1
|
Molska GR, Paula-Freire LIG, Sakalem ME, Köhn DO, Negri G, Carlini EA, Mendes FR. Green coffee extract attenuates Parkinson's-related behaviors in animal models. AN ACAD BRAS CIENC 2021; 93:e20210481. [PMID: 34730624 DOI: 10.1590/0001-3765202120210481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies have shown an inverse association between coffee consumption and the development of Parkinson's disease (PD). The effects of the oral treatment with green (non-roasted) coffee extracts (CE, 100 or 400 mg/kg) and caffeine (31.2 mg/kg) were evaluated on catalepsy induced by haloperidol in mice, and unilateral 6-OHDA lesion of medial forebrain bundle (MFB) or striatum in rats. Also, the in vitro antioxidant activity and the monoamine levels in the striatum were investigated. CE presented a mild antioxidant activity in vitro and its administration decreased the catalepsy index. CE at the dose of 400 mg/kg induced ipsilateral rotations 14 days after lesion; however, chronic 30-day CE and caffeine treatments did not interfere with the animals' rotation after apomorphine or methamphetamine challenges in animals with MFB lesion, nor on monoamines levels. Furthermore, CE and caffeine were effective in inhibiting the asymmetry between ipsilateral and contralateral rotations induced by methamphetamine and apomorphine in animals with lesion in the striatum but did not avoid the monoamines depletion. These results indicate that CE components indirectly modulate dopaminergic transmission, suggesting a pro-dopaminergic action of CE, and further investigation must be conducted to elucidate the mechanisms of action and the possible neuroprotective role in PD.
Collapse
Affiliation(s)
- Graziella R Molska
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil.,Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G6, Canada
| | - Lyvia Izaura G Paula-Freire
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Marna E Sakalem
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Daniele O Köhn
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Giuseppina Negri
- Universidade Federal de São Paulo, Departamento de Psicobiologia, Rua Botucatu, 862, 1º andar, ECB, 04023-062 São Paulo, SP, Brazil
| | - Elisaldo A Carlini
- Universidade Federal de São Paulo, Departamento de Medicina Preventiva, Rua Botucatu, 740, 4º andar, 04024-002 São Paulo, SP, Brazil
| | - Fúlvio R Mendes
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Arcturus, 03, 09606-070 São Bernardo do Campo, SP, Brazil
| |
Collapse
|
2
|
The Effect of Caffeine on the Risk and Progression of Parkinson's Disease: A Meta-Analysis. Nutrients 2020; 12:nu12061860. [PMID: 32580456 PMCID: PMC7353179 DOI: 10.3390/nu12061860] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Coffee and caffeine are speculated to be associated with the reduced risk of Parkinson's disease (PD). The present study aimed to investigate the disease-modifying potential of caffeine on PD, either for healthy people or patients, through a meta-analysis. The electronic databases were searched using terms related to PD and coffee and caffeinated food products. Articles were included only upon fulfillment of clear diagnostic criteria for PD and details regarding their caffeine content. Reference lists of relevant articles were reviewed to identify eligible studies not shortlisted using these terms. In total, the present study enrolled 13 studies, nine were categorized into a healthy cohort and the rest into a PD cohort. The individuals in the healthy cohort with regular caffeine consumption had a significantly lower risk of PD during follow-up evaluation (hazard ratio (HR) = 0.797, 95% CI = 0.748-0.849, p < 0.001). The outcomes of disease progression in PD cohorts included dyskinesia, motor fluctuation, symptom onset, and levodopa initiation. Individuals consuming caffeine presented a significantly lower rate of PD progression (HR = 0.834, 95% CI = 0.707-0.984, p = 0.03). In conclusion, caffeine modified disease risk and progression in PD, among both healthy individuals or those with PD. Potential biological benefits, such as those obtained from adenosine 2A receptor antagonism, may require further investigation for designing new drugs.
Collapse
|
3
|
Long-Term Treatment with Fluvoxamine Decreases Nonmotor Symptoms and Dopamine Depletion in a Postnatal Stress Rat Model of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1941480. [PMID: 32273939 PMCID: PMC7114775 DOI: 10.1155/2020/1941480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Nonmotor symptoms (NMS) such as anxiety, depression, and cognitive deficits are frequently observed in Parkinson's disease (PD) and precede the onset of motor symptoms by years. We have recently explored the short-term effects of Fluvoxamine, a selective serotonin reuptake inhibitor (SSRI) on dopaminergic neurons in a parkinsonian rat model. Here, we report the long-term effects of Fluvoxamine, on early-life stress-induced changes in the brain and behavior. We specifically evaluated the effects of Fluvoxamine on brain mechanisms that contribute to NMS associated with PD in a unilateral 6-hydroxydopamine-lesioned rat model. A 14-day early postnatal maternal separation protocol was applied to model early-life stress followed by unilateral intracerebral infusion of 6-hydroxydopamine (6-OHDA) to model aspects of parkinsonism in rats. The anxiolytic, antidepressant, and cognitive effects of Fluvoxamine were confirmed using the elevated plus-maze (EPM) test, sucrose preference test (SPT), and Morris water maze (MWM) test. Further to that, our results showed that animals exposed to early-life stress displayed increased plasma corticosterone and malondialdehyde (MDA) levels which were attenuated by Fluvoxamine treatment. A 6-OHDA lesion effect was evidenced by impairment in the limb-use asymmetry test as well as decreased dopamine (DA) and serotonin levels in the striatum, prefrontal cortex, and hippocampus. These effects were surprisingly attenuated by Fluvoxamine treatment in all treated rats. This study is the first to suggest that early and long-term treatment of neuropsychological diseases with Fluvoxamine may decrease the vulnerability of dopaminergic neurons that degenerate in the course of PD.
Collapse
|
4
|
Chung Y, Lee J, Jung S, Lee Y, Cho JW, Oh YJ. Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis 2018; 9:1189. [PMID: 30538224 PMCID: PMC6289995 DOI: 10.1038/s41419-018-1229-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Autophagy is a regulated, intracellular degradation process that delivers unnecessary or dysfunctional cargo to the lysosome. Autophagy has been viewed as an adaptive survival response to various stresses, whereas in other cases, it promotes cell death. Therefore, both deficient and excessive autophagy may lead to cell death. In this study, we specifically attempted to explore whether and how dysregulated autophagy contributes to caspase-dependent neuronal cell death induced by the neurotoxin 6-hydroxydopamine (6-OHDA). Ultrastructural and biochemical analyses indicated that MN9D neuronal cells and primary cultures of cortical neurons challenged with 6-OHDA displayed typical features of autophagy. Cotreatment with chloroquine and monitoring autophagic flux by a tandem mRFP-EGFP-tagged LC3 probe indicated that the autophagic phenomena were primarily caused by dysregulated autophagic flux. Consequently, cotreatment with an antioxidant but not with a pan-caspase inhibitor significantly blocked 6-OHDA-stimulated dysregulated autophagy. These results indicated that 6-OHDA-induced generation of reactive oxygen species (ROS) played a critical role in triggering neuronal death by causing dysregulated autophagy and subsequent caspase-dependent apoptosis. The results of the MTT reduction, caspase-3 activation, and TUNEL assays indicated that pharmacological inhibition of autophagy using 3-methyladenine or deletion of the autophagy-related gene Atg5 significantly inhibited 6-OHDA-induced cell death. Taken together, our results suggest that abnormal induction of autophagic flux promotes apoptotic neuronal cell death, and that the treatments limiting dysregulated autophagy may have a strong neuroprotective potential.
Collapse
Affiliation(s)
- Yuhyun Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea
| | - Juhyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea
| | - Shinae Jung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea
| | - Yangsin Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 120-749, South Korea
| | - Jin Won Cho
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea.,Glycosylation Network Research Center, Yonsei University, Seoul, 120-749, South Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 120-749, South Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea.
| |
Collapse
|
5
|
Quiroga-Varela A, Aguilar E, Iglesias E, Obeso JA, Marin C. Short- and long-term effects induced by repeated 6-OHDA intraventricular administration: A new progressive and bilateral rodent model of Parkinson's disease. Neuroscience 2017; 361:144-156. [PMID: 28823819 DOI: 10.1016/j.neuroscience.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and the resulting striatal dopamine deficiency, which are responsible for the classic motor features. Although a diagnosis of PD relies on the clinical effects of dopamine deficiency, this disease is also associated with other neurotransmitter deficits that are recognized as causing various motor and non-motor symptoms. However, the cause of dopaminergic nigral neurodegeneration in PD and the underlying mechanisms remain unknown. While animal models are considered valuable tools with which to investigate dopaminergic cell vulnerability, rodent models usually fail to mimic the neurodegeneration progression that occurs in human PD. To find a convenient rat model for studying the progression of dopaminergic cell degeneration and motor signs, we have developed a progressive rodent model using a repeated daily, intraventricular administration of the neurotoxin 6-hydroxydopamine (6-OHDA) (100µg/day) in awakened rats for 1 to 10 consecutive days. The short- (6-day) and long-term (32-day) progression of motor alterations was studied. This model leads to a bilateral and progressive increase in catalepsy (evident from the 3rd infusion in the short-term groups (p<0.01) and from the 7th infusion in the long-term groups (p<0.01), which was associated with a progressive nigrostriatal dopaminergic deficit. All together this makes the new model an interesting experimental tool to investigate the mechanisms involved in the progression of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- A Quiroga-Varela
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - E Aguilar
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Iglesias
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J A Obeso
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - C Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
6
|
Khairnar A, Frau L, Plumitallo A, Morelli M, Simola N. Antagonism of Adenosine A1 or A2A Receptors Amplifies the Effects of MDMA on Glial Activation in the Mouse Brain: Relevance to Caffeine–MDMA Interactions. JOURNAL OF CAFFEINE RESEARCH 2014. [DOI: 10.1089/jcr.2014.0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Amit Khairnar
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lucia Frau
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonio Plumitallo
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
- National Research Council (CNR), Neuroscience Institute, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Perez-Lloret S, Merello M. Two new adenosine receptor antagonists for the treatment of Parkinson's disease: istradefylline versus tozadenant. Expert Opin Pharmacother 2014; 15:1097-107. [PMID: 24673462 DOI: 10.1517/14656566.2014.903924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Adenosine A2A receptors are localized in the brain, mainly within the caudate and putamen nuclei of the basal ganglia. Their activation leads to stimulation of the 'indirect' pathway. Conversely, administration of A2A receptor antagonists leads to inhibition of this pathway, which was translated into reduced hypomotility in several animal models of parkinsonism. AREAS COVERED In this review, the effects of two A2A receptor antagonists, istradefylline and tozadenant, on parkinsonian symptoms in animal and humans will be discussed. EXPERT OPINION Animal studies have shown potent antiparkinsonian effects for several A2A receptor antagonists, including istradefylline. In clinical trials, istradefylline reduced OFF time when administered with levodopa, but results are inconclusive. Results with tozadenant are scarce. Modification of thalamic blood flow compatible with reduced inhibition was noted in one small trial, followed by a significant reduction in OFF time in a larger one. Therefore, both drugs show promising efficacy for the reduction of OFF time in levodopa-treated Parkinson's disease patients, but further research is needed in order to obtain definitive conclusions.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Raul Carrea Institute for Neurological Research, Movement Disorders Section , Montañeses 2325 (1425), Buenos Aires , Argentina +54 11 57773200 ; +54 11 57773200 ;
| | | |
Collapse
|
8
|
Van der Walt MM, Terre’Blanche G, Petzer A, Lourens AC, Petzer JP. The adenosine A2A antagonistic properties of selected C8-substituted xanthines. Bioorg Chem 2013; 49:49-58. [DOI: 10.1016/j.bioorg.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
9
|
León IDLPD, Parra-Cid MDC, Muñoz-Zurita A, Merino-Contreras SA, Montiel-Smith S, Meza-Reyes S, Ramírez-Mejía G, Sandoval-Ramírez J. Motor Effects of 1,3-Disubstituted 8-Styrylxanthines as A<sub>1</sub> and A<sub>2</sub> Adenosine-Receptor Antagonists in Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.43044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Bogenpohl JW, Ritter SL, Hall RA, Smith Y. Adenosine A2A receptor in the monkey basal ganglia: ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum. J Comp Neurol 2012; 520:570-89. [PMID: 21858817 DOI: 10.1002/cne.22751] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adenosine A(2A) receptor (A(2A) R) is a potential drug target for the treatment of Parkinson's disease and other neurological disorders. In rodents, the therapeutic efficacy of A(2A) R modulation is improved by concomitant modulation of the metabotropic glutamate receptor 5 (mGluR5). To elucidate the anatomical substrate(s) through which these therapeutic benefits could be mediated, pre-embedding electron microscopy immunohistochemistry was used to conduct a detailed, quantitative ultrastructural analysis of A(2A) R localization in the primate basal ganglia and to assess the degree of A(2A) R/mGluR5 colocalization in the striatum. A(2A) R immunoreactivity was found at the highest levels in the striatum and external globus pallidus (GPe). However, the monkey, but not the rat, substantia nigra pars reticulata (SNr) also harbored a significant level of neuropil A(2A) R immunoreactivity. At the electron microscopic level, striatal A(2A) R labeling was most commonly localized in postsynaptic elements (58% ± 3% of labeled elements), whereas, in the GPe and SNr, the labeling was mainly presynaptic (71% ± 5%) or glial (27% ± 6%). In both striatal and pallidal structures, putative inhibitory and excitatory terminals displayed A(2A) R immunoreactivity. Striatal A(2A) R/mGluR5 colocalization was commonly found; 60-70% of A(2A) R-immunoreactive dendrites or spines in the monkey striatum coexpress mGluR5. These findings provide the first detailed account of the ultrastructural localization of A(2A) R in the primate basal ganglia and demonstrate that A(2A) R and mGluR5 are located to interact functionally in dendrites and spines of striatal neurons. Together, these data foster a deeper understanding of the substrates through which A(2A) R could regulate primate basal ganglia function and potentially mediate its therapeutic effects in parkinsonism.
Collapse
Affiliation(s)
- James W Bogenpohl
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
11
|
Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J, Belaidi E, Ovize M, Touret M, Nataf S, Mollereau B. ER stress inhibits neuronal death by promoting autophagy. Autophagy 2012; 8:915-26. [PMID: 22660271 DOI: 10.4161/auto.19716] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases but its relationship and role in disease progression remain unclear. Using genetic and pharmacological approaches, we showed that mild ER stress ("preconditioning") is neuroprotective in Drosophila and mouse models of Parkinson disease. In addition, we found that the combination of mild ER stress and apoptotic signals triggers an autophagic response both in vivo and in vitro. We showed that when autophagy is impaired, ER-mediated protection is lost. We further demonstrated that autophagy inhibits caspase activation and apoptosis. Based on our findings, we conclude that autophagy is required for the neuroprotection mediated by mild ER stress, and therefore ER preconditioning has potential therapeutic value for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Antoine Fouillet
- Ecole Normale Supérieure de Lyon, Laboratoire de Biologie Moléculaire de la Cellule, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Neurotoxin-based models of Parkinson's disease. Neuroscience 2012; 211:51-76. [DOI: 10.1016/j.neuroscience.2011.10.057] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
|
13
|
Hormone replacement therapy and risk for neurodegenerative diseases. Int J Alzheimers Dis 2012; 2012:258454. [PMID: 22548198 PMCID: PMC3324889 DOI: 10.1155/2012/258454] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 02/02/2023] Open
Abstract
Over the past two decades, there has been a significant amount of research investigating the risks and benefits of hormone replacement therapy (HRT) with regards to neurodegenerative disease. Here, we review basic science studies, randomized clinical trials, and epidemiological studies, and discuss the putative neuroprotective effects of HRT in the context of Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and HIV-associated neurocognitive disorder. Findings to date suggest a reduced risk of Alzheimer's disease and improved cognitive functioning of postmenopausal women who use 17β-estradiol. With regards to Parkinson's disease, there is consistent evidence from basic science studies for a neuroprotective effect of 17β-estradiol; however, results of clinical and epidemiological studies are inconclusive at this time, and there is a paucity of research examining the association between HRT and Parkinson's-related neurocognitive impairment. Even less understood are the effects of HRT on risk for frontotemporal dementia and HIV-associated neurocognitive disorder. Limits to the existing research are discussed, along with proposed future directions for the investigation of HRT and neurodegenerative diseases.
Collapse
|
14
|
Seidl SE, Potashkin JA. The promise of neuroprotective agents in Parkinson's disease. Front Neurol 2011; 2:68. [PMID: 22125548 PMCID: PMC3221408 DOI: 10.3389/fneur.2011.00068] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/21/2011] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available.
Collapse
Affiliation(s)
- Stacey E Seidl
- Department of Biological Sciences, DePaul University Chicago, IL, USA
| | | |
Collapse
|
15
|
Kachroo A, Irizarry MC, Schwarzschild MA. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol 2010; 223:657-61. [PMID: 20188092 PMCID: PMC2864327 DOI: 10.1016/j.expneurol.2010.02.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/05/2010] [Accepted: 02/14/2010] [Indexed: 11/29/2022]
Abstract
Environmental exposures suspected of contributing to the pathophysiology of Parkinson's disease (PD) include potentially neurotoxic pesticides, which have been linked to an increased risk of PD. Conversely, possible protective factors such as the adenosine antagonist caffeine have been linked to a reduced risk of the disease. Here we assessed whether caffeine alters dopaminergic neuron loss induced by exposure to environmentally relevant pesticides (paraquat and maneb) over 8weeks. The number of nigral neurons positive for tyrosine hydroxylase immunoreactivity (TH+) was assessed using stereological methods and found to be significantly reduced (to 60% of control) by combined pesticide treatment. Caffeine at 20mg/kg significantly reduced TH+ neuron loss (to 85% of the respective control). The results demonstrate the neuroprotective potential of caffeine in a chronic pesticide exposure model of model of PD.
Collapse
Affiliation(s)
- Anil Kachroo
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - Michael C. Irizarry
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| | - Michael A. Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129
| |
Collapse
|
16
|
Gołembiowska K, Dziubina A, Kowalska M, Kamińska K. Effect of adenosine A(2A) receptor antagonists on L-DOPA-induced hydroxyl radical formation in rat striatum. Neurotox Res 2009; 15:155-66. [PMID: 19384578 DOI: 10.1007/s12640-009-9016-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/20/2008] [Accepted: 11/24/2008] [Indexed: 11/25/2022]
Abstract
A(2A) adenosine receptor antagonists have been proposed as a new therapy for Parkinson's disease (PD). Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on L: -3,4-dihydroxyphenylalanine (L: -DOPA)-induced hydroxyl radical generation using in vivo microdialysis in the striatum of freely moving rats. L: -DOPA (100 mg/kg; in the presence of benserazide, 50 mg/kg) given acutely or repeatedly for 14 days generated a high level of hydroxyl radicals, measured by HPLC with electrochemical detection, as the product of their reaction with p-hydroxybenzoic acid (PBA). CSC (1 mg/kg) and ZM 241385 (3 mg/kg) decreased haloperidol (0.5 mg/kg)-induced catalepsy, while at low doses of 0.1 and 0.3 mg/kg, respectively, they did not display an effect. CSC (1 and 5 mg/kg) and ZM 241385 (3 and 9 mg/kg) given acutely, or CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly, increased the production of hydroxyl radicals in dialysates from rat striatum. Both acute and repeated administration of CSC (0.1 and 1 mg/kg) and ZM 241385 (3 mg/kg) decreased L: -DOPA-induced generation of hydroxyl radicals. However, a high single dose of either CSC (5 mg/kg) and ZM 241385 (9 mg/kg) markedly potentiated the effect of L: -DOPA on hydroxyl radical production. The increase in hydroxyl radical production by acute and chronic injection of CSC and ZM 241385 may be related to the increased release of dopamine (DA) and its metabolism in striatal dialysates. Similarly, increased DA release following a single high dose of CSC or ZM 241385 appears to be responsible for augmentation of L: -DOPA-induced hydroxyl radical formation. Conversely, the inhibition of L: -DOPA-induced production of hydroxyl radical by single and repeated low doses of CSC or repeated low doses of ZM 241385 may be related to reduced DA metabolism. Summing up, A(2A) antagonists, used as a supplement of L: -DOPA therapy, depending on the dose used, may have a beneficial or adverse effect on ongoing neurodegenerative processes and accompanying oxidative stress.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Kraków 31-343, Poland.
| | | | | | | |
Collapse
|
17
|
Petzer JP, Castagnoli N, Schwarzschild MA, Chen JF, Van der Schyf CJ. Dual-target-directed drugs that block monoamine oxidase B and adenosine A(2A) receptors for Parkinson's disease. Neurotherapeutics 2009; 6:141-51. [PMID: 19110205 PMCID: PMC5084262 DOI: 10.1016/j.nurt.2008.10.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Inadequacies of the current pharmacotherapies to treat Parkinson's disease (PD) have prompted efforts to identify novel drug targets. The adenosine A(2A) receptor is one such target. Antagonists of this receptor (A(2A) antagonists) are considered promising agents for the symptomatic treatment of PD. Evidence suggests that A(2A) antagonists may also have neuroprotective properties that may prevent the development of the dyskinesia that often complicates levodopa treatment. Because the therapeutic benefits of A(2A) antagonists are additive to that of dopamine replacement therapy, it may be possible to reduce the dose of the dopaminergic drugs and therefore the occurrence of side effects. Inhibitors of monoamine oxidase (MAO)-B also are considered useful tools for the treatment of PD. When used in combination with levodopa, inhibitors of MAO-B may enhance the elevation of dopamine levels after levodopa treatment, particularly when used in early stages of the disease when dopamine production may not be so severely compromised. Furthermore, MAO-B inhibitors may also possess neuroprotective properties in part by reducing the damaging effect of dopamine turnover in the brain. These effects of MAO-B inhibitors are especially relevant when considering that the brain shows an age-related increase in MAO-B activity. Based on these observations, dual-target-directed drugs, compounds that inhibit MAO-B and antagonize A(2A) receptors, may have value in the management of PD. This review summarizes recent efforts to develop such dual-acting drugs using caffeine as the lead compound.
Collapse
Affiliation(s)
- Jacobus P Petzer
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, 2520, South Africa.
| | | | | | | | | |
Collapse
|
18
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
19
|
Gomes CARV, Vaz SH, Ribeiro JA, Sebastião AM. Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res 2006; 1113:129-36. [PMID: 16935271 DOI: 10.1016/j.brainres.2006.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 07/09/2006] [Indexed: 11/23/2022]
Abstract
Both glial cell line-derived neurotrophic factor (GDNF) and adenosine influence dopaminergic function in the striatum. We now evaluated the GDNF effect on dopamine release from rat striatal nerve endings and if this effect of GDNF is modulated by adenosine A(2A) receptors. Dopamine release was evoked twice (S(1) and S(2)); GDNF was added before S(2) and drugs used to modify GDNF actions were present during both stimulation periods. The effect of GDNF was taken as the change in the S(2)/S(1) ratio in the absence and in the presence of GDNF in the same experimental conditions. GDNF (3-30 ng/ml) increased dopamine release from K(+) (20 mM, 2 min) stimulated synaptosomes and electrically (2 Hz, 2 min) stimulated striatal slices, an effect dependent upon tonic adenosine A(2A) receptor activation, since it was blocked by the A(2A) receptor antagonist, SCH 58261 (50 nM). Activation of A(2A) receptors with CGS 21680 (10 nM) potentiated the effect of GDNF in synaptosomes. CGS 21680 also potentiated the effect of GDNF in striatal slices, providing that GABAergic transmission was inhibited; if not, the action of GDNF was attenuated by CGS 21680. Blockade of GABAergic transmission per se increased dopamine release, but attenuated the effect of GDNF upon dopamine release in slices. The results suggest that GDNF enhances dopamine release by acting presynaptically at the striatum, an action that requires adenosine A(2A) receptor activity. Furthermore, in striatal slices, the action of GDNF as well as its modulation by adenosine A(2A) receptor activation appears to be also under control of GABAergic transmission.
Collapse
Affiliation(s)
- Catarina A R V Gomes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Portugal
| | | | | | | |
Collapse
|
20
|
Marin C, Rodriguez-Oroz MC, Obeso JA. Motor complications in Parkinson's disease and the clinical significance of rotational behavior in the rat: Have we wasted our time? Exp Neurol 2006; 197:269-74. [PMID: 16375892 DOI: 10.1016/j.expneurol.2005.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/20/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
| | | | | |
Collapse
|