SK, Kataria RS, Kumar S, Sharma M, Tiwari M, Aggarwal RAK, Bharti VK, Iqbal M, Rabgais S, Kumar A, Chanda D, Mukesh M. Characterizing metabolome signature of colostrum, transition and mature milk of indigenous cows (Bos indicus) adapted to high altitude environment of Leh-Ladakh. Food Chem 2025; 464:141767. [PMID: 39515162 DOI: 10.1016/j.foodchem.2024.141767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
This study has identified 46 metabolites in colostrum, transition milk and mature milk of unique indigenous high altitude adapted Ladakhi cows using 1D 1H 800 MHz NMR spectroscopy. The multivariate analysis revealed that UDP-galactose, UDP-glucose, citrate, creatine phosphate, myo-inositol, lactose, 2-oxoglutarate, valine, maltose, leucine, dimethylamine, and choline with high VIP scores could differentiate the colostrum, transition and mature milk in separate clusters. Highly enriched metabolites in colostrum such as UDP-galactose, UDP-glucose play crucial roles in cell growth, differentiation, and defense responses. Similarly, the presence of branched chain amino acids in colostrum could be linked to mammary gland development, N-acetylglucosamine, N-acetyl carnitine, choline etc. in high concentration in colostrum l might be helping in growth and development of neonatal calves of Ladakhi cows under hypoxia environment. Overall, this study has helped to characterize the metabolomic signatures of milk/colostrum of Ladakhi cows adapted to high altitude and cold desert of Leh-Ladakh.
Collapse
Affiliation(s)
- Amarjeet
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Umesh Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Dinesh Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Prince Vivek
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Saket K Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | | | - Sudarshan Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Manish Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Manish Tiwari
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Rajeev A K Aggarwal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Vijay K Bharti
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - M Iqbal
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Stanzin Rabgais
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Abhishek Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Divya Chanda
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001, India.
| |
Collapse
|
3
|
Cabrera D, Fraser K, Roy NC. A metabolomics analysis of interspecies and seasonal trends in ruminant milk: The molecular difference between bovine, caprine, and ovine milk. J Dairy Sci 2024; 107:6511-6527. [PMID: 38788847 DOI: 10.3168/jds.2023-24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
Ruminant milk composition can be affected by many factors, primarily interspecies differences, but also environmental factors (e.g., season, feeding system, and feed composition). Pasture-based feeding systems are known to be influenced by seasonal effects on grass composition. Spring pasture is rich in protein and low in fiber compared with late-season pasture, potentially inducing variability in the composition of some milk metabolites across the season. This study aimed to investigate interspecies and seasonal differences in the milk metabolome across the 3 major commercial ruminant milk species from factories in New Zealand: bovine, caprine, and ovine milk. Samples of bovine (n = 41) and caprine (n = 44) raw milk were collected monthly for a period of 9 mo (August 2016-April 2017), and ovine milk samples (n = 20) were collected for a period of 5 mo (August 2016-January 2017). Milk samples were subjected to biphasic extraction, and untargeted metabolite profiling was performed using 2 separate liquid chromatography high-resolution mass spectrometry analytical methods (polar metabolites and lipids). Major differences in the milk metabolome were observed between the 3 ruminant species, with 414 of 587 (71%) polar metabolite features and 210 of 233 (87%) lipid features being significantly different between species. Significant seasonal trends were observed in the polar metabolite fraction for bovine, caprine, and ovine milk (17, 24, and 32 metabolites, respectively), suggesting that the polar metabolite relative intensities of ovine and caprine milk were more susceptible to changes within seasons than bovine milk. We found no significant seasonal difference for the triglycerides (TG) species measured in bovine milk, whereas 3 and 52 TG species changed in caprine and ovine milk, respectively, across the seasons. In addition, 4 phosphatidylcholines and 2 phosphatidylethanolamines varied in caprine milk within the season, and 8 diglycerides varied in ovine milk. The interspecies and seasonal metabolite differences reported here provide a knowledge base of components potentially linked to milk physiochemical properties, and potential health benefits of New Zealand pasture-fed dairy ingredients.
Collapse
Affiliation(s)
- Diana Cabrera
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand.
| | - Karl Fraser
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand; High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Nicole C Roy
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand; Department of Human Nutrition, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals (Basel) 2024; 14:1130. [PMID: 38612369 PMCID: PMC11010951 DOI: 10.3390/ani14071130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
Collapse
Affiliation(s)
- Flávio G. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Severiano R. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
| | - Alfredo M. F. Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| | - Joaquim Lima Cerqueira
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Cristina Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| |
Collapse
|
5
|
Liang X, Diao E, Qian S, Song H, Xiang X, Gou X, Hu X. Comparative metabolomic analysis and antigenicity comparison of cow milk and enzymatically treated cow milk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:536-545. [PMID: 37621148 DOI: 10.1002/jsfa.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Amino acids (AAs) are important protein building blocks that play a critical role in the function of the immune system. However, comprehensive comparative metabolomics and antigenicity analyses of cow milk (CM) and enzymatically treated CM are relatively scarce. This study analyzed the AAs in the CM and Flavourzyme-treated milk groups (FT), and their antigenicity was also explored. RESULTS Overall, 50 AAs were detected in the CM and FT groups, with 23 significantly different AAs. The interaction network of these significantly different AAs was analyzed, and 34 significantly different metabolic pathways were found to be involved. It was also found that the antigenicity of the FT group was significantly reduced in comparison with that of the CM group. CONCLUSION These results enhance our understanding of AAs and antigenicity regarding CM and FT, and provide new ideas and directions for the development of high-quality hypoallergenic dairy products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaona Liang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Shiquan Qian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Xinran Xiang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, China
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Xiurong Gou
- School of Life Science, Huaiyin Normal University, Huaian, China
| | - Xiumin Hu
- School of Life Science, Huaiyin Normal University, Huaian, China
| |
Collapse
|
6
|
Zheng A, Wei C, Liu J, Bu N, Liu D. Deciphering the Mechanism by Which Carbon Dioxide Extends the Shelf Life of Raw Milk: A Microbiomics- and Metabolomics-Based Approach. Molecules 2024; 29:329. [PMID: 38257241 PMCID: PMC10819274 DOI: 10.3390/molecules29020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Microbial community succession in raw milk determines its quality and storage period. In this study, carbon dioxide (CO2) at 2000 ppm was used to treat raw milk to investigate the mechanism of extending the shelf life of raw milk by CO2 treatment from the viewpoint of microbial colonies and metabolites. The results showed that the shelf life of CO2-treated raw milk was extended to 16 days at 4 °C, while that of the control raw milk was only 6 days. Microbiomics analysis identified 221 amplicon sequence variants (ASVs) in raw milk, and the alpha diversity of microbial communities increased (p < 0.05) with the extension of storage time. Among them, Pseudomonas, Actinobacteria and Serratia were the major microbial genera responsible for the deterioration of raw milk, with a percentage of 85.7%. A combined metagenomics and metabolomics analysis revealed that microorganisms altered the levels of metabolites, such as pyruvic acid, glutamic acid, 5'-cmp, arginine, 2-propenoic acid and phenylalanine, in the raw milk through metabolic activities, such as ABC transporters, pyrimidine metabolism, arginine and proline metabolism and phenylalanine metabolism, and reduced the shelf life of raw milk. CO2 treatment prolonged the shelf life of raw milk by inhibiting the growth of Gram-negative aerobic bacteria, such as Acinetobacter guillouiae, Pseudomonas fluorescens, Serratia liquefaciens and Pseudomonas simiae.
Collapse
Affiliation(s)
- Anran Zheng
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.Z.)
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Chaokun Wei
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.Z.)
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Jun Liu
- School of Life Sciences, Hubei Normmal University, Huangshi 435002, China;
| | - Ningxia Bu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.Z.)
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Dunhua Liu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.Z.)
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
7
|
Goi A, De Marchi M, Costa A. Minerals and essential amino acids of bovine colostrum: Phenotypic variability and predictive ability of mid- and near-infrared spectroscopy. J Dairy Sci 2023; 106:8341-8356. [PMID: 37641330 DOI: 10.3168/jds.2023-23459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/31/2023]
Abstract
Colostrum quality and volume are fundamental for calves because it is the primary supplier of antibodies and the first source of energy, carbohydrates, lipids, proteins, minerals, and vitamins for the newborn. Assessing the detailed composition (i.e., AA and mineral content) of bovine colostrum (BC) on-line and at a reasonable cost would help dairy stakeholders such as farmers or veterinarians for precision feeding purposes and industries producing preparations containing BC such as foodstuff, supplements, and medicaments. In the present study we evaluated mid- (MIRS) and near-infrared spectroscopy (NIRS) prediction ability for AA and mineral composition of individual BC. Second, we the investigated the major factors affecting the phenotypic variability of such traits also evaluating the correlations with the Ig concentration. Results demonstrated that MIRS and NIRS were able to provide sufficiently accurate predictions for all the AA. The coefficient of determination in external validation (R2V) fell, in fact, within the range of 0.70 to 0.86, with the exception of Ile, His, and Met. Only some minerals reached a sufficient accuracy (i.e., Ca, P, S, and Mg; R2V ≥ 0.66) using MIRS, and also S (R2V = 0.87) using NIRS. Phenotypically, both parity and calving season affected the variability of these BC composition traits. Heifers' colostrum was the one with the greatest concentration of Ca and P, the 2 most abundant minerals. These minerals were however very low in cows calving in summer compared with the rest of the year. The pattern of AA across parities and calving season was not linear, likely because their variability was scarcely (or not) affected by these effects. Finally, samples characterized by high IgG concentration were those presenting on average greater concentration of AA. Findings suggest that infrared spectroscopy has the potential to be used to predict certain AA and minerals, outlining the possibility of implementing on-site analyses for the evaluation of the broad-sense BC quality.
Collapse
Affiliation(s)
- A Goi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy.
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy
| | - A Costa
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
8
|
Ning J, Yang M, Liu W, Luo X, Yue X. Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16435-16451. [PMID: 37882656 DOI: 10.1021/acs.jafc.3c04534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cow's milk is the most widely used ingredient in infant formulas. However, its specific protein composition can cause allergic reactions. Finding alternatives to replace cow's milk and fill the nutritional gap with human milk is essential for the health of infants. Proteomic and peptidomic techniques have supported the elucidation of milk's nutritional ingredients. Recently, omics approaches have attracted increasing interest in the investigation of milk because of their high throughput, precision, sensitivity, and reproducibility. This review offers a significant overview of recent developments in proteomics and peptidomics used to study the differences in human, cow, and donkey milk. All three types of milks were identified to have critical biological functions in human health, particularly in infants. Donkey milk proteins were closer in composition to human milk, were less likely to cause allergic reactions, and may be developed as novel raw materials for formula milk powders.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Wanting Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| |
Collapse
|
9
|
Starkutė V, Mockus E, Klupšaitė D, Zokaitytė E, Tušas S, Mišeikienė R, Stankevičius R, Rocha JM, Bartkienė E. RETRACTED: Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals (Basel) 2023; 13:3154. [PMID: 37835761 PMCID: PMC10571792 DOI: 10.3390/ani13193154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor's interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies.
Collapse
Affiliation(s)
- Vytautė Starkutė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Dovilė Klupšaitė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Eglė Zokaitytė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Saulius Tušas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Ramutė Mišeikienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Elena Bartkienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
10
|
Differentially expressed whey proteins of donkey and bovine colostrum revealed with a label-free proteomics approach. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Yang G, Zhang J, Dai R, Ma X, Huang C, Ren W, Ma X, Lu J, Zhao X, Renqing J, Zha L, Guo X, Chu M, La Y, Bao P, Liang C. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods 2023; 12:foods12112172. [PMID: 37297417 DOI: 10.3390/foods12112172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to investigate the nutritional properties of yak milk in various areas of Gannan. The milk composition analyzer, automatic amino acid analyzer, and flavor analyzer were used to detect the conventional nutrients, amino acids, and volatile flavor substances of 249 yak milks in Meiren grassland, Xiahe grassland, and Maqu grassland (hereinafter referred to as Meiren yak, Xiahe yak, and Maqu yak) in the Gannan area. The results showed that the fat content of Meiren yak milk was significantly higher than that of Maqu yak and Xiahe yak (p < 0.05). The protein content of Meiren yak milk was significantly higher than that of Xiahe yak (p < 0.05), but not significantly different from that of Maqu yak (p > 0.05). The casein content in the milk of Maqu yak was significantly higher than that of Meiren yak and Xiahe yak (p < 0.05). There was no significant difference in the lactose content of yak milk in the three regions (p > 0.05). The content of glutamic acid in the milk of Meiren yak, Xiahe yak, and Maqu yak was noticeably high, which was 1.03 g/100 g, 1.07 g/100 g, and 1.10 g/100 g, respectively. The total amino acid (TAA) content was 4.78 g/100 g, 4.87 g/100 g, and 5.0 g/100 g, respectively. The ratios of essential amino acids (EAA) and total amino acids (TAA) in the milk of Meiren yak, Xiahe yak, and Maqu yak were 42.26%, 41.27%, and 41.39%, respectively, and the ratios of essential amino acids (EAA) and nonessential amino acids (NEAA) were 73.19%, 70.28%, and 70.61%, respectively. In the yak milk samples collected from three different regions, a total of 34 volatile flavor compounds were detected, including 10 aldehydes, five esters, six ketones, four alcohols, two acids, and seven others. The main flavor substances qualitatively obtained from Meiren yak milk were ethyl acetate, n-valeraldehyde, acetic acid, heptanal, and n-hexanal. Xiahe yak milk mainly contains ethyl acetate, isoamyl alcohol, n-valeraldehyde, heptanal, and ethyl butyrate. Maqu yak milk mainly contains ethyl acetate, n-valeraldehyde, isoamyl alcohol, heptanal, ethyl butyrate, and n-hexanal. Principal component analysis showed that the flavor difference between Xiahe yak and Maqu yak was small, while the flavor difference between Xiahe yak, Maqu yak, and Meiren yak was large. The findings of this research can serve as a foundation for the future advancement and application of yak milk.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoyong Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Jianwei Lu
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xue Zhao
- Quality and Safety Inspection Center of Agricultural and Livestock Products in Hezuo, Hezuo 747099, China
| | - Ji Renqing
- Zogemanma Town Animal Husbandry and Veterinary Station, Hezuo 747099, China
| | - Lao Zha
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| |
Collapse
|
12
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Study of Yak Colostrum Nutritional Content Based on Foodomics. Foods 2023; 12:foods12081707. [PMID: 37107501 PMCID: PMC10137867 DOI: 10.3390/foods12081707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The utilization of yak milk is still in a primary stage, and the nutrition composition of yak colostrum is not systematically characterized at present. In this study, the lipids, fatty acids, amino acids and their derivatives, metabolites in yak colostrum, and mature milk were detected by the non-targeted lipidomics based on (ultra high performance liquid chromatography tandem quadrupole mass spectrometer) UHPLC-MS, the targeted metabolome based on gas chromatography-mass spectrometer (GC-MS), the targeted metabolome analysis based on UHPLC-MS, and the non-targeted metabolome based on ultra high performance liquid chromatography tandem quadrupole time of flight mass spectrometer (UHPLC-TOF-MS), respectively. Meanwhile, the nutrition composition of yak colostrum was compared with the data of cow mature milk in the literatures. The results showed that the nutritive value of yak colostrum was higher by contrast with yak and cow mature milk from the perspective of the fatty acid composition and the content of Σpolyunsaturated fatty acids (PUFAs), Σn-3PUFAs; the content of essential amino acid (EAA) and the ratio of EAA/total amino acid (TAA) in yak colostrum were higher than the value in yak mature milk; and the content of functional active lipids including phosphatidylcholines (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), lyso-phosphatidylcholine (LPC), lyso-phosphatidylglycerol (LPG), lyso-phosphatidylinositol (LPI), sphingomyelin (SM), ganglioside M3 (GM3), ganglioside T3 (GT3), and hexaglycosylceramide (Hex1Cer) in yak colostrum, was higher than the value of yak mature milk. Moreover, the differences of nutritive value between yak colostrum and mature milk were generated by the fat, amino acids and carbohydrate metabolism that were regulated by the ovarian hormone and referencesrenin-angiotensin-aldosterone system in yaks. These research results can provide a theoretical basis for the commercial product development of yak colostrum.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering in Gansu Province, Lanzhou 730050, China
| |
Collapse
|
13
|
Milk Fat Globule Membrane Relieves Fatigue via Regulation of Oxidative Stress and Gut Microbiota in BALB/c Mice. Antioxidants (Basel) 2023; 12:antiox12030712. [PMID: 36978962 PMCID: PMC10045747 DOI: 10.3390/antiox12030712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Milk fat globule membranes (MFGMs) are complex structures that incorporate bioactive proteins and lipids to assist in infant development. However, the antifatigue and antioxidant potentials of MFGM have not been investigated. In this study, repeated force swimming measured fatigue in male BALB/c mice fed MFGM and saline for 18 weeks. The MFGM supplementation increased the time to exhaustion by 42.7% at 6 weeks and 30.6% at 14 weeks (p < 0.05). Fatigue and injury-related biomarkers, including blood glucose, lactic acid, and lactate dehydrogenase, were ameliorated after free swimming (p < 0.05). The activity of antioxidant enzymes in blood serum increased at 18 weeks, while malondialdehyde (MDA) content decreased by 45.0% after the MFGM supplementation (p < 0.05). The Pearson correlation analysis showed a high correlation between fatigue-related indices and antioxidant levels. The increased protein expression of hepatic Nrf2 reduced the protein expression of Caspase-3 in the gastrocnemius muscle (p < 0.05). Moreover, the MFGM supplementation increased the relative abundance of Bacteroides, Butyricimonas, and Anaerostipes. Our results demonstrate that MFGM may maintain redox homeostasis to relieve fatigue, suggesting the potential application of MFGM as an antifatigue and antioxidant dietary supplement.
Collapse
|
14
|
Kahraman M, Yurtseven S, Sakar E, Daş A, Yalçın H, Güngören G, Boyraz MÜ, Koyuncu İ. Pistachio, Pomegranate and Olive Byproducts Added to Sheep Rations Change the Biofunctional Properties of Milk through the Milk Amino Acid Profile. Food Sci Anim Resour 2023; 43:124-138. [PMID: 36789194 PMCID: PMC9890361 DOI: 10.5851/kosfa.2022.e65] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
This study was carried out to determine the effects of adding pistachio shell (PIS), pomegranate hull (POM), and olive pulp (OP) to the diet on milk amino acid and fatty acid parameters in Awassi sheep. In the study, 40 head of Awassi sheep, which gave birth at least twice, were used as animal material. Sheep were fed a control diet without added byproducts (CON), rations containing PIS, POM, and OP. Milk amino acid profile was determined by liquid chromatography-tandem mass spectrometry, milk fatty acid gas chromatography-flame ionization detection device. There was a dramatic reduction in alanine, citrulline, glutamine, glutamic acid, glycine, leucine, ornithine and alphaaminoadipic acid in the research groups. In the PIS group, argininosuccinic acid, gammaminobutyric acid, beta-alanine and sarcosine; In the POM group, asparagine, gammaminobutyric acid, beta-alanine, and taurine; In the OP group, a significant positive increase was found in terms of alanine, histidine, gammaminobutyric acid, and taurine amino acids. The applications in the study did not have a statistically significant effect on the ratio of short, medium and long chain fatty acids in milk (p>0.05). In the presented study, it was determined that PIS, POM, and OP, which were added to the sheep rations at a rate of 5%, caused significant changes in the milk amino acid profiles. In this change in milk amino acid profiles, the benefit-harm relationship should be considered.
Collapse
Affiliation(s)
- Mücahit Kahraman
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey,Corresponding author:
Mücahit Kahraman, Department of Animal Science, Faculty of Veterinary
Medicine, Harran University, Şanlıurfa 63300, Turkey, Tel:
+90-414-318-3918, Fax: +90-414-318-3922, E-mail:
| | - Sabri Yurtseven
- Department of Animal Science, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Ebru Sakar
- Department of Horticulture, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Aydın Daş
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - Hamza Yalçın
- Department of Biostatistics, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Gülşah Güngören
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - Mustafa Ünal Boyraz
- Histology Department, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - İsmail Koyuncu
- Department of Biochemistry, Faculty of
Medicine, Harran University, Şanlıurfa 63300,
Turkey
| |
Collapse
|
15
|
Determination of Free Amino Acids in Milk, Colostrum and Plasma of Swine via Liquid Chromatography with Fluorescence and UV Detection. Molecules 2022; 27:molecules27134153. [PMID: 35807399 PMCID: PMC9268350 DOI: 10.3390/molecules27134153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acids are ubiquitous components of mammalian milk and greatly contribute to its nutritional value. The compositional analysis of free amino acids is poorly reported in the literature even though their determination in the biological fluids of livestock animals is necessary to establish possible nutritional interventions. In the present study, the free amino acid profiles in mature swine milk, colostrum and plasma were assessed using a targeted metabolomics approach. In particular, 20 amino acids were identified and quantified via two alternative and complementary reversed-phase HPLC methods, involving two stationary phases based on core-shell technology, i.e., Kinetex C18 and Kinetex F5, and two detection systems, i.e., a diode array detector (DAD) and a fluorescence detector (FLD). The sample preparation involved a de-proteinization step, followed by pre-chromatographic derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). The two optimized methods were validated for specificity, linearity, sensitivity, matrix effect, accuracy and precision and the analytical performances were compared. The analytical methods proved to be suitable for free amino acid profiling in different matrices with high sensitivity and specificity. The correlations among amino acid levels in different biological fluids can be useful for the evaluation of physio-pathological status and to monitor the effects of therapeutic or nutritional interventions in humans and animals.
Collapse
|
16
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
17
|
Li M, Li Q, Song W, Liu Y, Zhang X, Zheng Y, Yue X. Discovery of lipid biomarkers between bovine colostrum and milk using UHPLC-Q-TOF-MS lipidomics. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
O'Callaghan TF, O'Donovan M, Murphy JP, Sugrue K, Tobin JT, McNamara AE, Yin X, Sundaramoorthy G, Brennan L. The bovine colostrum and milk metabolome at the onset of lactation as determined by 1H-NMR. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Shifts in the Holstein dairy cow milk fat globule membrane proteome that occur during the first week of lactation are affected by parity. J Anim Sci Biotechnol 2020; 11:81. [PMID: 32695335 PMCID: PMC7367219 DOI: 10.1186/s40104-020-00478-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background The milk fat globule membrane (MFGM) proteomes of colostrum and transition milk are rich sources of proteins that are likely important for neonatal calf health. In addition, characterization of these proteomes could also yield valuable information regarding mammary gland physiology of the early postpartum lactating cow. The objectives of this research were to characterize the MFGM proteomes of colostrum and transition milk through sample collections at four timepoints postpartum, including the first milking (M1, colostrum), second milking (M2, transition milk), fourth milking (M4, transition milk), and fourteenth milking (M14, mature milk), and compare these proteomes between multiparous (MP; n = 10) and primiparous (PP; n = 10) Holstein dairy cows. Isolated MFGM proteins were labeled using Tandem Mass tagging and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein identification was completed using MASCOT and Sequest in Proteome Discoverer 2.2. The scaled abundance values were analyzed using PROC MIXED in SAS to determine the effects of milking (MIL), parity (PAR), and MIL × PAR. The adaptive false-discovery rate (FDR)-adjusted P values were determined using PROC MULTTEST. Protein characterization and bioinformatic analysis were completed using a combination of PANTHER, Blast, and Uniprot. Results A total of 104 common proteins were identified in each of the MFGM samples. Statistical analysis revealed that 70.2% of identified proteins were affected by MIL. Of these, 78.1% were lower in M14 compared with M1, including immune-related proteins lactotransferrin, lactadherin and hemopexin. Parity affected 44.2% of proteins. Of the proteins affected by PAR, 84.8% were higher in MP cows compared with PP cows, including apolipoprotein E and histones 2A, 2B, 3, and 4 b. Butyrophilin subfamily 1 member 1A and annexin 5 were higher in samples from PP cows. Milking × parity affected 32.7% of identified proteins, including lactotransferrin, gelsolin, vitamin D binding protein, and S100 proteins. Conclusions This research supports previous findings that the Holstein MFGM proteome changes rapidly during the first week of lactation. In addition, this research identifies the impact of parity on the colostrum and transition milk MFGM proteomes, which may be important for milk-fed calf health or for the identification of protein biomarkers for mammary functionality.
Collapse
|
20
|
Li M, Li Q, Kang S, Cao X, Zheng Y, Wu J, Wu R, Shao J, Yang M, Yue X. Characterization and comparison of lipids in bovine colostrum and mature milk based on UHPLC-QTOF-MS lipidomics. Food Res Int 2020; 136:109490. [PMID: 32846571 DOI: 10.1016/j.foodres.2020.109490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Lipids in bovine milk have several biological activities, with implications for human health and the physical functionality of foods. However, alterations in the lipid profile of bovine milk during lactation are not well-studied. This study aimed to identify differences in lipids between bovine colostrum and mature milk, using a lipidomics approach. Using an advanced mass spectrometry-based quantitative lipidomics approach, 335 lipids assigned to 13 subclasses were characterized in bovine colostrum (BC) and mature milk (BM). In total, 63 significantly differential lipids (SDLs) were identified. Among the 63 SDLs, the levels of 21 lipids were significantly lower in BM than in BC, including 5 glycerophosphatidylethanolamines (PEs), 1 glycerophosphatidylglycerol (PG), and 15 triacylglycerols (TGs). The levels of the remaining 42 lipids increased in BM, including 1 cardiolipin (CL), 9 diacylglycerols (DGs), 9 dihexosylceramides (Hex2Cers), 3 hexosylceramides (HexCers), 3 glycerophosphatidic acids (PAs), 2 glycerophosphatidylcholines (PCs), 12 PEs, and 3 TGs. Furthermore, the correlations and related metabolic pathways of these 63 SDLs were analyzed to explore the mechanisms that alter bovine milk lipids during lactation. The seven most relevant pathways identified herein, ranked in accordance with their degree of influence on lactation, were glycerophospholipid metabolism, sphingolipid metabolism, glycerolipid metabolism, glycosylphosphatidylinositol-anchor biosynthesis, linoleic acid metabolism, alpha-linolenic acid metabolism, and arachidonic acid metabolism. Our results provide essential insights into mechanisms underlying alterations in bovine milk lipids during different lactation periods, along with practical information of specific nutrition and quality assessments for the dairy industry.
Collapse
Affiliation(s)
- Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qilong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shimo Kang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning Province, China.
| |
Collapse
|
21
|
Li M, Li Q, Zheng Y, Shi X, Zhang J, Ma C, Guan B, Peng Y, Yang M, Yue X. New insights into the alterations of full spectrum amino acids in human colostrum and mature milk between different domains based on metabolomics. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|