1
|
Cadar E, Popescu A, Dragan AML, Pesterau AM, Pascale C, Anuta V, Prasacu I, Velescu BS, Tomescu CL, Bogdan-Andreescu CF, Sirbu R, Ionescu AM. Bioactive Compounds of Marine Algae and Their Potential Health and Nutraceutical Applications: A Review. Mar Drugs 2025; 23:152. [PMID: 40278274 PMCID: PMC12029074 DOI: 10.3390/md23040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Currently, marine algae are still an under-exploited natural bioresource of bioactive compounds. Seaweeds represent a sustainable source for obtaining bioactive compounds that can be useful for the fabrication of new active products with biomedical benefits and applications as biomedicinals and nutraceuticals. The objective of this review is to highlight scientific papers that identify biocompounds from marine macroalgae and emphasize their benefits. The method used was data analysis to systematize information to identify biocompounds and their various benefits in pharmaceuticals, cosmetics, and nutraceuticals. The research results demonstrate the multiple uses of seaweeds. As pharmaceuticals, seaweeds are rich sources of bioactive compounds like polysaccharides, protein compounds, pigments, and polyphenols, which have demonstrated various pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, antiviral, anticoagulant, and potentially anticarcinogenic effects. Seaweed has gained recognition as a functional food and offers a unique set of compounds that promote body health, including vitamins, minerals, and antioxidants. In conclusion, the importance of this review is to expand the possibilities for utilizing natural resources by broadening the areas of research for human health and marine nutraceuticals.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Antoanela Popescu
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Corp C, 900470 Constanta, Romania; (E.C.); (A.P.)
| | - Ana-Maria-Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Valentina Anuta
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Bruno Stefan Velescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania; (V.A.); (I.P.); (B.S.V.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Tomis Bvd., No. 145, 900591 Constanta, Romania
| | | | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.)
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Corp B, 900470 Constanta, Romania; (C.L.T.); (A.-M.I.)
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| |
Collapse
|
2
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Vega-Galvez A, Uribe E, Pasten A, Camus J, Rojas M, Garcia V, Araya M, Valenzuela-Barra G, Zambrano A, Goñi MG. Low-Temperature Vacuum Drying on Broccoli: Enhanced Anti-Inflammatory and Anti-Proliferative Properties Regarding Other Drying Methods. Foods 2023; 12:3311. [PMID: 37685242 PMCID: PMC10486434 DOI: 10.3390/foods12173311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Low-temperature vacuum drying (LTVD) has shown great potential for drying vegetables. It could avoid excessive degradations of active compounds with potential therapeutic agents. In this study, the effect on several relevant bioactive compounds, anti-inflammatory activity, and anti-proliferative activity of broccoli (Brassica oleracea var. italica) were evaluated. Effects of other drying methods, including vacuum drying (VD), convective drying (CD), infrared drying (IRD), and freeze drying (FD), were also comparatively evaluated. The results of all dried samples showed high polyunsaturated fatty acid contents (of up to 71.3%) and essential amino acid contents (of up to 8.63%). The LTVD method stands out above the other drying methods, since it obtained the highest content of total phenols, chlorogenic acid, and ferulic acid. Both the LTVD and CD samples demonstrated high anti-inflammatory and anti-proliferative activities. These CD and LTVD samples were also the most active against the breast carcinoma MDA-MB-23 cell line. Due to the good retention of bioactive compounds via LTVD, the obtained dried broccoli here can be used in a near time as an ingredient for the development of novel natural products with anti-inflammatory and anti-proliferative effects.
Collapse
Affiliation(s)
- Antonio Vega-Galvez
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Elsa Uribe
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
- Instituto Multidisciplinario de Investigación y Postgrado, Universidad de La Serena, La Serena 1700000, Chile
| | - Alexis Pasten
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Javiera Camus
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Michelle Rojas
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Vivian Garcia
- Food Engineering Department, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1700000, Chile; (E.U.); (A.P.); (J.C.); (M.R.); (V.G.)
| | - Michael Araya
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile;
| | - Gabriela Valenzuela-Barra
- Laboratorio de Productos Naturales, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile;
| | - Angara Zambrano
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla P.O. Box 567, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Maria Gabriela Goñi
- Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1000-1499, Argentina
| |
Collapse
|
4
|
Palaniyappan S, Sridhar A, Kari ZA, Téllez-Isaías G, Ramasamy T. Evaluation of Phytochemical Screening, Pigment Content, In Vitro Antioxidant, Antibacterial Potential and GC-MS Metabolite Profiling of Green Seaweed Caulerpa racemosa. Mar Drugs 2023; 21:md21050278. [PMID: 37233472 DOI: 10.3390/md21050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Exploration of seaweeds to unravel their bioactive metabolites from the perspective of wider applications gained substantial importance. The present study was performed to investigate the total phenolic, flavonoid, tannin content, antioxidant activity and antibacterial potential of various solvent extracts of green seaweed Caulerpa racemosa. The methanolic extract showed higher phenolic (11.99 ± 0.48 mg gallic acid equivalents/g), tannin (18.59 ± 0.54 mg tannic acid equivalents/g) and flavonoid (33.17 ± 0.76 mg quercetin equivalents/g) content than other extracts. Antioxidant activity was determined by using 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay with different concentrations of C. racemosa extracts. The methanolic extract showed higher scavenging potential in both the DPPH and ABTS activity with the inhibition value of 54.21 ± 1.39% and 76.62 ± 1.08%, respectively. Bioactive profiling was also identified by using Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) techniques. These studies revealed the presence of valuable bioactive compounds in C. racemosa extracts and these compounds might be responsible for antimicrobial, antioxidant, anticancer and anti-mutagenic properties. Major compounds identified in GC-MS were 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, 3-hexadecene and Phthalic acid. In terms of antibacterial activity, C. racemosa has promising antibacterial potential against aquatic pathogens Aeromonas hydrophila, Aeromonas veronii and Aeromonas salmonicida. Further evaluation studies focusing aquatic related aspects would reveal the novel bioproperties and applications of C. racemosa.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
5
|
Vega J, Catalá TS, García-Márquez J, Speidel LG, Arijo S, Cornelius Kunz N, Geisler C, Figueroa FL. Molecular Diversity and Biochemical Content in Two Invasive Alien Species: Looking for Chemical Similarities and Bioactivities. Mar Drugs 2022; 21:5. [PMID: 36662178 PMCID: PMC9861339 DOI: 10.3390/md21010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
The biochemical composition, molecular diversity, and two different bioactivities of Asparagopsis armata and Rugulopteryx okamurae (two alien species with different invasive patterns in the southern Iberian Peninsula) were analyzed through spectrophotometric methods and Fourier transform ion cyclotron mass spectroscopy (FT-ICR-MS). A total of 3042 molecular formulas were identified from the different extracts. The dH2O extracts were the most molecularly different. A. armata presented the highest content of nitrogenous compounds (proteins, CHON) and sulphur content, whereas R. okamurae was rich in carbonated compounds (total carbon, lipids, CHO, and CHOP). Antioxidant capacity and phenolic content were higher in R. okamurae than in A. armata. Antimicrobial activity was detected from both species. A. armata showed capacity to inhibit human and fish pathogens (e.g., Staphylococcus aureus or Vibrio anguillarum), whereas R. okamurae only showed inhibition against human bacteria (Staphylococcus aureus and Cutibacterium acnes). In R. okamurae, molecules with a great number of pharmaceutical activities (e.g., anti-inflammatory or antitumoral), antibacterial, biomaterial, and other utilities were found. The main molecules of A. armata had also pharmaceutical applications (e.g., antimalarian, antithrombotic, anti-inflammatory, or antiarthritis). The valorization of these species can help to counteract the environmental effects of the bioinvasions.
Collapse
Affiliation(s)
- Julia Vega
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Ecology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Teresa S. Catalá
- Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University, 26129 Oldenburg, Germany
- Organization for Science, Education and Global Society, 70563 Stuttgart, Germany
| | - Jorge García-Márquez
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Microbiology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Linn G. Speidel
- Biogeoscience Group, Geological Institute, ETH Zurich, Sonneggstr. 5, 8092 Zurich, Switzerland
| | - Salvador Arijo
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Microbiology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| | - Niklas Cornelius Kunz
- Artificial Intelligence in Healthcare and Biotechnology, ValueData GmbH, 51429 Bergisch Gladbach, Germany
| | - Christoph Geisler
- Organization for Science, Education and Global Society, 70563 Stuttgart, Germany
| | - Félix L. Figueroa
- Andalusian Institute of Blue Biotechnology and Development (IBYDA), Ecology Department, Faculty of Sciences, Malaga University, Campus Universitario de Teatinos s/n, 29071 Malaga, Spain
| |
Collapse
|
6
|
Zhao T, Dong Q, Zhou H, Yang H. Drying kinetics, physicochemical properties, antioxidant activity and antidiabetic potential of Sargassum fusiforme processed under four drying techniques. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Nazarudin M, Yasin I, Mazli N, Saadi A, Azizee M, Nooraini M, Saad N, Ferdous U, Fakhrulddin I. Preliminary screening of antioxidant and cytotoxic potential of green seaweed, Halimeda opuntia (Linnaeus) Lamouroux. Saudi J Biol Sci 2022; 29:2698-2705. [PMID: 35531161 PMCID: PMC9073034 DOI: 10.1016/j.sjbs.2021.12.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Marine natural products have displayed numerous advantageous effects on biological activities, including antioxidants and cytotoxicity. The total lipids, carotenoids, chlorophyll a and b content, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity of methanolic crude extract of the green seaweed Halimeda opuntia were all measured in this study. The TPC of the extracts was determined according to the Folin-Ciocalteu method, yielding a result of 55.04 ± 0.98 mg GAE/g of extract. As determined by the aluminium chloride colorimetric method, the TFC of the extract was 40.02 ± 0.02 mg QE/g of extract. Antioxidant activity was determined by using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with different concentrations that ranged between 200 and 1000 µg/mL, noted H. opuntia as the highest in DPPH reduction (63.61 %) at 1000 µg/mL concentration. Total antioxidant capacity (TAC) of the extract was 57.36 ± 0.004 mg AAE/g extract at concentration of 1.0 mg/mL. The cytotoxic activity of this seaweed was pre-screened against a panel of cell lines including estrogen receptor-positive human breast adenocarcinoma (MCF-7), estrogen negative human breast adenocarcinoma (MDA-MB-231), human colorectal adenocarcinoma (HT-29), human hepatocellular carcinoma (HepG2), and mouse embryonic fibroblast (3T3) using the MTT assay. The content of total lipids in H. opuntia was 1.60 ± 0.002 %. Total carotenoids were 115.57 ± 0.98 µg/g, while chlorophyll a and b were 148.73 ± 2.60 µg/g and 290.83 ± 9.46 µg/g, respectively. In terms of cytotoxicity activity, methanolic extract of H. opuntia was found to be highly cytotoxic to MCF-7 cells, with an IC50 of 25.14 ± 1.02 g/mL, and slightly less so to 3T3 cells (IC50 65.23 ± 0.25 µg/mL). This study's findings suggest that natural pigments (carotenoids and chlorophyll), phytochemicals like phenolic and flavonoid compounds found in this species may play an important role and could be used as a natural cancer treatment.
Collapse
Affiliation(s)
- M.F. Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Corresponding author.
| | - I.S.M. Yasin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N.A.I.N. Mazli
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A.R. Saadi
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M.H.S. Azizee
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M.A. Nooraini
- Laboratory of UPM - MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N. Saad
- Laboratory of UPM - MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - U.T. Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - I.M. Fakhrulddin
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
8
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
9
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
10
|
Effects of Heat Treatment Processes: Health Benefits and Risks to the Consumer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Macroalgae are a biological group that has mainly been used in Asian countries; however, the interest shown by Western society is recent, its application in the industrial sector having increased in the last few decades. Seaweeds are filled with properties which are beneficial to our health. To use them as food and enhance these properties, heat has been used on them. This process alters the bioactive compounds. If we study the levels of moisture, they can vary according to the drying methods used. High values of moisture can lead to a short shelf life due to oxidation, microbial or enzyme activity, so controlling these values is highly recommended. Heat causes enzymatic activity as well as oxidation, which leads to degradation of phenolic compounds in comparison with freeze-drying, which causes fewer losses of these components. Due to the same occurrences, lipid content can also vary, modifying the bioactive compounds and their benefits. Pigments are some of the components most affected by heat, since, through this process, seaweeds or seaweed products can suffer a change in color. Iodine in macroalgae can decrease drastically; on the other hand, protein yield can be greatly enhanced. Some studies showed that the amount of arsenic in raw seaweeds was higher than when they were heat processed, and that arsenic values varied when different heat treatments were applied. Additionally, another study showed that heat can alter protein yield in specific species and have a different effect on other species.
Collapse
|
11
|
Stefenoni HA, Räisänen SE, Cueva SF, Wasson DE, Lage CFA, Melgar A, Fetter ME, Smith P, Hennessy M, Vecchiarelli B, Bender J, Pitta D, Cantrell CL, Yarish C, Hristov AN. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J Dairy Sci 2021; 104:4157-4173. [PMID: 33516546 DOI: 10.3168/jds.2020-19686] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Asparagopsis taxiformis (AT) is a source of multiple halogenated compounds and, in a limited number of studies, has been shown to decrease enteric CH4 emission in vitro and in vivo. Similarly, oregano has been suggested as a potential CH4 mitigating agent. This study consisted of 2 in vitro and 2 in vivo experiments. Experiment (Exp.) 1 was aimed at establishing the effect of AT on CH4 emission in vitro. Two experiments (Exp. 2 and 3) with lactating dairy cows were conducted to determine the antimethanogenic effect of AT and oregano (Exp. 3) in vivo. Another experiment (Exp. 4) was designed to investigate stability of bromoform (CHBr3) in AT over time. In Exp. 3, 20 Holstein cows were used in a replicated 4 × 4 Latin square design with four 28-d periods. Treatments were basal diet (control) or basal diet supplemented with (dry matter basis) 0.25% AT (LowAT), 0.50% AT (HighAT), or 1.77% oregano (Origanum vulgare L.) leaves. Enteric gas emissions were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD), and rumen samples were collected for fermentation analysis using the ororuminal technique. In Exp.1 (in vitro), relative to the control, AT (at 1% dry matter basis, inclusion rate) decreased CH4 yield by 98%. In Exp. 3, HighAT decreased average daily CH4 emission and CH4 yield by 65% and 55%, respectively, in experimental periods 1 and 2, but had no effect in periods 3 and 4. The differential response to AT among experimental periods was likely a result of a decrease in CHBr3 concentration in AT over time, as observed in Exp. 4 (up to 84% decrease in 4 mo of storage). In Exp. 3, H2 emission was increased by AT and, as expected, the proportion of acetate in the total volatile fatty acids in the rumen was decreased and those of propionate and butyrate were increased by HighAT compared with the control. Compared with the control, HighAT decreased dry matter intake, milk yield, and energy-corrected milk yield in Exp. 3. Milk composition was not affected by treatment, except lactose percentage and yield were decreased by HighAT. Concentrations of iodine and bromide in milk were increased by HighAT compared with the control. Milk CHBr3 concentration and its organoleptic characteristics were not different between control and HighAT. Oregano had no effect on CH4 emission or lactational performance of the cows in Exp. 3. Overall, AT included at 0.50% in the ration of dairy cows can have a large mitigation effect on enteric CH4 emission, but dry matter intake and milk production may also decrease. There was a marked decrease in the CH4 mitigation potential of AT in the second half of Exp. 3, likely resulting from CHBr3 decay over time.
Collapse
Affiliation(s)
- H A Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M E Fetter
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - P Smith
- Proteomics and Mass Spectrometry Core Facility, The Pennsylvania State University, University Park 16802
| | - M Hennessy
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - B Vecchiarelli
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - J Bender
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - D Pitta
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square 19348
| | - C L Cantrell
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, University, MS 38677
| | - C Yarish
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Stamford 06901
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
12
|
Undervalued Atlantic brown seaweed species (Cystoseira abies-marina and Zonaria tournefortii): influence of treatment on their nutritional and bioactive potential and bioaccessibility. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03620-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|