1
|
Vallejo JA, Gray M, Klump J, Wacker A, Dallas M, Johnson ML, Wacker MJ. Bone mechanical loading reduces heart rate and increases heart rate variability in mice. Bone Rep 2025; 25:101844. [PMID: 40322617 PMCID: PMC12049822 DOI: 10.1016/j.bonr.2025.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Cardiovascular disease and osteoporosis are clinically associated. Bone adapts to mechanical forces by altering its overall structure and mass. In response to mechanical strain bone cells release signaling molecules and activate the nervous system. Bone also exhibits endocrine functions that modulate a number of tissues including the heart. We hypothesized that bone mechanical loading acutely alters cardiac function via neural and/or endocrine mechanisms. To test this hypothesis, we performed in vivo tibia mechanical loading in anesthetized mice while monitoring heart parameters using electrocardiogram (ECG). An immediate, transient reduction in resting heart rate was observed during tibial loading in both adult male and female mice (p < 0.01) with concurrent increases in heart rate variability (HRV) (p < 0.01). ECG intervals, PR, QRS and QTc were unaffected with loading. In further studies, we found that at least 3 N of load was necessary to elicit this heart response in adult mice. With aging to 11-12 months the responsiveness of the heart to loading was blunted, suggesting this bone-heart connection may weaken with age. Administration of lidocaine around the tibia significantly diminished the heart rate response to bone loading (p < 0.05). Moreover, pre-treatment with sympathetic antagonist propranolol inhibited this heart rate response to loading (p < 0.05), while parasympathetic antagonist atropine did not (p > 0.05). This suggests that a neuronal afferent pathway in the hindlimb and reduction in efferent sympathetic tone mediate this bone-neuro-heart reflex. In conclusion, the findings that tibia bone loading age-dependently modulates heart function support the concept of physiological coupling of the skeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Julian A. Vallejo
- University of Missouri – Kansas City, School of Medicine, Department of Biomedical Sciences, USA
- University of Missouri – Kansas City, School of Dentistry, Department of Oral & Craniofacial Sciences, USA
| | - Mark Gray
- University of Missouri – Kansas City, School of Medicine, Department of Biomedical Sciences, USA
| | - Jackson Klump
- University of Missouri – Kansas City, School of Medicine, Department of Biomedical Sciences, USA
| | - Andrew Wacker
- University of Missouri – Kansas City, School of Medicine, Department of Biomedical Sciences, USA
| | - Mark Dallas
- University of Missouri – Kansas City, School of Dentistry, Department of Oral & Craniofacial Sciences, USA
| | - Mark L. Johnson
- University of Missouri – Kansas City, School of Dentistry, Department of Oral & Craniofacial Sciences, USA
| | - Michael J. Wacker
- University of Missouri – Kansas City, School of Medicine, Department of Biomedical Sciences, USA
| |
Collapse
|
2
|
Truchan K, Zagrajczuk B, Cholewa-Kowalska K, Osyczka AM. Rapid osteoinduction of human adipose-derived stem cells grown on bioactive surfaces and stimulated by chemically modified media flow. J Biol Eng 2025; 19:23. [PMID: 40087792 PMCID: PMC11908086 DOI: 10.1186/s13036-025-00491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Adipose-derived stem cells (ASCs) provide an ample, easily accessible source of multipotent cells, an alternative to bone marrow-derived stromal cells (BMSCs), capable of differentiating into osteoblasts. However, the osteogenic potential of ASCs is reportedly lower than that of BMSCs and protocols to effectively differentiate ASCs into osteoblasts are in high demand. Here, we present novel strategies for effective osteogenic differentiation of human ASCs by combining their culture on bioactive growth surfaces with their treatment with specific supplements in osteogenic medium and application of fluid shear stress. Human ASCs were cultured on PLGA-based composites containing 50 wt% sol-gel bioactive glasses (SBGs) from the SiO2-CaO±P2O5 system, either unmodified or modified with 5 wt% ZnO or SrO. The osteogenic medium was supplemented with recombinant human bone morphogenetic protein 2 (BMP-2), MEK1/2 kinase inhibitor (PD98059) and indirect Smurf1 inhibitor (Phenamil). Fluid shear stress was applied with a standard horizontal rocker. ASC culture on SBG-PLGA composites along with the osteogenic medium supplements enhanced the expression of both early and late osteogenic markers. Modification of SBG with either SrO or ZnO further enhanced osteogenic gene expression compared to ASCs cultured on composites containing unmodified SBGs. Notably, the application of fluid shear stress synergistically strengthened the osteogenic effects of bioactive composites and medium supplements. We also show that the presented culture strategies can drive ASCs toward osteoblastic cells in a 3-day culture period and provide mineralizing osteoblasts through a short, 7-day ASC preculture on bioactive composites. Our results also indicate that the applied osteogenic treatment leads to the phosphorylation of β-catenin and CREB or the COX-2 expression. We believe the presented strategies are feasible for rapid ASC differentiation to early osteoblasts or mineralizing osteoblastic cells for various potential cell-based bone regeneration therapies.
Collapse
Affiliation(s)
- Karolina Truchan
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa St. 9, Krakow, 30-387, Poland
| | - Barbara Zagrajczuk
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, Krakow, 30-059, Poland
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, Krakow, 30-059, Poland
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa St. 9, Krakow, 30-387, Poland.
| |
Collapse
|
3
|
Clevenger AJ, Collier CA, Gorley JPM, Colijn S, McFarlin MK, Solberg SC, Kopetz ES, Stratman AN, Raghavan SA. Oncogenic KRAS Mutations Confer a Unique Mechanotransduction Response to Peristalsis in Colorectal Cancer Cells. Mol Cancer Res 2025; 23:128-142. [PMID: 39485528 PMCID: PMC11802306 DOI: 10.1158/1541-7786.mcr-24-0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer tumors start as polyps on the inner lining of the colorectum, in which they are exposed to the mechanics of peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in colorectal cancer cells. However, this malignant mechanotransductive response was confined to select colorectal cancer lines that harbored an oncogenic mutation in the Kirsten rat sarcoma virus (KRAS) gene. In this study, we explored the involvement of activating KRAS mutations on peristalsis-associated mechanotransduction in colorectal cancer. Peristalsis enriched cancer stem cell marker Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in KRAS mutant lines in a Wnt ligand-independent manner. Conversely, LGR5 enrichment in wild-type KRAS lines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicity in vivo. Differences in mechanotransduction were apparent via unbiased gene set enrichment analysis, in which many unique pathways were enriched in wild-type versus mutant lines. Peristalsis also triggered β-catenin nuclear localization independent of Wnt ligands, particularly in KRAS mutant lines. The involvement of KRAS was validated via gain and loss of function strategies. Peristalsis-induced β-catenin activation and LGR5 enrichment depended on the activation of the MEK/ERK cascade. Taken together, our results demonstrated that oncogenic KRAS mutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS. Implications: Oncogenic KRAS empowers colorectal cancer cells to harness the mechanics of colonic peristalsis for malignant gain independent of other cooperating signals.
Collapse
Affiliation(s)
| | - Claudia A. Collier
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Sarah Colijn
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - E. Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Shreya A. Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| |
Collapse
|
4
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
5
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
6
|
Wu X, Cesarovic N, Falk V, Mazza E, Giampietro C. Mechanical factors influence β-catenin localization and barrier properties. Integr Biol (Camb) 2024; 16:zyae013. [PMID: 38952079 DOI: 10.1093/intbio/zyae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. β-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that β-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of β-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, β-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate β-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of β-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.
Collapse
Affiliation(s)
- Xi Wu
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
| | - Nikola Cesarovic
- Department of Health Sciences and Technology, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Volkmar Falk
- Department of Health Sciences and Technology, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Überlandstrasse 129, Dübendorf 8600, Switzerland
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Leonhardstrasse 21, Zurich 8092, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Überlandstrasse 129, Dübendorf 8600, Switzerland
| |
Collapse
|
7
|
Lara-Castillo N, Masunaga J, Brotto L, Vallejo JA, Javid K, Wacker MJ, Brotto M, Bonewald LF, Johnson ML. Muscle secreted factors enhance activation of the PI3K/Akt and β-catenin pathways in murine osteocytes. Bone 2023; 174:116833. [PMID: 37385426 PMCID: PMC10926931 DOI: 10.1016/j.bone.2023.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Skeletal muscle and bone interact at the level of mechanical loading through the application of force by muscles to the skeleton and more recently focus has been placed on molecular/biochemical coupling of these two tissues. We sought to determine if muscle and muscle-derived factors were essential to the osteocyte response to loading. Botox® induced muscle paralysis was used to investigate the role of muscle contraction during in vivo tibia compression loading. 5-6 month-old female TOPGAL mice had their right hindlimb muscles surrounding the tibia injected with either BOTOX® or saline. At four days post injections when muscle paralysis peaked, the right tibia was subjected to a single session of in vivo compression loading at ∼2600 με. At 24 h post-load we observed a 2.5-fold increase in β-catenin signaling in osteocytes in the tibias of the saline injected mice, whereas loading of tibias from Botox® injected mice failed to active β-catenin signaling in osteocytes. This suggests that active muscle contraction produces a factor(s) that is necessary for or conditions the osteocyte's ability to respond to load. To further investigate the role of muscle derived factors, MLO-Y4 osteocyte-like cells and a luciferase based β-catenin reporter (TOPflash-MLO-Y4) cell line we developed were treated with conditioned media (CM) from C2C12 myoblasts (MB) and myotubes (MT) and ex vivo contracted Extensor Digitorum Longus (EDL) and Soleus (Sol) muscles under static or loading conditions using fluid flow shear stress (FFSS). 10 % C2C12 myotube CM, but not myoblast or NIH3T3 fibroblast cells CM, induced a rapid activation of the Akt signaling pathway, peaking at 15 min and returning to baseline by 1-2 h under static conditions. FFSS applied to MLO-Y4 cells for 2 h in the presence of 10 % MT-CM resulted in a 6-8 fold increase in pAkt compared to a 3-4 fold increase under control or when exposed to 10 % MB-CM. A similar response was observed in the presence of 10 % EDL-CM, but not in the presence of 10 % Sol-CM. TOPflash-MLO-Y4 cells were treated with 10 ng/ml Wnt3a in the presence or absence of MT-CM. While MT-CM resulted in a 2-fold activation and Wnt3a produced a 10-fold activation, the combination of MT-CM + Wnt3a resulted in a 25-fold activation of β-catenin signaling, implying a synergistic effect of factors in MT-CM with Wnt3a. These data provide clear evidence that specific muscles and myotubes produce factors that alter important signaling pathways involved in the response of osteocytes to mechanical load. These data strongly suggest that beyond mechanical loading there is a molecular coupling of muscle and bone.
Collapse
Affiliation(s)
- N Lara-Castillo
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America.
| | - J Masunaga
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| | - L Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, 411 S. Nedderman Dr, Arlington, TX 76019, United States of America
| | - J A Vallejo
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America; Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - K Javid
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| | - M J Wacker
- Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - M Brotto
- Department of Biomedical Sciences, UMKC School of Medicine, 2411 Holmes, Kansas City, MO 64108, United States of America
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America; Indiana Center for Musculoskeletal Health, Barnhill Drive, Indianapolis, IN 46202, United States of America
| | - M L Johnson
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, United States of America
| |
Collapse
|
8
|
Esmaeilniakooshkghazi A, Pham E, George SP, Ahrorov A, Villagomez FR, Byington M, Mukhopadhyay S, Patnaik S, Conrad JC, Naik M, Ravi S, Tebbutt N, Mooi J, Reehorst CM, Mariadason JM, Khurana S. In colon cancer cells fascin1 regulates adherens junction remodeling. FASEB J 2023; 37:e22786. [PMID: 36786724 DOI: 10.1096/fj.202201454r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/β-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/β-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/β-catenin signaling in the growth and dissemination of colorectal carcinomas.
Collapse
Affiliation(s)
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Afzal Ahrorov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Fabian R Villagomez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Byington
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Srinivas Patnaik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jacinta C Conrad
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Monali Naik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Saathvika Ravi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Niall Tebbutt
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jennifer Mooi
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Camilla M Reehorst
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,School of Health Professions, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
E. Worton L, Srinivasan S, Threet D, Ausk BJ, Huber P, Y. Kwon R, Bain SD, Gross TS, M. Gardiner E. Beta 2 Adrenergic Receptor Selective Antagonist Enhances Mechanically Stimulated Bone Anabolism in Aged Mice. JBMR Plus 2022; 7:e10712. [PMID: 36751418 PMCID: PMC9893264 DOI: 10.1002/jbm4.10712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 12/14/2022] Open
Abstract
The anabolic response of aged bone to skeletal loading is typically poor. Efforts to improve mechanotransduction in aged bone have met with limited success. This study investigated whether the bone response to direct skeletal loading is improved by reducing sympathetic suppression of osteoblastic bone formation via β2AR. To test this possibility, we treated aged wild-type C57BL/6 mice with a selective β2AR antagonist, butaxamine (Butax), before each of nine bouts of cantilever bending of the right tibia. Midshaft periosteal bone formation was assessed by dynamic histomorphometry of loaded and contralateral tibias. Butax treatment did not alter osteoblast activity of contralateral tibias. Loading alone induced a modest but significant osteogenic response. However, when loading was combined with Butax pretreatment, the anabolic response was significantly elevated compared with loading preceded by saline injection. Subsequent studies in osteoblastic cultures revealed complex negative interactions between adrenergic and mechanically induced intracellular signaling. Activation of β2AR by treatment with the β1, β2-agonist isoproterenol (ISO) before fluid flow exposure diminished mechanically stimulated ERK1/2 phosphorylation in primary bone cell outgrowth cultures and AKT phosphorylation in MC3T3-E1 pre-osteoblast cultures. Expression of mechanosensitive Fos and Ptgs2 genes was enhanced with ISO treatment and reduced with flow in both MC3T3-E1 and primary cultures. Finally, co-treatment of MC3T3-E1 cells with Butax reversed these ISO effects, confirming a critical role for β2AR in these responses. In combination, these results demonstrate that selective inhibition of β2AR is sufficient to enhance the anabolic response of the aged skeleton to loading, potentially via direct effects upon osteoblasts. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Leah E. Worton
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Sundar Srinivasan
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - DeWayne Threet
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Brandon J. Ausk
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Phillipe Huber
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Ronald Y. Kwon
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Steven D. Bain
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Ted S. Gross
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| | - Edith M. Gardiner
- Department of Orthopaedics & Sports MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
10
|
de Vasconcelos RF, Costa V, Araujo B, Maia TAC, Dias R, Vasconcelos L, Silveira H, Carneiro B, Thiers D, Costa FWG, Kurita L, Ayala A, Leitão R, Pereira KMA, Gondim DV, Goes P. Milk kefir therapy improves the skeletal response to resistance exercise in rats submitted to glucocorticoid-induced osteoporosis. Exp Gerontol 2022; 167:111921. [PMID: 35964897 DOI: 10.1016/j.exger.2022.111921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
Abstract
Glucocorticoid-induced osteoporosis (GIO) has emerged as a challenge after long-term glucocorticoids (GCs) administration. Exercise has been an important non-pharmacological option, while medications modulate bone remodeling despite adverse effects. In this way, milk Kefir (MK) therapy stands out as a safe alternative to improve bone metabolism. Our study aimed to investigate the effect of MK associated to resistance exercise on bone loss in rats with GIO. For this, sixty male Wistar rats were divided into 2 groups: normal (N) and subjected to GIO, which was subdivided into 4 groups: control (C), milk kefir therapy (K), Exercise (Ex), and Exercise+K (ExK). GIO was induced by dexamethasone (7 mg/kg - i.m.; 1×/wk, 5 wk). MK was administered daily (1×/day; 0.7 ml/animal) and the climb exercise with load was performed 3×/wk; both for 16 wk. Femur was collected for assessment of bone microarchitecture, quality and metabolism. GIO markedly reduced trabecular bone volume density (BV/TV) (-35 %), trabecular thickness (Tb.Th) (-33 %), mineral content of femur (-26 %) as well as bone collagen content (-56 %). Bone strength and its biomechanical properties given by flexural strength (-81 %), fracture load (-80 %), and the number of osteocytes (-84 %) were lowered after GIO. GCs reduced osteoblast number and function while increased osteoclast number, altering bone remodeling (p < 0.05). On the other hand, ExK significantly improved bone microarchitecture and quality, marked by fractal dimension increase (+38 %), cortical volume (+34 %), BV/TV (+34 %), Tb.Th (+33 %), mineral content and collagen maturity, while reduced the space between trabecula (-34 %). The Ex and ExK increased the number of osteocytes (p < 0.05) and they were able to reverse the lower osteoblast number. Both treatments used alone significantly enhanced bone biomechanical properties, but the ExK showed a more significant improvement. ExK ameliorated bone strength and biomechanics (p < 0.05) and stimulated bone formation and modulated bone remodeling (p < 0.05). MK and exercise administered isolated or in association increased the percentage of collagen bone filling after GIO (p < 0.05), but only ExK improved collagen maturity. Our results showed that MK associated to resistance exercise enhanced bone microarchitecture, quality and metabolism, being therefore an interesting tool to improve skeletal response during GIO.
Collapse
Affiliation(s)
- Raquel Felipe de Vasconcelos
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Vanessa Costa
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Araujo
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thays Allane Cordeiro Maia
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Romero Dias
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lorena Vasconcelos
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Helson Silveira
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bárbara Carneiro
- Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Post-Graduation Program in Dentistry, Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Diego Thiers
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fábio Wildson Gurgel Costa
- Post-Graduation Program in Dentistry, Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil; Oral Radiology Unit, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Lúcio Kurita
- Oral Radiology Unit, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Alejandro Ayala
- Post-graduation Program in Physics, Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Renata Leitão
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, Brazil
| | - Karuza Maria Alves Pereira
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, Brazil
| | - Delane Viana Gondim
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, Brazil
| | - Paula Goes
- Post-Graduation Program in Morphofunctional Science, Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Nucleus of Study and Research in Pain, Inflammation and Osteoimmunology (NEPDIO), School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
11
|
Peng Z, Mai Z, Xiao F, Liu G, Wang Y, Xie S, Ai H. MiR-20a: a mechanosensitive microRNA that regulates fluid shear stress-mediated osteogenic differentiation via the BMP2 signaling pathway by targeting BAMBI and SMAD6. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:683. [PMID: 35845505 PMCID: PMC9279817 DOI: 10.21037/atm-22-2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs (miRNAs) are crucial regulators of diverse biological and pathological processes. This study aimed to investigate the role of microRNA 20a (miR-20a) in fluid shear stress (FSS)-mediated osteogenic differentiation. Methods In the present study, we subjected osteoblast MC3T3-E1 cells or mouse bone marrow stromal cells (BMSCs) to single bout short duration FSS (12 dyn/cm2 for 1 hour) using a parallel plate flow system. The expression of miR-20a was quantified by miRNA array profiling and real-time quantitative polymerase chain reaction (qRT-PCR) during FSS-mediated osteogenic differentiation. The expression of osteogenic differentiation markers such as Runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and SP7 transcription factor (SP7) was detected. Bioinformatics analysis and a luciferase assay were performed to confirm the potential targets of miR-20a. Results Osteoblast-expressed miR-20a is sensitive to the mechanical environments of FSS, which are differentially up-regulated during steady FSS-mediated osteogenic differentiation. MiR-20a enhances FSS-induced osteoblast differentiation by activating the bone morphogenetic protein 2 (BMP2) signaling pathway. Both BMP and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic family member 6 (SMAD6) are targets of miR-20a that negatively regulate the BMP2 signaling pathway. Conclusions MiR-20a is a novel mechanosensitive miRNA that can enhance osteoblast differentiation in FSS mechanical environments, implying that this miRNA might be a target for bone tissue engineering and orthodontic bone remodeling for regenerative medicine applications.
Collapse
Affiliation(s)
- Zhuli Peng
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihui Mai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Xiao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guanqi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yixuan Wang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shanshan Xie
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Ai
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
The Proliferation of Pre-Pubertal Porcine Spermatogonia in Stirred Suspension Bioreactors Is Partially Mediated by the Wnt/β-Catenin Pathway. Int J Mol Sci 2021; 22:ijms222413549. [PMID: 34948348 PMCID: PMC8708394 DOI: 10.3390/ijms222413549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Male survivors of childhood cancer are at risk of suffering from infertility in adulthood because of gonadotoxic chemotherapies. For adult men, sperm collection and preservation are routine procedures prior to treatment; however, this is not an option for pre-pubertal children. From young boys, a small biopsy may be taken before chemotherapy, and spermatogonia may be propagated in vitro for future transplantation to restore fertility. A robust system that allows for scalable expansion of spermatogonia within a controlled environment is therefore required. Stirred suspension culture has been applied to different types of stem cells but has so far not been explored for spermatogonia. Here, we report that pre-pubertal porcine spermatogonia proliferate more in bioreactor suspension culture, compared with static culture. Interestingly, oxygen tension provides an avenue to modulate spermatogonia status, with culture under 10% oxygen retaining a more undifferentiated state and reducing proliferation in comparison with the conventional approach of culturing under ambient oxygen levels. Spermatogonia grown in bioreactors upregulate the Wnt/ β-catenin pathway, which, along with enhanced gas and nutrient exchange observed in bioreactor culture, may synergistically account for higher spermatogonia proliferation. Therefore, stirred suspension bioreactors provide novel platforms to culture spermatogonia in a scalable manner and with minimal handling.
Collapse
|
13
|
Lamin A/C-Dependent Translocation of Megakaryoblastic Leukemia-1 and β-Catenin in Cyclic Strain-Induced Osteogenesis. Cells 2021; 10:cells10123518. [PMID: 34944031 PMCID: PMC8700688 DOI: 10.3390/cells10123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Lamins are intermediate filaments that play a crucial role in sensing mechanical strain in the nucleus of cells. β-catenin and megakaryoblastic leukemia-1 (MKL1) are critical signaling molecules that need to be translocated to the nucleus for their transcription in response to mechanical strain that induces osteogenesis. However, the exact molecular mechanism behind the translocation of these molecules has not been fully investigated. This study used 10% cyclic strain to induce osteogenesis in the murine osteoblast precursor cell line (MC3T3). The translocation of β-catenin and MKL1 was studied by performing knockdown and overexpression of lamin A/C (LMNA). Cyclic strain increased the expression of osteogenic markers such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and enhanced ALP staining after seven days of incubation. Resultantly, MKL1 and β-catenin were translocated in the nucleus from the cytoplasm during the stress-induced osteogenic process. Knockdown of LMNA decreased the accumulation of MKL1 and β-catenin in the nucleus, whereas overexpression of LMNA increased the translocation of these molecules. In conclusion, our study indicates that both MKL1 and β-catenin molecules are dependent on the expression of LMNA during strain-induced osteogenesis.
Collapse
|
14
|
Choi RB, Robling AG. The Wnt pathway: An important control mechanism in bone's response to mechanical loading. Bone 2021; 153:116087. [PMID: 34271473 PMCID: PMC8478810 DOI: 10.1016/j.bone.2021.116087] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 10/25/2022]
Abstract
The conversion of mechanical energy into biochemical changes within living cells is process known as mechanotransduction. Bone is a quintessential tissue for studying the molecular mechanisms of mechanotransduction, as the skeleton's mechanical competence is crucial for vertebrate movement. Bone cell mechanotransduction is facilitated by a number of cell biological pathways, one of the most prominent of which is the Wnt signaling cascade. The Wnt co-receptor Lrp5 has been identified as a crucial protein for mechanical signaling in bone, and modifiers of Lrp5 activity play important roles in mediating signaling efficiency through Lrp5, including sclerostin, Dkk1, and the co-receptor Lrp4. Mechanical regulation of sclerostin is mediated by certain members of the Hdac family. Other mechanisms that influence Wnt signaling-some of which are mechanoresponsive-are coming to light, including R-spondins and their role in organizing the Rnf43/Znrf3 and Lgr4/5/6 complex that liberates Lrp5. While the identity of the key Wnt proteins involved in bone cell mechanical signaling are elusive, the likely pool of key players is narrowing. Identification of Wnt-based molecular targets that can be modulated pharmacologically to make mechanical stimulation (e.g., exercise) more beneficial is an emerging approach to improving skeletal integrity and reducing fracture risk.
Collapse
Affiliation(s)
- Roy B Choi
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
16
|
Nath SC, Day B, Harper L, Yee J, Hsu CYM, Larijani L, Rohani L, Duan N, Kallos MS, Rancourt DE. Fluid shear stress promotes embryonic stem cell pluripotency via interplay between β-catenin and vinculin in bioreactor culture. STEM CELLS (DAYTON, OHIO) 2021; 39:1166-1177. [PMID: 33837584 DOI: 10.1002/stem.3382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
The expansion of pluripotent stem cells (PSCs) as aggregates in stirred suspension bioreactors is garnering attention as an alternative to adherent culture. However, the hydrodynamic environment in the bioreactor can modulate PSC behavior, pluripotency and differentiation potential in ways that need to be well understood. In this study, we investigated how murine embryonic stem cells (mESCs) sense fluid shear stress and modulate a noncanonical Wnt signaling response to promote pluripotency. mESCs showed higher expression of pluripotency marker genes, Oct4, Sox2, and Nanog in the absence of leukemia inhibitory factor (LIF) in stirred suspension bioreactors compared to adherent culture, a phenomenon we have termed mechanopluripotency. In bioreactor culture, fluid shear promoted the nuclear translocation of the less well-known pluripotency regulator β-catenin and concomitant increase of c-Myc expression, an upstream regulator of Oct4, Sox2, and Nanog. We also observed similar β-catenin nuclear translocation in LIF-free mESCs cultured on E-cadherin substrate under defined fluid shear stress conditions in flow chamber plates. mESCs showed lower shear-induced expression of pluripotency marker genes when β-catenin was inhibited, suggesting that β-catenin signaling is crucial to mESC mechanopluripotency. Key to this process is vinculin, which is known to rearrange and associate more strongly with adherens junctions in response to fluid shear. When the vinculin gene is disrupted, we observe that nuclear β-catenin translocation and mechanopluripotency are abrogated. Our results indicate that mechanotransduction through the adherens junction complex is important for mESC pluripotency maintenance.
Collapse
Affiliation(s)
- Suman C Nath
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley Day
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lane Harper
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey Yee
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Charlie Yu-Ming Hsu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leila Larijani
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leili Rohani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Duan
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael S Kallos
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
18
|
Hyaluronan Synthases' Expression and Activity Are Induced by Fluid Shear Stress in Bone Marrow-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22063123. [PMID: 33803805 PMCID: PMC8003268 DOI: 10.3390/ijms22063123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
During biomineralization, the cells generating the biominerals must be able to sense the external physical stimuli exerted by the growing mineralized tissue and change their intracellular protein composition according to these stimuli. In molluscan shell, the myosin-chitin synthases have been suggested to be the link for this communication between cells and the biomaterial. Hyaluronan synthases (HAS) belong to the same enzyme family as chitin synthases. Their product hyaluronan (HA) occurs in the bone and is supposed to have a regulatory function during bone regeneration. We hypothesize that HASes’ expression and activity are controlled by fluid-induced mechanotransduction as it is known for molluscan chitin synthases. In this study, bone marrow-derived human mesenchymal stem cells (hMSCs) were exposed to fluid shear stress of 10 Pa. The RNA transcriptome was analyzed by RNA sequencing (RNAseq). HA concentrations in the supernatants were measured by ELISA. The cellular structure of hMSCs and HAS2-overexpressing hMSCs was investigated after treatment with shear stress using confocal microscopy. Fluid shear stress upregulated the expression of genes that encode proteins belonging to the HA biosynthesis and bone mineralization pathways. The HAS activity appeared to be induced. Knowledge about the regulation mechanism governing HAS expression, trafficking, enzymatic activation and quality of the HA product in hMSCs is essential to understand the biological role of HA in the bone microenvironment.
Collapse
|
19
|
Du J, Yang J, He Z, Cui J, Yang Y, Xu M, Qu X, Zhao N, Yan M, Li H, Yu Z. Osteoblast and Osteoclast Activity Affect Bone Remodeling Upon Regulation by Mechanical Loading-Induced Leukemia Inhibitory Factor Expression in Osteocytes. Front Mol Biosci 2020; 7:585056. [PMID: 33324677 PMCID: PMC7726425 DOI: 10.3389/fmolb.2020.585056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Bone remodeling is affected by mechanical stimulation. Osteocytes are the primary mechanical load-sensing cells in the bone, and can regulate osteoblast and osteoclast activity, thus playing a key role in bone remodeling. Further, bone mass during exercise is also regulated by Leukemia inhibitory factor (LIF). This study aimed to investigate the role of LIF in the mechanical response of the bone, in vivo and in vitro, and to elucidate the mechanism by which osteocytes secrete LIF to regulate osteoblasts and osteoclasts. Methods A tail-suspension (TS) mouse model was used in this study to mimic muscular disuse. ELISA and immunohistochemistry were performed to detect bone and serum LIF levels. Micro-computed tomography (CT) of the mouse femurs was performed to measure three-dimensional bone structure parameters. Fluid shear stress (FSS) and microgravity simulation experiments were performed to study mechanical stress-induced LIF secretion and its resultant effects. Bone marrow macrophages (BMMs) and bone mesenchymal stem cells (BMSCs) were cultured to induce in vitro osteoclastogenesis and osteogenesis, respectively. Results Micro-CT results showed that TS mice exhibited deteriorated bone microstructure and lower serum LIF expression. LIF secretion by osteocytes was promoted by FSS and was repressed in a microgravity environment. Further experiments showed that LIF could elevate the tartrate-resistant acid phosphatase activity in BMM-derived osteoclasts through the STAT3 signaling pathway. LIF also enhanced alkaline phosphatase staining and osteogenesis-related gene expression during the osteogenic differentiation of BMSCs. Conclusion Mechanical loading affected LIF expression levels in osteocytes, thereby altering the balance between osteoclastogenesis and osteogenesis.
Collapse
Affiliation(s)
- Jingke Du
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiancheng Yang
- Department of Spinal Surgery, People's Hospital of Longhua Shenzhen, Shenzhen, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, China
| | - Zihao He
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Qu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Zhao
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengning Yan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Rotherham M, Nahar T, Goodman T, Telling N, Gates M, El Haj A. Magnetic Mechanoactivation of Wnt Signaling Augments Dopaminergic Differentiation of Neuronal Cells. ACTA ACUST UNITED AC 2020; 3:e1900091. [PMID: 32648650 DOI: 10.1002/adbi.201900091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/07/2019] [Indexed: 01/09/2023]
Abstract
Wnt signaling is a key developmental pathway that regulates dopaminergic progenitor cell proliferation and differentiation during neuronal development. This makes Wnt signaling an important therapeutic target for neurodegenerative conditions such as Parkinson's disease. Wnt signaling can be modulated using peptides such as UM206, which bind to the Wnt receptor Frizzled. Previous work has demonstrated remote activation of the Wnt pathway through Frizzled using peptide-functionalized magnetic nanoparticles (MNPs) with magnetic field stimulation. Using this technology, Wnt signaling is remotely activated in the neuronal cell line SH-SY5Y, and the phenotypic response to stimulation is assessed. Results indicate β-catenin translocalization and activation of TCF/LEF responsive transcription in response to MNP and magnetic fields, which result in dopaminergic marker expression when synergistically combined with differentiation factors retinoic acid and the phorbol ester phorbol 12-myristate 13-acetate. This approach is translated into ex vivo postnatal rat brain slices modeling the developing nigrostriatal pathway. Dopaminergic marker expression is maintained in MNP-labeled SH-SY5Y cells after injection and magnetic stimulation. These results demonstrate the translational value of remote control of signal transduction for controlling neuronal precursor cell behavior and highlight the potential applications for controlled cell differentiation as part of cell therapies for neurodegenerative disease.
Collapse
Affiliation(s)
- Michael Rotherham
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Tasmin Nahar
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Timothy Goodman
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Neil Telling
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Monte Gates
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK
| | - Alicia El Haj
- Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent, ST4 7QB, UK.,Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK
| |
Collapse
|
21
|
Abstract
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14.
Collapse
|
22
|
Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev 2019; 11:729-743. [PMID: 31529361 DOI: 10.1007/s12551-019-00596-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Human body is subject to many and variegated mechanical stimuli, actuated in different ranges of force, frequency, and duration. The process through which cells "feel" forces and convert them into biochemical cascades is called mechanotransduction. In this review, the effects of fluid shear stress on bone cells will be presented. After an introduction to present the major players in bone system, we describe the mechanoreceptors in bone tissue that can feel and process fluid flow. In the second part of the review, we present an overview of the biological processes and biochemical cascades initiated by fluid shear stress in bone cells.
Collapse
Affiliation(s)
- Roberta Alfieri
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - National Research Council (IGM-CNR), Via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Federica Viti
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
23
|
Mechanoactivation of Wnt/β-catenin pathways in health and disease. Emerg Top Life Sci 2018; 2:701-712. [DOI: 10.1042/etls20180042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
Abstract
Mechanical forces play an important role in regulating tissue development and homeostasis in multiple cell types including bone, joint, epithelial and vascular cells, and are also implicated in the development of diseases, e.g. osteoporosis, cardiovascular disease and osteoarthritis. Defining the mechanisms by which cells sense and respond to mechanical forces therefore has important implications for our understanding of tissue function in health and disease and may lead to the identification of targets for therapeutic intervention. Mechanoactivation of the Wnt signalling pathway was first identified in osteoblasts with a key role for β-catenin demonstrated in loading-induced osteogenesis. Since then, mechanoregulation of the Wnt pathway has also been observed in stem cells, epithelium, chondrocytes and vascular and lymphatic endothelium. Wnt can signal through both canonical and non-canonical pathways, and evidence suggests that both can mediate responses to mechanical strain, stretch and shear stress. This review will discuss our current understanding of the activation of the Wnt pathway in response to mechanical forces.
Collapse
|
24
|
Banerjee H, Roy B, Chaudhury K, Srinivasan B, Chakraborty S, Ren H. Frequency-induced morphology alterations in microconfined biological cells. Med Biol Eng Comput 2018; 57:819-835. [PMID: 30415434 DOI: 10.1007/s11517-018-1908-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023]
Abstract
Low-intensity therapeutic ultrasound has demonstrated an impetus in bone signaling and tissue healing for decades now. Though this technology is clinically well proven, still there are breaches in studies to understand the fundamental principle of how osteoblast tissue regenerates physiologically at the cellular level with ultrasound interaction as a form of acoustic wave stimuli. Through this article, we illustrate an analysis for cytomechanical changes of cell membrane periphery as a basic first physical principle for facilitating late downstream biochemical pathways. With the help of in situ single-cell direct analysis in a microfluidic confinement, we demonstrate that alteration of low-intensity pulse ultrasound (LIPUS) frequency would physically perturb cell membrane and establish inherent cell oscillation. We experimentally demonstrate here that, at LIPUS resonance near 1.7 MHz (during 1-3 MHz alteration), cell membrane area would expand to 6.85 ± 0.7% during ultrasound exposure while it contracts 44.68 ± 0.8% in post actuation. Conversely, cell cross-sectional area change (%) from its previous morphology during and after switching off LIPUS was reversibly different before and after resonance. For instance, at 1.5 MHz, LIPUS exposure produced 1.44 ± 0.5% expansion while in contrast 2 MHz instigates 1.6 ± 0.3% contraction. We conclude that alteration of LIPUS frequency from 1-3 MHz keeping other ultrasound parameters like exposure time, pulse repetition frequency (PRF), etc., constant, if applied to a microconfined biological single living cell, would perturb physical structure reversibly based on the system resonance during and post exposure ultrasound pulsing. We envision, in the near future, our results would constitute the foundation of mechanistic effects of low-intensity therapeutic ultrasound and its allied potential in medical applications. Graphical Abstract Frequency Dependent Characterization of Area Strain in Cell Membrane by Microfluidic Based Single Cell Analysis.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Village Palaj Simkheda, Gandhinagar, Gujarat, 382355, India. .,Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India. .,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore. .,Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456, Singapore.
| | - Bibhas Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.,Mechanobiology Institute, National University of Singapore, T-Lab, #10-01 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Kaustav Chaudhury
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.,National Institute of Technology Rourkela, Odisha, 769008, India
| | - Babji Srinivasan
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Village Palaj Simkheda, Gandhinagar, Gujarat, 382355, India.,Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Village Palaj Simkheda, Gandhinagar, Gujarat, 382355, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.,School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Hongliang Ren
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore. .,Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore, 117456, Singapore. .,National University of Singapore (Suzhou) Research Institute (NUSRI), Wuzhong Dist., Suzhou, Jiangsu Province, China.
| |
Collapse
|
25
|
Combined Fluid Shear Stress and Melatonin Enhances the ERK/Akt/mTOR Signal in Cilia-Less MC3T3-E1 Preosteoblast Cells. Int J Mol Sci 2018; 19:ijms19102929. [PMID: 30261648 PMCID: PMC6213863 DOI: 10.3390/ijms19102929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
We investigated whether combined fluid shear stress (FSS) and melatonin stimulated signal transduction in cilia-less MC3T3-E1 preosteoblast cells. MC3T3-E1 cells were treated with chloral hydrate or nocodazole, and mechanotransduction sensor primary cilia were removed. p-extracellular signal–regulated kinase (ERK) and p-Akt with/without melatonin increased with nocodazole treatment and decreased with chloral hydrate treatment, whereas p-ERK and p-Akt in FSS with/without melatonin increased in cilia-less groups compared to cilia groups. Furthermore, p-mammalian target of rapamycin (mTOR) with FSS-plus melatonin increased in cilia-less groups compared to only melatonin treatments in cilia groups. Expressions of Bcl-2, Cu/Zn-superoxide dismutase (SOD), and catalase proteins were higher in FSS with/without melatonin with cilia-less groups than only melatonin treatments in cilia groups. Bax protein expression was high in FSS-plus melatonin with chloral hydrate treatment. In chloral hydrate treatment with/without FSS, expressions of Cu/Zn-SOD, Mn-SOD, and catalase proteins were high compared to only-melatonin treatments. In nocodazole treatment, Mn-SOD protein expression without FSS was high, and catalase protein level with FSS was low, compared to only melatonin treatments. These data show that the combination with FSS and melatonin enhances ERK/Akt/mTOR signal in cilia-less MC3T3-E1, and the enhanced signaling in cilia-less MC3T3-E1 osteoblast cells may activate the anabolic effect for the preservation of cell structure and function.
Collapse
|
26
|
Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 2018; 61:T115-T137. [PMID: 29626053 PMCID: PMC5966339 DOI: 10.1530/jme-17-0298] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
The discovery of the growth hormone (GH)-mediated somatic factors (somatomedins), insulin-like growth factor (IGF)-I and -II, has elicited an enormous interest primarily among endocrinologists who study growth and metabolism. The advancement of molecular endocrinology over the past four decades enables investigators to re-examine and refine the established somatomedin hypothesis. Specifically, gene deletions, transgene overexpression or more recently, cell-specific gene-ablations, have enabled investigators to study the effects of the Igf1 and Igf2 genes in temporal and spatial manners. The GH/IGF axis, acting in an endocrine and autocrine/paracrine fashion, is the major axis controlling skeletal growth. Studies in rodents have clearly shown that IGFs regulate bone length of the appendicular skeleton evidenced by changes in chondrocytes of the proliferative and hypertrophic zones of the growth plate. IGFs affect radial bone growth and regulate cortical and trabecular bone properties via their effects on osteoblast, osteocyte and osteoclast function. Interactions of the IGFs with sex steroid hormones and the parathyroid hormone demonstrate the significance and complexity of the IGF axis in the skeleton. Finally, IGFs have been implicated in skeletal aging. Decreases in serum IGFs during aging have been correlated with reductions in bone mineral density and increased fracture risk. This review highlights many of the most relevant studies in the IGF research landscape, focusing in particular on IGFs effects on the skeleton.
Collapse
Affiliation(s)
- Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, USA
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| |
Collapse
|
27
|
Li FF, Zhang B, Cui JH, Chen FL, Ding Y, Feng X. Alterations in β‑catenin/E‑cadherin complex formation during the mechanotransduction of Saos‑2 osteoblastic cells. Mol Med Rep 2018; 18:1495-1503. [PMID: 29901167 PMCID: PMC6072157 DOI: 10.3892/mmr.2018.9146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/24/2017] [Indexed: 11/16/2022] Open
Abstract
Mechanical load application promotes bone formation, while reduced load leads to bone loss. However, the underlying mechanisms that regulate new bone formation are not fully understood. Wnt/β-catenin signaling has an important role in bone formation, bone growth and remodeling. The aim of the present study was to investigate whether mechanical stimuli regulated bone formation through the Wnt/β-catenin signaling pathway. Saos-2 osteoblastic cells were subjected to mechanical strain using a Flexcell strain loading system. The results demonstrated that 12% cyclical tensile stress significantly stimulated Saos-2 cell proliferation, increased the activity of alkaline phosphatase and promoted the formation of mineralized nodules, as determined by MTT and p-nitrophenyl phosphate assays and Alizarin Red S staining, respectively. Furthermore, western blot analysis demonstrated that, following mechanical strain, increased phosphorylation of glycogen synthase kinase-3β and nuclear β-catenin expression was observed in cells, compared with static control culture cells. Results of reporter gene and reverse transcription-polymerase chain reaction assays also demonstrated that mechanical strain significantly increased T-cell factor reporter gene activity and the mRNA expression of cyclooxygenase (COX)-2, cyclin D1, c-fos and c-Jun in Saos-2 cells. Co-immunoprecipitation analysis revealed that elongation mechanical strain activated Wnt/β-catenin signaling and reduced β-catenin and E-cadherin interaction in Saos-2 cells. In conclusion, the results of the current study indicate that mechanical strain may have an important role in the proliferation and differentiation of osteoblasts. The disassociation of the β-catenin/E-cadherin complex in the osteoblast membrane under stretch loading and the subsequent translocation of β-catenin into the nucleus may be an intrinsic mechanical signal transduction mechanism.
Collapse
Affiliation(s)
- Fei-Fei Li
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bo Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ji-Hong Cui
- Laboratory of Tissue Engineering, Department of Biosciences, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Fu-Lin Chen
- Laboratory of Tissue Engineering, Department of Biosciences, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yin Ding
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
28
|
Katsianou MA, Skondra FG, Gargalionis AN, Piperi C, Basdra EK. The role of transient receptor potential polycystin channels in bone diseases. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:246. [PMID: 30069448 DOI: 10.21037/atm.2018.04.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels which act as molecular sensors that enable cells to detect and respond to a plethora of mechanical and environmental cues. TRPs are involved in various physiological processes, such as mechanosensation, non-inception and thermosensation, while mutations in genes encoding them can lead to pathological conditions, called "channelopathies". The subfamily of transient receptor potential polycystins (TRPPs), Polycystin 1 (PC1, TRPP1) and Polycystin 2 (PC2, TRPP2), act as mechanoreceptors, sensing external mechanical forces, including strain, stretch and fluid shear stress, triggering a cascade of signaling pathways involved in osteoblastogenesis and ultimately bone formation. Both in vitro studies and research on animal models have already identified their implications in bone homeostasis. However, uncertainty veiling the role of polycystins (PCs) in bone disease urges studies to elucidate further their role in this field. Mutations in TRPPs have been related to autosomal polycystic kidney disease (ADKPD) and research groups try to identify their role beyond their well-established contribution in kidney disease. Such an elucidation would be beneficial for identifying signaling pathways where polycystins are involved in bone diseases related to exertion of mechanical forces such as osteoporosis, osteopenia and craniosynostosis. A better understanding of the implications of TRPPs in bone diseases would possibly lay the cornerstone for effective therapeutic schemes.
Collapse
Affiliation(s)
- Maria A Katsianou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini G Skondra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Rotherham M, Henstock JR, Qutachi O, El Haj AJ. Remote regulation of magnetic particle targeted Wnt signaling for bone tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:173-184. [DOI: 10.1016/j.nano.2017.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/14/2017] [Accepted: 09/15/2017] [Indexed: 01/18/2023]
|
30
|
β-Catenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function. J Neurosci 2017; 36:8921-35. [PMID: 27559173 DOI: 10.1523/jneurosci.0148-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED The canonical Wnt/β-catenin signaling pathway is crucial for blood-brain barrier (BBB) formation in brain endothelial cells. Although glucose transporter 1, claudin-3, and plasmalemma vesicular-associated protein have been identified as Wnt/β-catenin targets in brain endothelial cells, further downstream targets relevant to BBB formation and function are incompletely explored. By Affymetrix expression analysis, we show that the cytochrome P450 enzyme Cyp1b1 was significantly decreased in β-catenin-deficient mouse endothelial cells, whereas its close homolog Cyp1a1 was upregulated in an aryl hydrocarbon receptor-dependent manner, hence indicating that β-catenin is indispensable for Cyp1b1 but not for Cyp1a1 expression. Functionally, Cyp1b1 could generate retinoic acid from retinol leading to cell-autonomous induction of the barrier-related ATP-binding cassette transporter P-glycoprotein. Cyp1b1 could also generate 20-hydroxyeicosatetraenoic acid from arachidonic acid, decreasing endothelial barrier function in vitro In mice in vivo pharmacological inhibition of Cyp1b1 increased BBB permeability for small molecular tracers, and Cyp1b1 was downregulated in glioma vessels in which BBB function is lost. Hence, we propose Cyp1b1 as a target of β-catenin indirectly influencing BBB properties via its metabolic activity, and as a potential target for modulating barrier function in endothelial cells. SIGNIFICANCE STATEMENT Wnt/β-catenin signaling is crucial for blood-brain barrier (BBB) development and maintenance; however, its role in regulating metabolic characteristics of endothelial cells is unclear. We provide evidence that β-catenin influences endothelial metabolism by transcriptionally regulating the cytochrome P450 enzyme Cyp1b1 Furthermore, expression of its close homolog Cyp1a1 was inhibited by β-catenin. Functionally, Cyp1b1 generated retinoic acid as well as 20-hydroxyeicosatetraenoic acid that regulated P-glycoprotein and junction proteins, respectively, thereby modulating BBB properties. Inhibition of Cyp1b1 in vivo increased BBB permeability being in line with its downregulation in glioma endothelia, potentially implicating Cyp1b1 in other brain pathologies. In conclusion, Wnt/β-catenin signaling regulates endothelial metabolic barrier function through Cyp1b1 transcription.
Collapse
|
31
|
Nampe D, Joshi R, Keller K, Zur Nieden NI, Tsutsui H. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture. Biotechnol Bioeng 2017; 114:2109-2120. [PMID: 28480972 DOI: 10.1002/bit.26334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022]
Abstract
The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Nampe
- Department of Mechanical Engineering, University of California, Riverside, California 92521.,Department of Bioengineering, University of California, Riverside, California 92521.,Stem Cell Center, University of California, Riverside, California 92521
| | - Ronak Joshi
- Stem Cell Center, University of California, Riverside, California 92521.,Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Kevin Keller
- Stem Cell Center, University of California, Riverside, California 92521.,Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Nicole I Zur Nieden
- Stem Cell Center, University of California, Riverside, California 92521.,Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, California 92521.,Department of Bioengineering, University of California, Riverside, California 92521.,Stem Cell Center, University of California, Riverside, California 92521
| |
Collapse
|
32
|
Identification of Elongated Primary Cilia with Impaired Mechanotransduction in Idiopathic Scoliosis Patients. Sci Rep 2017; 7:44260. [PMID: 28290481 PMCID: PMC5349607 DOI: 10.1038/srep44260] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/07/2017] [Indexed: 12/18/2022] Open
Abstract
The primary cilium is an outward projecting antenna-like organelle with an important role in bone mechanotransduction. The capacity to sense mechanical stimuli can affect important cellular and molecular aspects of bone tissue. Idiopathic scoliosis (IS) is a complex pediatric disease of unknown cause, defined by abnormal spinal curvatures. We demonstrate significant elongation of primary cilia in IS patient bone cells. In response to mechanical stimulation, these IS cells differentially express osteogenic factors, mechanosensitive genes, and signaling genes. Considering that numerous ciliary genes are associated with a scoliosis phenotype, among ciliopathies and knockout animal models, we expected IS patients to have an accumulation of rare variants in ciliary genes. Instead, our SKAT-O analysis of whole exomes showed an enrichment among IS patients for rare variants in genes with a role in cellular mechanotransduction. Our data indicates defective cilia in IS bone cells, which may be linked to heterogeneous gene variants pertaining to cellular mechanotransduction.
Collapse
|
33
|
Feng L, Zhang Y, Kou X, Yang R, Liu D, Wang X, Song Y, Cao H, He D, Gan Y, Zhou Y. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress. Angle Orthod 2017; 87:193-199. [PMID: 27689865 PMCID: PMC8384358 DOI: 10.2319/020716-107.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/01/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. MATERIALS AND METHODS Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. RESULTS Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. CONCLUSIONS Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.
Collapse
|
34
|
Wuest SL, Stern P, Casartelli E, Egli M. Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines. PLoS One 2017; 12:e0170826. [PMID: 28135286 PMCID: PMC5279744 DOI: 10.1371/journal.pone.0170826] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023] Open
Abstract
Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity on ground. They consist of two gimbal mounted frames, which constantly rotate biological samples around two perpendicular axes and thus distribute the Earth's gravity vector in all directions over time. In recent years, the RPM is increasingly becoming appreciated as a laboratory instrument also in non-space-related research. For instance, it can be applied for the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, however, does not only distribute the gravity vector in such a way that it averages to zero, but it also introduces local forces to the cell culture. These forces can be described by rigid body analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell culture flasks on the RPM and the possible effects of such on cells have not been examined until today; thus, such aspects have been widely neglected. In this study, we used a numerical approach to describe the fluid dynamic characteristic occurring inside a cell culture flask turning on an operating RPM. The simulations showed that the fluid motion within the cell culture flask never reached a steady state or neared a steady state condition. The fluid velocity depends on the rotational velocity of the RPM and is in the order of a few centimeters per second. The highest shear stresses are found along the flask walls; depending of the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the "bulk volume," however, are always smaller, and their magnitude is in the order of 10 mPa. In conclusion, RPMs are highly appreciated as reliable tools in microgravity research. They have even started to become useful instruments in new research fields of mechanobiology. Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and needs to be taken into consideration. The results presented in this study elucidate the fluid motion and provide insight into the convection and shear stresses that occur inside a cell culture flask during RPM experiments.
Collapse
Affiliation(s)
- Simon L. Wuest
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, CC Aerospace Biomedical Science and Technology, Space Biology Group, Hergiswil, Switzerland
| | - Philip Stern
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, CC Fluid Mechanics and Hydraulic Machines, Horw, Switzerland
| | - Ernesto Casartelli
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, CC Fluid Mechanics and Hydraulic Machines, Horw, Switzerland
| | - Marcel Egli
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, CC Aerospace Biomedical Science and Technology, Space Biology Group, Hergiswil, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Yuan Y, Chen X, Zhang L, Wu J, Guo J, Zou D, Chen B, Sun Z, Shen C, Zou J. The roles of exercise in bone remodeling and in prevention and treatment of osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:122-130. [DOI: 10.1016/j.pbiomolbio.2015.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/23/2022]
|
36
|
Kang KS, Hong JM, Robling AG. Postnatal β-catenin deletion from Dmp1-expressing osteocytes/osteoblasts reduces structural adaptation to loading, but not periosteal load-induced bone formation. Bone 2016; 88:138-145. [PMID: 27143110 PMCID: PMC4899196 DOI: 10.1016/j.bone.2016.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 01/20/2023]
Abstract
Mechanical signal transduction in bone tissue begins with load-induced activation of several cellular pathways in the osteocyte population. A key pathway that participates in mechanotransduction is Wnt/Lrp5 signaling. A putative downstream mediator of activated Lrp5 is the nucleocytoplasmic shuttling protein β-catenin (βcat), which migrates to the nucleus where it functions as a transcriptional co-activator. We investigated whether osteocytic βcat participates in Wnt/Lrp5-mediated mechanotransduction by conducting ulnar loading experiments in mice with or without chemically induced βcat deletion in osteocytes. Mice harboring βcat floxed loss-of-function alleles (βcat(f/f)) were bred to the inducible osteocyte Cre transgenic (10)(kb)Dmp1-CreERt2. Adult male mice were induced to recombine the βcat alleles using tamoxifen, and intermittent ulnar loading sessions were applied over the following week. Although adult-onset deletion of βcat from Dmp1-expressing cells reduced skeletal mass, the bone tissue was responsive to mechanical stimulation as indicated by increased relative periosteal bone formation rates in recombined mice. However, load-induced improvements in cross sectional geometric properties were compromised in recombined mice. The collective results indicate that the osteoanabolic response to loading can occur on the periosteal surface when β-cat levels are significantly reduced in Dmp1-expressing cells, suggesting that either (i) only low levels of β-cat are required for mechanically induced bone formation on the periosteal surface, or (ii) other additional downstream mediators of Lrp5 might participate in transducing load-induced Wnt signaling.
Collapse
Affiliation(s)
- Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jung Min Hong
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA; Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
37
|
Yan Y, Sun H, Gong Y, Yan Z, Zhang X, Guo Y, Wang Y. Mechanical strain promotes osteoblastic differentiation through integrin-β1-mediated β-catenin signaling. Int J Mol Med 2016; 38:594-600. [DOI: 10.3892/ijmm.2016.2636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 06/03/2016] [Indexed: 11/05/2022] Open
|
38
|
Broome DT, Datta NS. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues. Connect Tissue Res 2016; 57:175-89. [PMID: 27031422 DOI: 10.3109/03008207.2015.1125480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age.
Collapse
Affiliation(s)
- David T Broome
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| | - Nabanita S Datta
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
39
|
Wang H, Sun Z, Wang Y, Hu Z, Zhou H, Zhang L, Hong B, Zhang S, Cao X. miR-33-5p, a novel mechano-sensitive microRNA promotes osteoblast differentiation by targeting Hmga2. Sci Rep 2016; 6:23170. [PMID: 26980276 PMCID: PMC4793269 DOI: 10.1038/srep23170] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) interfere with the translation of specific target mRNAs and are thought to thereby regulate many cellular processes. However, the role of miRNAs in osteoblast mechanotransduction remains to be defined. In this study, we investigated the ability of a miRNA to respond to different mechanical environments and regulate mechano-induced osteoblast differentiation. First, we demonstrated that miR-33-5p expressed by osteoblasts is sensitive to multiple mechanical environments, microgravity and fluid shear stress. We then confirmed the ability of miR-33-5p to promote osteoblast differentiation. Microgravity or fluid shear stress influences osteoblast differentiation partially via miR-33-5p. Through bioinformatics analysis and a luciferase assay, we subsequently confirmed that Hmga2 is a target gene of miR-33-5p that negatively regulates osteoblast differentiation. Moreover, miR-33-5p regulates osteoblast differentiation partially via Hmga2. In summary, our findings demonstrate that miR-33-5p is a novel mechano-sensitive miRNA that can promote osteoblast differentiation and participate in the regulation of differentiation induced by changes in the mechanical environment, suggesting this miRNA as a potential target for the treatment of pathological bone loss.
Collapse
Affiliation(s)
- Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Zhongyang Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.,Department of orthopedics, No. 454 Hospital of PLA, 210002, Nanjing, Jiangsu, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Lianchang Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Bo Hong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| |
Collapse
|
40
|
Abstract
Influenced by gravidity, bone tissue experiences stronger or lighter deformation according to the strength of the activities of daily life. Activities resulting in impact are particularly known to stimulate osteogenesis, thus reducing bone mass loss. Knowing how bone cells recognize the mechanical deformation imposed to the bone and trigger a series of biochemical chain reactions is of crucial importance for the development of therapeutic and preventive practices in orthopaedic activity. There is still a long way to run until we can understand the whole process, but current knowledge has shown a strong progression, with researches being conducted focused on therapies. For a mechanical sign to be transformed into a biological one (mechanotransduction), it must be amplified at cell level by the histological structure of bone tissue, producing tensions in cell membrane proteins (integrins) and changing their spatial structure. Such change activates bindings between these and the cytoskeleton, producing focal adhesions, where cytoplasmatic proteins are recruited to enable easier biochemical reactions. Focal adhesion kinase (FAK) is the most important one being self-activated when its structure is changed by integrins. Activated FAK triggers a cascade of reactions, resulting in the activation of ERK-1/2 and Akt, which are proteins that, together with FAK, regulate the production of bone mass. Osteocytes are believed to be the mechanosensor cells of the bone and to transmit the mechanical deformation to osteoblasts and osteoclasts. Ionic channels and gap junctions are considered as intercellular communication means for biochemical transmission of a mechanical stimulus. These events occur continuously on bone tissue and regulate bone remodeling.
Collapse
|
41
|
|
42
|
Goodman CA, Hornberger TA, Robling AG. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone 2015; 80:24-36. [PMID: 26453495 PMCID: PMC4600534 DOI: 10.1016/j.bone.2015.04.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/18/2015] [Accepted: 04/07/2015] [Indexed: 12/16/2022]
Abstract
The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists.(1).
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Australia; Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia.
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander G Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
43
|
Wang H, Wang R, Wang Z, Liu Q, Mao Y, Duan X. ClC-3 chloride channel functions as a mechanically sensitive channel in osteoblasts. Biochem Cell Biol 2015; 93:558-65. [PMID: 26436462 DOI: 10.1139/bcb-2015-0018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical stimulation usually causes the volume changes of osteoblasts. Whether these volume changes could be sensed by the ClC-3 chloride channel, a volume-sensitive ion channel, and further promote the osteodifferentiation in osteoblasts has not been determined. In this study, we applied persistent static compression on MC3T3-E1 cells to detect the expression changes of ClC-3, osteogenic markers, as well as some molecules related with signaling transduction pathway. We tested the key role of ClC-3 in transferring the mechanical signal to osteoinduction by ClC-3 overexpressing and siRNA technique. We found that ClC-3 level was up-regulated by mechanical stimulation in MC3T3-E1 cells. Mechanical force also up-regulated the mRNA level of osteogenic markers such as alkaline phosphatase (Alp), bone sialoprotein (Bsp), and osteocalcin (Oc), which could be blocked or strengthened by Clcn3 siRNA or overexpressing, and Alp expression was more sensitive to the changes of ClC-3 level. We also found that runt-related transcription factor 2 (Runx2), transforming growth factor beta 1 (TGF-β1), and Wnt pathway might be involved in ClC-3 mediated mechanical transduction in osteoblasts. The data from the current study suggest that the ClC-3 chloride channel acts as a mechanically sensitive channel to regulate osteodifferentiation in osteoblasts.
Collapse
Affiliation(s)
- Huan Wang
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.,b State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Rong Wang
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhe Wang
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Qian Liu
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yong Mao
- c State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Duan
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
44
|
Maggiorani D, Dissard R, Belloy M, Saulnier-Blache JS, Casemayou A, Ducasse L, Grès S, Bellière J, Caubet C, Bascands JL, Schanstra JP, Buffin-Meyer B. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS One 2015; 10:e0131416. [PMID: 26146837 PMCID: PMC4493045 DOI: 10.1371/journal.pone.0131416] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/02/2015] [Indexed: 12/14/2022] Open
Abstract
Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.
Collapse
Affiliation(s)
- Damien Maggiorani
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Romain Dissard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Marcy Belloy
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Jean-Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Laure Ducasse
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Sandra Grès
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Julie Bellière
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Cécile Caubet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Jean-Loup Bascands
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Joost P. Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Toulouse, France
- Université Toulouse III Paul Sabatier, Institute of Metabolic and Cardiovascular Diseases - I2MC, Toulouse, France
- * E-mail:
| |
Collapse
|
45
|
Ehnes DD, Price FD, Shrive NG, Hart DA, Rancourt DE, zur Nieden NI. Embryonic stem cell-derived osteocytes are capable of responding to mechanical oscillatory hydrostatic pressure. J Biomech 2015; 48:1915-21. [PMID: 25936968 DOI: 10.1016/j.jbiomech.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
Abstract
Osteoblasts can be derived from embryonic stem cells (ESCs) by a 30 day differentiation process, whereupon cells spontaneously differentiate upon removal of LIF and respond to exogenously added 1,25α(OH)2 vitamin D3 with enhanced matrix mineralization. However, bone is a load-bearing tissue that has to perform under dynamic pressure changes during daily movement, a capacity that is executed by osteocytes. At present, it is unclear whether ESC-derived osteogenic cultures contain osteocytes and whether these are capable of responding to a relevant cyclic hydrostatic compression stimulus. Here, we show that ESC-osteoblastogenesis is followed by the generation of osteocytes and then mechanically load ESC-derived osteogenic cultures in a compression chamber using a cyclic loading protocol. Following mechanical loading of the cells, iNOS mRNA was upregulated 31-fold, which was consistent with a role for iNOS as an immediate early mechanoresponsive gene. Further analysis of matrix and bone-specific genes suggested a cellular response in favor of matrix remodeling. Immediate iNOS upregulation also correlated with a concomitant increase in Ctnnb1 and Tcf7l2 mRNAs along with increased nuclear TCF transcriptional activity, while the mRNA for the repressive Tcf7l1 was downregulated, providing a possible mechanistic explanation for the noted matrix remodeling. We conclude that ESC-derived osteocytes are capable of responding to relevant mechanical cues, at least such that mimic oscillatory compression stress, which not only provides new basic understanding, but also information that likely will be important for their use in cell-based regenerative therapies.
Collapse
Affiliation(s)
- D D Ehnes
- University of California Riverside, Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - F D Price
- The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - N G Shrive
- McCaig Institute for Bone and Joint Health, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - D A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - D E Rancourt
- The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - N I zur Nieden
- University of California Riverside, Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, 1113 Biological Sciences Building, Riverside, CA 92521, USA; The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
46
|
Low-intensity pulsed ultrasound in dentofacial tissue engineering. Ann Biomed Eng 2015; 43:871-86. [PMID: 25672801 DOI: 10.1007/s10439-015-1274-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/04/2015] [Indexed: 02/04/2023]
Abstract
Oral and maxillofacial diseases affect millions of people worldwide and hence tissue engineering can be considered an interesting and clinically relevant approach to regenerate orofacial tissues after being affected by different diseases. Among several innovations for tissue regeneration, low-intensity pulsed ultrasound (LIPUS) has been used extensively in medicine as a therapeutic, operative, and diagnostic tool. LIPUS is accepted to promote bone fracture repair and regeneration. Furthermore, the effect of LIPUS on soft tissues regeneration has been paid much attention, and many studies have performed to evaluate the potential use of LIPUS to tissue engineering soft tissues. The present article provides an overview about the status of LIPUS stimulation as a tool to be used to enhance regeneration/tissue engineering. This review consists of five parts. Part 1 is a brief introduction of the acoustic description of LIPUS and mechanical action. In Part 2, biological problems in dentofacial tissue engineering are proposed. Part 3 explores biologic mechanisms of LIPUS to cells and tissues in living body. In Part 4, the effectiveness of LIPUS on cell metabolism and tissue regeneration in dentistry are summarized. Finally, Part 5 relates the possibility of clinical application of LIPUS in orthodontics. The present review brings out better understanding of the bioeffect of LIPUS therapy on orofacial tissues which is essential to the successful integration of management remedies for tissue regeneration/engineering. To develop an evidence-based approach to clinical management and treatment of orofacial degenerative diseases using LIPUS, we would like to be in full pursuit of LIPUS biotherapy. Still, there are many challenges for this relatively new strategy, but the up to date achievements using it promises to go far beyond the present possibilities.
Collapse
|
47
|
Du HM, Wang LY, Zheng XH, Tang W, Liu L, Jing W, Lin YF, Tian WD, Long J. The Role of the Wnt Signaling Pathway in the Osteogenic Differentiation of Human Adipose-derived Stem Cells under Mechanical Stimulation. J HARD TISSUE BIOL 2015; 24:169-180. [DOI: 10.2485/jhtb.24.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hong-ming Du
- The State Key Laboratory of Oral Diseases, Sichuan University
| | - Li-ya Wang
- Department of Stomatology, The First Affiliated Hospital of Soochow University
| | - Xiao-hui Zheng
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Lei Liu
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Wei Jing
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Yun-feng Lin
- The State Key Laboratory of Oral Diseases, Sichuan University
| | - Wei-dong Tian
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
| | - Jie Long
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University
- The State Key Laboratory of Oral Diseases, Sichuan University
| |
Collapse
|
48
|
Patil S, Paul S. A comprehensive review on the role of various materials in the osteogenic differentiation of mesenchymal stem cells with a special focus on the association of heat shock proteins and nanoparticles. Cells Tissues Organs 2014; 199:81-102. [PMID: 25401759 DOI: 10.1159/000362226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have important roles in the area of regenerative medicine and clinical applications due to their pluripotent nature. Osteogenic differentiation of MSCs has been studied extensively using various stimulants to develop models of bone repair. There are several factors that enhance the differentiation of MSCs into bone tissues. This review focuses on the effects of various inducers on the osteoblast differentiation of MSCs at different stages of cellular development. We discuss the various growth factors, hormones, vitamins, cytokines, chemical stimulants, and mechanical forces applied in bioreactors that play an essential role in the proliferation, differentiation, and matrix mineralization of stem cells during osteogenesis. Various nanoparticles have also been used recently for the same purpose and the results are promising. Moreover, we review the role of various stresses, including thermal stress, and the subsequent involvement of heat shock proteins as inducers of the proliferation and differentiation of osteoblasts. We also report how various proteasome inhibitors have been shown to induce proliferation and osteogenic differentiation of MSCs in a number of cases. In this communication, the role of peptide-based scaffolds in osteoblast proliferation and differentiation is also reviewed. Based on the reviewed information, this article proposes novel possibilities for the enhancement of proliferation, differentiation, and migration of osteoblasts from MSCs. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Supriya Patil
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | | |
Collapse
|
49
|
Involvement of N-cadherin/β-catenin interaction in the micro/nanotopography induced indirect mechanotransduction. Biomaterials 2014; 35:6206-18. [PMID: 24818888 DOI: 10.1016/j.biomaterials.2014.04.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials, but the underlying molecular mechanism is poorly understood. The biomaterial topography modulates cell functions via mechanotransduction of direct and indirect. We propose that N-cadherin may play a role in the topographically induced indirect mechanotransduction by regulating the β-catenin signaling. For confirmation, the cell functions, N-cadherin expression and β-catenin signaling activation of osteoblasts on titanium (Ti) surfaces with micro- or/and nanotopography are systemically compared with naive and N-cadherin down-regulating MC3T3-E1 cells. We find that the N-cadherin expression is reversely related to the intracellular β-catenin signaling and the N-cadherin/β-catenin signaling is modulated differentially by the micro- and nanotopography. The nanotopography significantly up-regulates the N-cadherin expression leading to lower β-catenin signaling activity and consequently depressed differentiation, whereas the microtopography down-regulates the N-cadherin expression resulting in enhanced β-catenin signaling and thus osteoblast differentiation. Artificial down-regulation of the N-cadherin expression can significantly up-regulate the β-catenin signaling and consequently enhance the osteoblast differentiation on all the Ti surfaces. The study for the first time clarifies the involvement of the N-cadherin/β-catenin interaction in the micro/nanotopography induced indirect mechanotransduction and provides a potentially new approach for biomaterial modification and biofunctionalization by down-regulating the cell N-cadherin expression to achieve improved clinical performance.
Collapse
|
50
|
Xing J, Li Y, Lin M, Wang J, Wu J, Ma Y, Wang Y, Yang L, Luo Y. Surface chemistry modulates osteoblasts sensitivity to low fluid shear stress. J Biomed Mater Res A 2014; 102:4151-60. [DOI: 10.1002/jbm.a.35087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/19/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Juan Xing
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| | - Yan Li
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| | - Manping Lin
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| | - Jinfeng Wang
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| | - Jinchuan Wu
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| | - Yufei Ma
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| | - Yuanliang Wang
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, Chongqing University; Chongqing 400030 China
| | - Yanfeng Luo
- Research Center of Bioinspired Material Science and Engineering College of Bioengineering; Chongqing University; Chongqing 400030 China
| |
Collapse
|