1
|
Matsuno K, Ueda K, Saito M, Kamii M, Tsuda A, Kawabata A, Morikawa A, Okamoto A. Pilot study of the effect of surgical menopause on bone mineral density and quality in patients with gynecological malignancies. J Obstet Gynaecol Res 2025; 51:e16141. [PMID: 39530312 PMCID: PMC11635186 DOI: 10.1111/jog.16141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
AIM To investigate the effects of surgical menopause on bone mineral density and bone quality because bilateral salpingo-oophorectomy for the treatment of gynecological malignancies is common even in premenopausal patients. This study is prospective one of bone mineral density and quality measurements after surgery for perimenopausal gynecologic malignancies. METHODS In 50 women who underwent surgical menopause for a diagnosis of gynecological malignancies, bone mineral density (BMD), blood levels of tartrate-resistant acid phosphatase 5b (TRACP-5b) and bone-specific alkaline phosphatase (BAP) as bone metabolism markers, and urinary pentosidine level as bone quality marker were measured before surgery and at multiple points up to 24 months after surgery. RESULTS In a group of 22 patients who did not undergo hormone replacement therapy (HRT) (HRT- group), BMD of the lumbar spine and total hip continued to decrease significantly from 6 months postoperatively. Percentages of changes in BMD progressively increased over time after surgery. TRACP-5b and urinary pentosidine levels significantly increased 6 months postoperatively compared with preoperative levels. Comparisons between 10 patients who underwent HRT (HRT+ group) and the HRT- group revealed significant reductions in the percentage of change in lumbar spine BMD only and TRACP-5b and urinary pentosidine levels 12 months postoperatively in the former group. CONCLUSIONS In this pilot study, we showed that BMD and bone-related markers are altered in patients with surgical menopause. It also suggested that HRT may reduce these influences on bone metabolism.
Collapse
Affiliation(s)
- Kanae Matsuno
- Department of Gynecology and ObstetricsThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Kazu Ueda
- Department of GynecologyInternational University of Health and Welfare, Mita HospitalMinato‐kuTokyoJapan
| | - Mitsuru Saito
- Department of Orthopedic SurgeryThe Jikei University School of MedicineTokyoJapan
| | - Misato Kamii
- Department of Gynecology and ObstetricsThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Akina Tsuda
- Department of Gynecology and ObstetricsThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Ayako Kawabata
- Department of Gynecology and ObstetricsThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Asuka Morikawa
- Department of Gynecology and ObstetricsThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Aikou Okamoto
- Department of Gynecology and ObstetricsThe Jikei University School of MedicineMinato‐kuTokyoJapan
| |
Collapse
|
2
|
Gao Q, Jiang Y, Zhou D, Li G, Han Y, Yang J, Xu K, Jing Y, Bai L, Geng Z, Zhang H, Zhou G, Zhu M, Ji N, Han R, Zhang Y, Li Z, Wang C, Hu Y, Shen H, Wang G, Shi Z, Han Q, Chen X, Su J. Advanced glycation end products mediate biomineralization disorder in diabetic bone disease. Cell Rep Med 2024; 5:101694. [PMID: 39173634 PMCID: PMC11524989 DOI: 10.1016/j.xcrm.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Patients with diabetes often experience fragile fractures despite normal or higher bone mineral density (BMD), a phenomenon termed the diabetic bone paradox (DBP). The pathogenesis and therapeutics opinions for diabetic bone disease (DBD) are not fully explored. In this study, we utilize two preclinical diabetic models, the leptin receptor-deficient db/db mice (DB) mouse model and the streptozotocin-induced diabetes (STZ) mouse model. These models demonstrate higher BMD and lower mechanical strength, mirroring clinical observations in diabetic patients. Advanced glycation end products (AGEs) accumulate in diabetic bones, causing higher non-enzymatic crosslinking within collagen fibrils. This inhibits intrafibrillar mineralization and leads to disordered mineral deposition on collagen fibrils, ultimately reducing bone strength. Guanidines, inhibiting AGE formation, significantly improve the microstructure and biomechanical strength of diabetic bone and enhance bone fracture healing. Therefore, targeting AGEs may offer a strategy to regulate bone mineralization and microstructure, potentially preventing the onset of DBD.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China.
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangyin Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Mengru Zhu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Ruina Han
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China
| | - Yuanwei Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chuandong Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhongmin Shi
- Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Qinglin Han
- Orthopaedic Department, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P.R. China; Organoid Research Center, Shanghai University, Shanghai 200444, P.R. China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, P.R. China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China.
| |
Collapse
|
3
|
Wang B, Vashishth D. Advanced glycation and glycoxidation end products in bone. Bone 2023; 176:116880. [PMID: 37579812 PMCID: PMC10529863 DOI: 10.1016/j.bone.2023.116880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Hyperglycemia and oxidative stress, enhanced in diabetes and aging, result in excessive accumulation of advanced glycation and glycoxidation end products (AGEs/AGOEs) in bone. AGEs/AGOES are considered to be "the missing link" in explaining increased skeletal fragility with diabetes, aging, and osteoporosis where increased fracture risk cannot be solely explained by bone mass and/or fall incidences. AGEs/AGOEs disrupt bone turnover and deteriorate bone quality through alterations of organic matrix (collagen and non-collagenous proteins), mineral, and water content. AGEs and AGOEs are also associated with bone fragility in other conditions such as Alzheimer's disease, circadian rhythm disruption, and cancer. This review explains how AGEs and AGOEs accumulate in bone and impact bone quality and bone fracture, and how AGES/AGOEs are being targeted in preclinical and clinical investigations for inhibition or removal, and for prediction and management of diabetic, osteoporotic and insufficiency fractures.
Collapse
Affiliation(s)
- Bowen Wang
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Deepak Vashishth
- Shirley Ann Jackson Ph.D. Center of Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY 10019, USA.
| |
Collapse
|
4
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
5
|
Lekkala S, Sacher SE, Taylor EA, Williams RM, Moseley KF, Donnelly E. Increased Advanced Glycation Endproducts, Stiffness, and Hardness in Iliac Crest Bone From Postmenopausal Women With Type 2 Diabetes Mellitus on Insulin. J Bone Miner Res 2023; 38:261-277. [PMID: 36478472 PMCID: PMC9898222 DOI: 10.1002/jbmr.4757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2 = 0.28, p < 0.001; fAGE density: R2 = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Sara E. Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - Erik A. Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | | | - Kendall F. Moseley
- Division of Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
6
|
Brandt IAG, Jessen MH, Rimestad DE, Højgaard MKF, Vestergaard P. Advanced glycation end products and bone - How do we measure them and how do they correlate with bone mineral density and fractures? A systematic review and evaluation of precision of measures. Bone 2022; 165:116569. [PMID: 36174927 DOI: 10.1016/j.bone.2022.116569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
The role of advanced glycation end products (AGEs) in bone fragility especially in diabetic bone disease is increasingly recognized and researched. As skeletal frailty in diabetes does not correlate to bone mineral density (BMD) in the same way as in postmenopausal osteoporosis, BMD may not be a suitable measure of bone quality in persons with diabetes. Abundant research exists upon the effect of AGEs on bone, and though full understanding of the mechanisms of actions does not yet exist, there is little doubt of the clinical relevance. Thus, the measurement of AGEs as well as possible treatment effects on AGEs have become issues of interest. The aim of this report is to summarize results of measurements of AGEs. It consists of a systematic review of the existing literature on AGE measurements in clinical research, an evaluation of the precision of skin autofluorescence (SAF) measurement by AGE Reader® (Diagnoptics), and a short commentary on treatment of osteoporosis in patients with and without diabetes with respects to AGEs. We conclude that various AGE measures correlate well, both fluorescent and non-fluorescent and in different tissues, and that more than one target of measure may be used. However, pentosidine has shown good correlation with both bone measures and fracture risk in existing literature and results on SAF as a surrogate measurement is promising as some corresponding associations with fracture risk and bone measures are reported. As SAF measurements performed with the AGE Reader® display high precision and allow for a totally noninvasive procedure, conducting AGE measurements using this method has great potential and further research of its applicability is encouraged.
Collapse
|
7
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
8
|
Bolger MW, Romanowicz GE, Bigelow EMR, Ward FS, Ciarelli A, Jepsen KJ, Kohn DH. Divergent mechanical properties of older human male femora reveal unique combinations of morphological and compositional traits contributing to low strength. Bone 2022; 163:116481. [PMID: 35817317 DOI: 10.1016/j.bone.2022.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
Bone strength is generally thought to decline with aging and prior work has compared traits between younger and older cohorts to identify the structural and compositional changes that contribute to fracture risk with age. However, for men, the majority of individuals do not fracture a bone in their lifetime. While fracture occurrence is multifactorial, the absence of fracture in the majority of males suggests that some individuals maintain bone strength or do not lose enough strength to fracture, whereas others do lose strength with aging. Consequently, not all structural and material changes observed with age may lead to strength-decline. We propose that consideration of different subgroups of older individuals will provide a more precise understanding of which structural and material changes directly contribute to strength-decline. We identified subgroups using latent profile analysis (LPA), which is a clustering-based algorithm that takes multiple continuous variables into account. Human cadaveric male femoral diaphyses (n = 33, 26-89 years) were subjected to whole bone and tissue-level mechanical tests. Morphological traits, porosity, and cortical tissue mineral density (Ct.TMD) were obtained, as were measures of enzymatic cross-links and the advanced glycation end product, pentosidine (PEN). A univariate analysis first identified a younger cohort (YNG, n = 11) and older cohort (n = 22). LPA was then conducted using three mechanical traits (whole bone strength, tissue-level strength, and tissue-level post-yield strain), resulting in a further stratification of the older group into two similarly aged groups (p = 0.558), but one with higher (OHM, n = 16) and another with lower mechanical properties (OLM, n = 6). The OLM group exhibited lower whole bone strength (p = 0.016), tissue-level strength (p < 0.001), and tissue-level post-yield strain (p < 0.001) compared to the YNG group. Meanwhile, the OHM only exhibited significantly lower tissue-level post-yield strain (p < 0.001), compared to the YNG group. Between the two older groups, the OHM group exhibited higher whole bone strength (p = 0.037), tissue-level strength (p = 0.006), and tissue-level post-yield strain (p = 0.012) than the OLM group. Probing the morphological and compositional relationships among the three groups, both OHM and OLM exhibited increased PEN content (p < 0.001, p = 0.008 respectively) and increased Log(cortical pore score) relative to YNG (p = 0.003, p < 0.001 respectively). Compared to the OHM group, the OLM also exhibited increased marrow area (p = 0.049), water content (p = 0.048), and decreased Ct.TMD (p = 0.005). The key traits that were unique to the OLM group compared to YNG were decreased Ct.TMD (p < 0.001) and increased Log(porosity) (p = 0.002). There were many properties that differed between the younger and older groups, but not all were associated with reduced mechanical properties, highlighting the relative importance of certain age-related traits such as porosity, Ct.TMD, water content, and marrow area that were unique to the OLM group. Overall, this work supports the hypothesis that there are subgroups of men showing different strength-decline trajectories with aging and establishes a basis for refining our understanding of which age-related changes are directly contributing to decreased strength.
Collapse
Affiliation(s)
- Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Ferrous S Ward
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Antonio Ciarelli
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA; Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Karl J Jepsen
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
9
|
Sroga GE, Stephen S, Wang B, Vashishth D. Techniques for advanced glycation end product measurements for diabetic bone disease: pitfalls and future directions. Curr Opin Endocrinol Diabetes Obes 2022; 29:333-342. [PMID: 35777968 PMCID: PMC9348815 DOI: 10.1097/med.0000000000000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Multiple biochemical and biophysical approaches have been broadly used for detection and quantitation of posttranslational protein modifications associated with diabetic bone, yet these techniques present a variety of challenges. In this review, we discuss recent advancements and complementary roles of analytical (UPLC/UPLC-MS/MS and ELISA) and biophysical (Raman and FTIR) techniques used for characterization of glycation products, measured from bone matrix and serum, and provide recommendations regarding the selection of a technique for specific study of diabetic bone. RECENT FINDINGS Hyperglycemia and oxidative stress in diabetes contribute to the formation of a large subgroup of advanced glycation end products (AGEs) known as glycoxidation end products (AGOEs). AGEs/AGOEs have various adverse effects on bone health. Commonly, accumulation of AGEs/AGOEs leads to increased bone fragility. For example, recent studies show that carboxymethyllysine (CML) and pentosidine (PEN) are formed in bone at higher levels in certain diseases and metabolic conditions, in particular, in diabetes and aging. Detection and quantitation of AGEs/AGOEs in rare and/or precious samples is feasible because of a number of technological advancements of the past decade. SUMMARY Recent technological advancements have led to a significant improvement of several key analytical biochemistry and biophysics techniques used for detection and characterization of AGEs/AGOEs in bone and serum. Their principles and applications to skeletal tissue studies as well as limitations are discussed in this review.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Samuel Stephen
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Bowen Wang
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
10
|
Wang F, Zheng L, Theopold J, Schleifenbaum S, Heyde CE, Osterhoff G. Methods for bone quality assessment in human bone tissue: a systematic review. J Orthop Surg Res 2022; 17:174. [PMID: 35313901 PMCID: PMC8935787 DOI: 10.1186/s13018-022-03041-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background For biomechanical investigations on bone or bone implants, bone quality represents an important potential bias. Several techniques for assessing bone quality have been described in the literature. This study aims to systematically summarize the methods currently available for assessing bone quality in human bone tissue, and to discuss the advantages and limitations of these techniques. Methods A systematic review of the literature was carried out by searching the PubMed and Web of Science databases from January 2000 to April 2021. References will be screened and evaluated for eligibility by two independent reviewers as per PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies must apply to bone quality assessment with imaging techniques, mechanical testing modalities, and compositional characterization. The terms used for the systematic search were: “(bone quality”. Ti,ab.) AND “(human bone specimens)”. Results The systematic review identified 502 relevant articles in total. Sixty-eight articles met the inclusion criteria. Among them, forty-seven articles investigated several imaging modalities, including radiography, dual-energy X-ray absorptiometry (DEXA), CT-based techniques, and MRI-based methods. Nineteen articles dealt with mechanical testing approaches, including traditional testing modalities and novel indentation techniques. Nine articles reported the correlation between bone quality and compositional characterization, such as degree of bone mineralization (DBM) and organic composition. A total of 2898 human cadaveric bone specimens were included. Conclusions Advanced techniques are playing an increasingly important role due to their multiple advantages, focusing on the assessment of bone morphology and microarchitecture. Non-invasive imaging modalities and mechanical testing techniques, as well as the assessment of bone composition, need to complement each other to provide comprehensive and ideal information on the bone quality of human bone specimens. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03041-4.
Collapse
Affiliation(s)
- Fangxing Wang
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany. .,Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany.
| | - Leyu Zheng
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Jan Theopold
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Stefan Schleifenbaum
- ZESBO - Center for Research On Musculoskeletal Systems, Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Semmelweisstraße 14, 04103, Leipzig, Germany
| | - Christoph-Eckhard Heyde
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| | - Georg Osterhoff
- Department of Orthopedic Surgery, Traumatology and Plastic Surgery, Leipzig University, Liebigstraße 20 Haus 4, 04103, Leipzig, Germany
| |
Collapse
|
11
|
Uche IE, Akinbami AA, Bamiro AR, Suleiman MA, Benjamin A, Kareem OA, Odebiyi AH, Oduniyi AO. Assessment of megaloblastic anemia in geriatrics in Lagos State, Nigeria. THE EGYPTIAN JOURNAL OF HAEMATOLOGY 2022. [DOI: 10.4103/ejh.ejh_64_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Rondanelli M, Tartara A, Fossari F, Vecchio V, Faliva MA, Naso M, Perna S, Nichetti M, Peroni G. Adequate intake and supplementation of B vitamins, in particular folic acid, can play a protective role in bone health. Curr Aging Sci 2021; 15:110-120. [PMID: 34610784 DOI: 10.2174/1874609814666211005101730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
In vitro and animal model studies have shown that B vitamins (VB) deficiency have negative consequences on bone, as a result of direct or mediated activity of hyperhomocysteinemia. However, there are still no precise indications regarding a possible VB role in order to maintain bone health. So, the aim of this narrative review was to consider the state of the art on correlation between VB dietary intake, blood levels and supplementation and bone health (bone mineral density (BMD), bone turnover markers and fractures risk) in humans. This review included 29 eligible studies. Considering VB blood levels, the 14 studies considered have shown that low serum folate can be a factor risk for reduced BMD and fractures in elderly, particularly women; no independent association was found for other VB. Studies that evaluate relationship between VB dietary intake and BMD are only 2; one, conducted on 1869 women, demonstrated a positive effect of folate intake on BMD, another demonstrated a dose-dependent inverse relationship between vitamin B6 dietary intake and risk of hip fracture, but only for 35298 female participants. Regarding the relationship between BV supplementation and bone health (9 studies with only VB and 4 with other nutrients), all studies that considered patients with hyperhomocysteinemia or with low folate blood levels, are in agreement in demonstrating that folate supplementation (500mcg-5mg) is useful in improving BMD. In conclusion, a request for folate and homocysteine blood levels in elderly patients with osteopenia/osteoporosis is mandatory. For patients with hyperhomocysteinemia or with low folate blood levels, folate supplementation (500mcg-5mg) is crucial.
Collapse
Affiliation(s)
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy
| | - Federica Fossari
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy
| | - Viviana Vecchio
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy
| | - Maurizio Naso
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy
| | - Simone Perna
- Department of Biology, University of Bahrain, College of Science, Sakhir Campus P. O. Box 32038. Bahrain
| | - Mara Nichetti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
13
|
Yano K, Maekawa Y, Michimoto I, Matsukawa M. Decrease in Longitudinal Wave Velocity in Glycated Collagen. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2727-2732. [PMID: 33983882 DOI: 10.1109/tuffc.2021.3078800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diabetic patients have a higher risk of bone fracture than those without diabetes, despite a normal bone mineral density. This higher riskmay result fromthe deterioration of collagen because of glycation. The objective of this study was to investigate the elastic properties of glycated collagen using the micro-Brillouin scattering technique. Using single-layer uniaxial collagen films with a thickness of approximately [Formula: see text], the longitudinal wave velocities, propagating in the parallel andperpendiculardirectionswith respect to the collagen fiber orientation, were measured in dry and wet film specimens. The wave velocities in the glycated collagen specimens decreased as a function of glycation time. This decrease depended on the direction of collagen fiber alignment and wave propagation. The lowest velocity due to glycation in thewet filmswas foundwhen the ultrasound propagated perpendicular to the fiber direction. These results indicate that the glycation of collagen in the bone may also reduce bone elasticity and suggest that the effects of glycation on collagen films may be anisotropic.
Collapse
|
14
|
Miyoshi A, Kameda H, Nagai S, Nakamura A, Miya A, Takase T, Atsumi T, Miyoshi H. Beneficial effects of switching to denosumab from bisphosphonates or selective estrogen receptor modulators in postmenopausal women with type 2 diabetes and osteopenia/osteoporosis. J Diabetes Investig 2021; 12:1293-1300. [PMID: 33141482 PMCID: PMC8264394 DOI: 10.1111/jdi.13458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
AIMS/INTRODUCTION Patients with type 2 diabetes mellitus have a higher bone fracture risk than patients without diabetes. Although denosumab (Dmab) is a potent bone resorption inhibitor, its efficacy in patients with type 2 diabetes mellitus has not been elucidated. In this study, we investigated the effects of switching to Dmab from bisphosphonates (BP) or a selective estrogen receptor modulator (SERM) in postmenopausal type 2 diabetes mellitus patients. MATERIALS AND METHODS This was a three medical institutions, prospective, observational study for postmenopausal patients with type 2 diabetes mellitus whose T-score of femoral neck or lumbar spine bone mineral density was under -1.0 standard deviation, even after >6 months of BP or SERM administration. After obtaining consent, participants were treated for osteopenia/osteoporosis by either continuing BP (BP-BP group)/SERM (SERM-SERM group), or by switching to Dmab (BP-Dmab or SERM-Dmab groups). Changes in bone mineral density and bone metabolism marker levels were evaluated after 6 months. RESULTS A total of 48 patients were included in this study, and each group comprised 12 patients. No significant difference existed in baseline characteristics among the groups. The average age and glycated hemoglobin were 71 ± 8 years and 7.2 ± 0.9%, respectively. In the SERM-Dmab group, lumbar spine bone mineral density was significantly increased by 5.0% compared with the SERM-SERM group (P < 0.04). Serum bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b were significantly decreased in the BP-Dmab and SERM-Dmab groups compared with the BP-BP and SERM-SERM groups, respectively. CONCLUSIONS Switching to Dmab from BP or SERM is beneficial to prevent osteoporosis progression in postmenopausal patients with type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Arina Miyoshi
- Department of Diabetes and EndocrinologySapporo City General HospitalSapporoJapan
- Department of Rheumatology, Endocrinology and NephrologyFaculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hiraku Kameda
- Department of Rheumatology, Endocrinology and NephrologyFaculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - So Nagai
- Sapporo Medical Center NTT ECSapporoJapan
| | - Akinobu Nakamura
- Department of Rheumatology, Endocrinology and NephrologyFaculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Aika Miya
- Department of Rheumatology, Endocrinology and NephrologyFaculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Takahiro Takase
- Department of Rheumatology, Endocrinology and NephrologyFaculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and NephrologyFaculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hideaki Miyoshi
- Division of Diabetes and ObesityFaculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
15
|
Pawlak R. Vitamin B12 status is a risk factor for bone fractures among vegans. Med Hypotheses 2021; 153:110625. [PMID: 34116377 DOI: 10.1016/j.mehy.2021.110625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 01/22/2023]
Abstract
Several studies consistently showed vegans having a higher risk of bone fractures compared to individuals from other diet groups. While researchers have focused on several factors as possible explanation of these findings, both dietary (e.g. calcium) and non-dietary (e.g. weight/BMI status), the widespread inadequate vitamin B12 (B12) status among vegans as a risk factor for bone fractures has not received adequate scrutiny. The detrimental impact of inadequate B12 status on bone tissue is both direct, via the impairment of the insulin-like growth hormone 1 and taurine synthesis, and indirect, induced through its hyperhomocysteinemic effect, via at least the following mechanisms: 1) reducing bone mineral content and density by accumulating in the extracellular matrix, 2) reducing osteoblasts and increasing osteoclasts function, 3) reducing blood flow to bone tissue, 4) inducing apoptosis via the reactive oxygen-species-mediated mitochondrial pathway, and 5) obstructing the formation of collagen cross-links, impeding lyslyl oxidase, and hampering insolubility of fibrils. Considering the widespread B12 deficiency prevalence among vegans, its role in bone fracture risk should not be overlooked.
Collapse
Affiliation(s)
- Roman Pawlak
- Department of Nutrition Science, East Carolina University, Greenville, NC 27858, United States.
| |
Collapse
|
16
|
Wang P, Liu L, Lei SF. Causal effects of homocysteine levels on the changes of bone mineral density and risk for bone fracture: A two-sample mendelian randomization study. Clin Nutr 2021; 40:1588-1595. [PMID: 33744603 DOI: 10.1016/j.clnu.2021.02.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 02/27/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Observational studies have demonstrated the relations of homocysteine (HCY) with bone mineral density (BMD) and bone fracture risk, but yielding contradictory results. The present study was conducted to evaluate whether the genetically predicted plasma HCY levels were causally associated with the change of BMD and the risk of bone fracture. METHODS Genetic summary statistics were extracted from genome-wide association study (GWAS) meta-analysis of plasma HCY levels (n = 44,147), GWAS meta-analyses of measured forearm (FA), femoral neck (FN) and lumbar spine (LS) BMD (n = up to 32,735), UK Biobank estimated heel BMD (eBMD) (n = 426,824) and fracture (n = 426,795) GWAS data. Two Sample Mendelian Randomization (TSMR) analysis was performed to assess the causal effects of genetically determined plasma HCY on the BMD and bone fractures. RESULTS The MR analysis indicated that, genetically decreased plasma HCY was associated with the increased FA-BMD based on the inverse variance weighting (IVW) method (standard deviation [SD] = 0.348, 95% CI: 0.146 to 0.550, P = 7 × 10-4). However, there were no significant associations of genetically decreased plasma HCY with FN-BMD, LS-BMD, eBMD and the risk for bone fracture (SD = -0.041, 95% CI: -0.189 to 0.106, P = 0.582; SD = -0.053, 95% CI: -0.238 to 0.131, P = 0.572; SD = -0.030, 95% CI: -0.090 to 0.030, P = 0.328, odds ratio [OR]: 1.03, 95% CI: 0.94 to 1.13, P = 0.562, respectively). Moreover, the results also found that genetically determined HCY increase was not correlated with the changes of BMD and the risk for bone fracture. CONCLUSION Our study revealed that genetically decreased plasma HCY was associated with increase of FA-BMD.
Collapse
Affiliation(s)
- Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, 199 Renai Road, Suzhou, Jiangsu, 215123, China; Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University Medical College, Suzhou, Jiangsu 215123, China
| | - Lei Liu
- Department of Parasitology, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, 199 Renai Road, Suzhou, Jiangsu, 215123, China; Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University Medical College, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
17
|
Hunt HB, Miller NA, Hemmerling KJ, Koga M, Lopez KA, Taylor EA, Sellmeyer DE, Moseley KF, Donnelly E. Bone Tissue Composition in Postmenopausal Women Varies With Glycemic Control From Normal Glucose Tolerance to Type 2 Diabetes Mellitus. J Bone Miner Res 2021; 36:334-346. [PMID: 32970898 DOI: 10.1002/jbmr.4186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The risk of fragility fracture increases for people with type 2 diabetes mellitus (T2DM), even after controlling for bone mineral density, body mass index, visual impairment, and falls. We hypothesize that progressive glycemic derangement alters microscale bone tissue composition. We used Fourier-transform infrared (FTIR) imaging to analyze the composition of iliac crest biopsies from cohorts of postmenopausal women characterized by oral glucose tolerance testing: normal glucose tolerance (NGT; n = 35, age = 65 ± 7 years, HbA1c = 5.8 ± 0.3%), impaired glucose tolerance (IGT; n = 26, age = 64 ± 5 years, HbA1c = 6.0 ± 0.4%), and overt T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.13 ± 0.6). The distributions of cortical bone mineral content had greater mean values (+7%) and were narrower (-10%) in T2DM versus NGT groups (p < 0.05). The distributions of acid phosphate, an indicator of new mineral, were narrower in cortical T2DM versus NGT and IGT groups (-14% and -14%, respectively) and in trabecular NGT and IGT versus T2DM groups (-11% and -10%, respectively) (all p < 0.05). The distributions of crystallinity were wider in cortical NGT versus T2DM groups (+16%) and in trabecular NGT versus T2DM groups (+14%) (all p < 0.05). Additionally, bone turnover was lower in T2DM versus NGT groups (P1NP: -25%, CTx: -30%, ucOC: -24%). Serum pentosidine was similar across groups. The FTIR compositional and biochemical marker values of the IGT group typically fell between the NGT and T2DM group values, although the differences were not always statistically significant. In summary, worsening glycemic control was associated with greater mineral content and narrower distributions of acid phosphate, an indicator of new mineral, which together are consistent with observations of lower turnover; however, wider distributions of mineral crystallinity were also observed. A more mineralized, less heterogeneous tissue may affect tissue-level mechanical properties and in turn degrade macroscale skeletal integrity. In conclusion, these data are the first evidence of progressive alteration of bone tissue composition with worsening glycemic control in humans. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Nicholas A Miller
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Kimberly J Hemmerling
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Maho Koga
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Kelsie A Lopez
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Erik A Taylor
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, USA
| | - Deborah E Sellmeyer
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kendall F Moseley
- Division of Endocrinology, Diabetes & Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
18
|
Pentosidine and carboxymethyl-lysine associate differently with prevalent osteoporotic vertebral fracture and various bone markers. Sci Rep 2020; 10:22090. [PMID: 33328494 PMCID: PMC7744574 DOI: 10.1038/s41598-020-78993-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Pentosidine (PEN) and carboxymethyl-lysine (CML) are well-recognized advanced glycation end products (AGEs). However, how these AGEs affect the pathophysiology of osteoporosis and osteoporotic fractures remains controversial. This cross-sectional study aimed to investigate the associations of PEN and CML with bone markers, bone mineral density (BMD), and osteoporotic fractures in postmenopausal women from the Nagano Cohort Study. A total of 444 Japanese postmenopausal outpatients (mean ± standard deviation age: 69.8 ± 10.2 years) were enrolled after the exclusion of patients with acute or severe illness or secondary osteoporosis. The relationships among urinary PEN and serum CML levels, various bone markers, lumbar and hip BMD, and prevalent vertebral and long-bone fractures were evaluated. PEN associated significantly with prevalent vertebral fracture after adjustment for other confounders (odds ratio [OR] 1.59, 95% confidence interval [CI] 1.22-2.07; P < 0.001), but not with lumbar BMD. In contrast, a significant negative correlation was found between CML and lumbar BMD (r = - 0.180; P < 0.001), and this relationship was significant after adjustment for confounders (OR 0.84, 95% CI 0.76-0.93; P < 0.01). Although patients with prevalent vertebral fracture had significantly higher CML levels, the association between CML and prevalent vertebral fracture did not reach significance in the multivariate regression model. Both PEN and CML may play important roles in bone health for postmenopausal women, possibly via different mechanisms.
Collapse
|
19
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
20
|
Zhang X, Huang Z, Xie Z, Chen Y, Zheng Z, Wei X, Huang B, Shan Z, Liu J, Fan S, Chen J, Zhao F. Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med 2020; 160:552-565. [PMID: 32896601 DOI: 10.1016/j.freeradbiomed.2020.08.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022]
Abstract
Homocysteine (Hcy) is an amino acid involved in gene methylation. Plasma concentration of Hcy is elevated in the pathological condition hyperhomocysteinemia (HHcy), which increases the risk of disorders of the vascular, nervous and musculoskeletal systems, including chondrocyte dysfunction. The present study aimed to explore the role of Hcy in intervertebral disc degeneration (IVDD), using a range of techniques. A clinical epidemiological study showed that HHcy is an independent risk factor for human IVDD. Cell culture using rat nucleus pulposus cells showed that Hcy promotes a degenerative cell phenotype (involving increased oxidative stress and cell death by ferroptosis) which is mediated by upregulated methylation of GPX4. An in-vivo mouse 'puncture' model of IVDD showed that folic acid (which is used to treat HHcy in humans) reduced the ability of diet-induced HHcy to promote IVDD. We conclude that Hcy upregulates oxidative stress and ferroptosis in the nucleus pulposus via enhancing GPX4 methylation, and is a new contributing factor in IVDD.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Zhaobo Huang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Ziang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Yilei Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Zeyu Zheng
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Xiao'an Wei
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Bao Huang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Zhi Shan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Junhui Liu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Jian Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| | - Fengdong Zhao
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China.
| |
Collapse
|
21
|
Yasui H, Yano K, Kuzuhara Y, Ikegawa M, Matsukawa M. Prolonged Hyperglycemia Reduces Elasticity of Type II Diabetic Rat Bone. Calcif Tissue Int 2020; 107:381-388. [PMID: 32767061 DOI: 10.1007/s00223-020-00733-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
An increase in bone fracture risk has been reported in patients with diabetes. To evaluate an early effect of glucose intolerance on bone homeostasis, we have characterized bones from spontaneously diabetic torii (SDT) rats, an animal model of type 2 diabetes in comparison with Sprague Dawley (SD) rats as healthy control. Focusing on early effects of diabetes on bone elasticity, longitudinal wave velocities of animal bones were first determined by a micro-Brillouin scattering technique in a non-destructive way. Wave velocities in the cortical and cancellous bones in the tibias of the SDT and SD rats were compared. In a pre-diabetic stage at approximately 10 weeks of age, there seems no significant difference in wave velocities in bones from age-matched SDT and SD rats. By contrast, after the onset of diabetes at approximately 20 weeks of age, the mean velocities of bones from SDT rats were lower than those of SD rat. In addition, the X-ray CT showed that the bone amounts of SDT rats were smaller than those of SD rats in an early diabetic stage at 20 weeks of age. The current study demonstrated that the wave velocity decreased in bones of SDT rats in the early stages of diabetes. While a decrease of bone strength in an early stage of diabetes can be partially explained from decreases in bone amount as well as bone elasticity, further studies will be needed in understanding a detailed mechanism of bone deterioration due to diabetes.
Collapse
Affiliation(s)
- Hirokazu Yasui
- Laboratory of Ultrasonic Electronics, Faculty of Science and Engineering, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Keita Yano
- Laboratory of Ultrasonic Electronics, Faculty of Science and Engineering, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Yuki Kuzuhara
- Laboratory of Genomics, Proteomics and Biomedical Functions, Faculty of Life and Medical Sciences, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Masaya Ikegawa
- Laboratory of Genomics, Proteomics and Biomedical Functions, Faculty of Life and Medical Sciences, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan
| | - Mami Matsukawa
- Laboratory of Ultrasonic Electronics, Faculty of Science and Engineering, Applied Ultrasonic Research Center, Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan.
| |
Collapse
|
22
|
Waqas K, Chen J, Koromani F, Trajanoska K, van der Eerden BC, Uitterlinden AG, Rivadeneira F, Zillikens MC. Skin Autofluorescence, a Noninvasive Biomarker for Advanced Glycation End-Products, Is Associated With Prevalent Vertebral and Major Osteoporotic Fractures: The Rotterdam Study. J Bone Miner Res 2020; 35:1904-1913. [PMID: 32463533 PMCID: PMC7687120 DOI: 10.1002/jbmr.4096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Advanced glycation end-products (AGEs), which bind to type 1 collagen in bone and skin, have been implicated in reduced bone quality. The AGE reader™ measures skin autofluorescence (SAF), which might be regarded as a marker of long-term accumulation of AGEs in tissues. We investigated the association of SAF with bone mineral density (BMD) and fractures in the general population. We studied 2853 individuals from the Rotterdam Study with available SAF measurements (median age, 74.1 years) and with data on prevalent major osteoporotic (MOFs: hip, humerus, wrist, clinical vertebral) and vertebral fractures (VFs: clinical + radiographic Genant's grade 2 and 3). Radiographs were assessed 4 to 5 years before SAF. Multivariate regression models were performed adjusted for age, sex, BMI, creatinine, smoking status, and presence of diabetes and additionally for BMD with interaction terms to test for effect modification. Prevalence of MOFs was 8.5% and of VFs 7%. SAF had a curvilinear association with prevalent MOFs and VFs and therefore, age-adjusted, sex stratified SAF quartiles were used. The odds ratio (OR) (95% confidence interval [CI]) of the second, third and fourth quartiles of SAF for MOFs were as follows: OR 1.60 (95% CI, 1.08-2.35; p = .02); OR 1.30 (95% CI, 0.89-1.97; p = .20), and OR 1.40 (95% CI, 0.95-2.10; p = .09), respectively, with first (lowest) quartile as reference. For VFs the ORs were as follows: OR 1.69 (95% CI, 1.08-2.64; p = .02), OR 1.74(95% CI, 1.11-2.71; p = .01), and OR 1.73 (95% CI, 1.12-2.73; p = .02) for second, third, and fourth quartiles, respectively. When comparing the top three quartiles combined with the first quartile, the OR (95% CI) for MOFs was 1.43 (95% CI, 1.04-2.00; p = .03) and for VFs was 1.72 (95% CI, 1.18-2.53; p = .005). Additional adjustment for BMD did not change the associations. In conclusion, there is evidence of presence of a threshold of skin AGEs below which there is distinctly lower prevalence of fractures. Longitudinal analyses are needed to confirm our cross-sectional findings. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Komal Waqas
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jinluan Chen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fjorda Koromani
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bram Cj van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Saeki C, Saito M, Oikawa T, Nakano M, Torisu Y, Saruta M, Tsubota A. Effects of denosumab treatment in chronic liver disease patients with osteoporosis. World J Gastroenterol 2020; 26:4960-4971. [PMID: 32952342 PMCID: PMC7476181 DOI: 10.3748/wjg.v26.i33.4960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Effective treatment of osteoporosis is essential for improving morbidity and health-related quality of life in chronic liver disease (CLD) patients. Denosumab has been shown to increase bone mineral density (BMD) and decrease the risk of osteoporotic fracture in the general population. However, there are few reports evaluating the efficacy of denosumab in CLD patients.
AIM To investigated the effects and safety of denosumab in CLD patients with osteoporosis.
METHODS Sixty CLD patients with osteoporosis were subcutaneously administered denosumab once every 6 mo. The study period for evaluating efficacy and safety was 12 mo. Changes from baseline in BMD at the lumbar spine, femoral neck, and total hip were evaluated at 12 mo of denosumab treatment. Bone turnover and quality were assessed by measuring serum tartrate-resistant acid phosphatase-5b (bone resorption marker), serum total procollagen type I N-terminal propeptide (bone formation maker), and plasma pentosidine (bone quality marker).
RESULTS Among the 405 CLD patients, 138 (34.1%) patients were diagnosed with osteoporosis; among these, 78 patients met the exclusion criteria and thus 60 patients were finally included in the present study. The median percentage changes from baseline to 12 mo of denosumab treatment in BMD at the lumbar spine, femoral neck, and total hip were +4.44%, +3.71%, and +4.03%, respectively. Denosumab significantly improved BMD, regardless of sex, patient age, and presence of liver cirrhosis. Serum tartrate-resistant acid phosphatase-5b and procollagen type I N-terminal propeptide levels constantly and significantly declined after denosumab treatment (P < 0.001). Plasma pentosidine levels were also significantly lower at 12 mo of treatment (P = 0.010). No patients experienced fractures and moderate-to-severe adverse events, except for transient hypocalcemia.
CONCLUSION Denosumab treatment was safe and increased BMD, suppressed bone turnover, and improved bone quality marker levels in CLD patients with osteoporosis, irrespective of differences in baseline characteristics.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Masanori Nakano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Yuichi Torisu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Akihito Tsubota
- Core Research Facilities, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo 1058461, Japan
| |
Collapse
|
24
|
Zhang H, Zhang Y, Terajima M, Romanowicz G, Liu Y, Omi M, Bigelow E, Joiner DM, Waldorff EI, Zhu P, Raghavan M, Lynch M, Kamiya N, Zhang R, Jepsen KJ, Goldstein S, Morris MD, Yamauchi M, Kohn DH, Mishina Y. Loss of BMP signaling mediated by BMPR1A in osteoblasts leads to differential bone phenotypes in mice depending on anatomical location of the bones. Bone 2020; 137:115402. [PMID: 32360900 PMCID: PMC7354232 DOI: 10.1016/j.bone.2020.115402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Bone morphogenetic protein (BMP) signaling in osteoblasts plays critical roles in skeletal development and bone homeostasis. Our previous studies showed loss of function of BMPR1A, one of the type 1 receptors for BMPs, in osteoblasts results in increased trabecular bone mass in long bones due to an imbalance between bone formation and bone resorption. Decreased bone resorption was associated with an increased mature-to-immature collagen cross-link ratio and mineral-matrix ratios in the trabecular compartments, and increased tissue-level biomechanical properties. Here, we investigated the bone mass, bone composition and biomechanical properties of ribs and spines in the same genetically altered mouse line to compare outcomes by loss of BMPR1A functions in bones from different anatomic sites and developmental origins. Bone mass was significantly increased in both cortical and trabecular compartments of ribs with minimal to modest changes in compositions. While tissue-levels of biomechanical properties were not changed between control and mutant animals, whole bone levels of biomechanical properties were significantly increased in association with increased bone mass in the mutant ribs. For spines, mutant bones showed increased bone mass in both cortical and trabecular compartments with an increase of mineral content. These results emphasize the differential role of BMP signaling in osteoblasts in bones depending on their anatomical locations, functional loading requirements and developmental origin.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yanshuai Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - Genevieve Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yangjia Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; School of Life Sciences, Tsinghua University, Beijing, China
| | - Maiko Omi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Danese M Joiner
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Erik I Waldorff
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Peizhi Zhu
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mekhala Raghavan
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Michelle Lynch
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Nobuhiro Kamiya
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA; Tenri University, Nara, Japan
| | - Rongqing Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Steve Goldstein
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Michael D Morris
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, MI, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
25
|
Yoshii I, Akita K. Cortical thickness relative to the transverse diameter of third metacarpal bone reflects bone mineral density in patients with rheumatoid arthritis. Bone 2020; 137:115405. [PMID: 32371020 DOI: 10.1016/j.bone.2020.115405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is accompanied by potential risk of bone mineral loss. In this study, we developed a screening index for the osteoporosis related level of bone mineral density loss for RA patients as a substitute to the dual-energy X-ray absorptiometry (DXA) method. METHODS X-ray pictures of both sides of the hand were taken in order to evaluate Sharp/van der Heijde Scores (SHSs). This score was calculated for RA patients at the first consultation and routinely thereafter. We measured cortical thickness and the transverse diameter of the mid-portion of the metacarpal bone of the right middle finger with the same radiograph. Cortical Thickness Ratio (CTR) was then calculated as cortical thickness relative to the transverse diameter. Bone mineral density (BMD) of the lumbar spine (LS) and femoral neck (FN) was measured at the same time. The relationship between BMD and CTR was evaluated using multivariate linear regression analysis. Clinical backgrounds and disease indices were also evaluated. The cut-off index (COI) of the CTR for osteoporosis criteria that represented with a T-score < -2.5 for both bones was calculated using the Receivers Operation Characteristics technique. RESULTS In 300 subjects, the CTR demonstrated significant correlation with BMD in both bones (p < 0.01). The COI was determined to be 0.25 and the odds ratio was 4.19 and 4.90 for the LS and FN, respectively. CONCLUSION Our findings indicated that the CTR correlated with BMD. This index may represent a promising screening tool for the judgment of osteoporosis in RA patients.
Collapse
Affiliation(s)
- Ichiro Yoshii
- Department of Musculoskeletal Medicine, Yoshii Hospital, 6-7-5 Nakamura-Ohashidori, Shimanto City 787-0033, Kochi, Japan.
| | - Kunio Akita
- Department of Radiology, Yoshii Hospital, 6-7-5 Nakamura-Ohashidori, Shimanto-City 787-0033, Kochi, Japan
| |
Collapse
|
26
|
Rahman N, Khan R, Hussain T, Ahmed N. Investigation of the mechanism of gamma irradiation effect on bovine bone. Cell Tissue Bank 2020; 21:249-256. [PMID: 32067198 DOI: 10.1007/s10561-020-09817-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/22/2023]
Abstract
Radiation sterilization is an effective method of bone sterilization prior to bone graft transplantation. Gamma irradiation affects the biological and mechanical properties of bone; depending on the dose of radiation. The effect of gamma irradiation on bone mechanical properties is an unwanted phenomenon. However the mechanism of the effect of irradiation on bone mechanical properties is not properly understood. In this research paper the mechanism of the effect of gamma irradiation on bovine bone is investigated using scanning electron microscopy, energy-dispersive X-rays spectroscopy and Fourier transform infrared spectroscopy techniques. Gamma irradiation affects the mineral and fiber composition of bovine bone. The mineral content of bone especially calcium, magnesium and phosphorus decrease with increasing dose of gamma radiation. At Nano-level gamma irradiation alter amide I, amide II and amide III collagen contents. High dose gamma irradiation induces collagen cross-linking reaction in bone and degrades bone properties.
Collapse
Affiliation(s)
- Noor Rahman
- International Islamic University Islamabad, Islamabad, Pakistan.
| | - Rafiullah Khan
- International Islamic University Islamabad, Islamabad, Pakistan
| | - Tanvir Hussain
- International Islamic University Islamabad, Islamabad, Pakistan
| | - Nabi Ahmed
- International Islamic University Islamabad, Islamabad, Pakistan
| |
Collapse
|
27
|
Merlo K, Aaronson J, Vaidya R, Rezaee T, Chalivendra V, Karim L. In Vitro-Induced High Sugar Environments Deteriorate Human Cortical Bone Elastic Modulus and Fracture Toughness. J Orthop Res 2020; 38:972-983. [PMID: 31793028 PMCID: PMC7162721 DOI: 10.1002/jor.24543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023]
Abstract
Advanced glycation end-products (AGEs) have been suggested to contribute to bone fragility in type 2 diabetes (T2D). AGEs can be induced through in vitro sugar incubations but there is limited data on the effect of total fluorescent AGEs on mechanical properties of human cortical bone, which may have altered characteristics in T2D. Thus, to examine the effect of AGEs on bone directly in T2D patients with uncontrolled sugar levels, it is essential to first understand the fundamental mechanisms by studying the effects of controlled in vitro-induced AGEs on cortical bone mechanical behavior. Here, human cortical bone specimens from female cadaveric tibias (ages 57-87) were incubated in an in vitro 0.6 M ribose or vehicle solution (n = 20/group) for 10 days at 37°C, their mechanical properties were assessed by microindentation and fracture toughness tests, and induced AGE levels were quantified through a fluorometric assay. Results indicated that ribose-incubated bone had significantly more AGEs (+81%, p ≤ 0.005), lower elastic modulus assessed by traditional microindentation, and lower fracture toughness compared with vehicle controls. Furthermore, based on pooled data, increased AGEs were significantly correlated with deteriorated mechanical properties. The findings presented here show that the accumulation of AGEs allows for lower stiffness and increased ability to initiate a crack in human cortical bone. Statement of clinical significance: High sugar levels as in T2D results in deteriorated bone quality via AGE accumulation with a consequent weakening in bone's mechanical integrity. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:972-983, 2020.
Collapse
Affiliation(s)
- Kelly Merlo
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Jacob Aaronson
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Rachana Vaidya
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Taraneh Rezaee
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Vijaya Chalivendra
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| | - Lamya Karim
- Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA
| |
Collapse
|
28
|
Yao R, Nishii K, Kito T, Teranishi T, Sugiyama T, Sakai K, Matsubara M, Yamada K. A novel device to prevent osteoporosis by promoting bone metabolism using a newly developed double-loading stimulation with vibration and shaking. Okajimas Folia Anat Jpn 2020; 96:13-21. [PMID: 31462620 DOI: 10.2535/ofaj.96.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In Japan, 13 million people have osteoporosis, including approximately 9 hundred thousand people who are bedridden owing to bone fractures from falls. Preventing osteoporosis is considered to be an important and effective way of preventing fall-related fractures. Thus, we developed a novel method of locomotor stimulation and analyzed its effectiveness in mice. Specifically, we created a double-loading device that combines vibration and shaking stimulation. The device was used to continuously stimulate ovariectomy-induced decreased bone density mouse models 30 minutes daily for 10 weeks. We then collected femur samples, created undecalcified tissue slices, calculated parameters using bone histomorphomtry, and conducted comparative testing. BS/TV (bone surface/tissue volume), N.Oc/ES (osteoclast number/eroded surface), Oc.S/ES (osteoclast osteoid surface/eroded surface), Omt (osteoid maturation time), Tb.N (trabecular number), Mlt (mineralization lag time) < (p < 0.01), N.Ob (osteoblast number), N.Ob/TV (osteoblast number/tissue volume), sLS (single labeled suface), N.Mu.Oc/ES (multinucle osteoclast number/eroded surface), and N.Mo.Oc/ES (mononucle osteoclast number/eroded surface) (p < 0.05) were significantly higher in the stimulation group than in the non-stimulation group. In addition, BS/BV (bone surface/bone volume), Tb.Sp (trabecular separation), MAR (mineral apposition rate), Aj.Ar (adjusted apposition rate) (p < 0.01), ES (eroded surface ), ES/BS (eroded surface/bone surface), and BRs.R (bone resorption rate) (p < 0.05) were significantly lower in the stimulation group than in the non-stimulation group. These results suggest that stimulation activated osteoblasts and osteoclasts, thereby leading to highly active bone remodeling. We anticipate that bone mineralization will subsequently occur, suggesting that this stimulation technique is effective in preventing osteoporosis by alleviating sudden bone density loss.
Collapse
Affiliation(s)
- Runhong Yao
- Graduate School of Health Sciences, Fujita Health University
| | - Kazuhiro Nishii
- Graduate School of Health Sciences, Fujita Health University
| | - Takumi Kito
- Graduate School of Health Sciences, Fujita Health University
| | | | | | - Kazuyoshi Sakai
- Graduate School of Health Sciences, Fujita Health University
| | - Mamoru Matsubara
- Department of Bioscience and Biotechnology, Kyoto Gakuen University
| | - Kouji Yamada
- Graduate School of Health Sciences, Fujita Health University
| |
Collapse
|
29
|
Hyperhomocysteinemia inhibits tibial fracture healing in rats through PI3K/AKT signaling pathway. Exp Ther Med 2020; 19:2083-2088. [PMID: 32104269 PMCID: PMC7027308 DOI: 10.3892/etm.2020.8412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
To explore the influence of hyperhomocysteinemia (hHcys) on the tibial fracture healing in rats and its effect on the phosphatidylinositol 3-hydroxy kinase (PI3K)/protein kinase B (AKT) signaling pathway. A total of 36 Sprague-Dawley rats were randomly divided into sham group (n=12), tibial fracture group (n=12) and hHcys + fracture group (n=12). The rats in tibial fracture group underwent the tibial fracture surgery, while the model of tibial fracture and hHcys was established in hHcys + fracture group. The level of plasma homocysteine (Hcy) in each group was analyzed using the full-automatic biochemical analyzer, the fracture stress biomechanical measurement was performed, and the ultimate bending strength and torque were calculated. Moreover, the protein expressions of PI3K and phosphorylated (p)-AKT in tibial tissues were detected using western blotting, the messenger ribonucleic acid (mRNA) levels of Bcl-2 associated X protein (Bax) and caspase-3 were detected using quantitative polymerase chain reaction (qPCR), the apoptosis was detected via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and the expressions of inflammatory factors were detected via immunohistochemistry. Compared with sham group, tibial fracture group and hHcys + fracture group had a significantly increased level of plasma Hcy, significantly decreased ultimate bending strength and torque, obviously decreased relative protein expressions of PI3K and p-AKT, increased mRNA levels of Bax and caspase-3 and an increased expression of pro-inflammatory factor tumor necrosis factor-α (TNF-α). Compared with tibial fracture group, hHcys + fracture group had a higher level of plasma Hcy, lower ultimate bending strength and torque, lower relative protein expressions of PI3K and p-AKT, higher mRNA levels of Bax and caspase-3, a higher apoptosis rate and a higher expression of TNF-α. hHcys blocks the downstream apoptotic signal transduction, promotes apoptosis and inflammatory response, and affects fracture healing through affecting the PI3K/AKT signaling pathway.
Collapse
|
30
|
Kida Y, Saito M, Shinohara A, Soshi S, Marumo K. Non-invasive skin autofluorescence, blood and urine assays of the advanced glycation end product (AGE) pentosidine as an indirect indicator of AGE content in human bone. BMC Musculoskelet Disord 2019; 20:627. [PMID: 31881872 PMCID: PMC6933723 DOI: 10.1186/s12891-019-3011-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Bone mineral density (BMD) measurements are widely used to assess fracture risk. However, the finding that some fracture patients had high BMD together with the low contribution of drugs to osteoporosis suggests that bone strength factors other than BMD contribute to bone quality. We evaluated the amount of advanced glycation end products (AGEs) by non-invasive assays of serum and urine as well as by skin autofluorescence to measure the levels of a representative AGE, pentosidine, to investigate whether pentosidine can serve as an indirect indicator of AGEs formation in bone collagen. Methods A total of 100 spinal surgery patients without fragility fracture (54 males and 46 females) treated at our hospital were enrolled. The amount of pentosidine in blood, urine, skin and bone (lumbar lamina) samples from these patients was measured. AGE accumulation was assessed by measuring skin autofluorescence. We examined the correlation between pentosidine content in tissues and body fluid, as well as skin AGEs with age, height, body weight, BMI, and estimated glomerular filtration rate (eGFR). Results A significant age-related increase in pentosidine levels in tissues was observed, while there was a significant negative correlation between tissue pentosidine and eGFR. The amount of skin pentosidine was significantly and positively correlated with pentosidine content of the bone in those under 50 years of age. Urine pentosidine also correlated positively with bone pentosidine and skin pentosidine, but only in females. The total amount of AGEs in skin did not correlate with bone pentosidine. Conclusion In this study, the strong correlation between the pentosidine content in each sample and eGFR may indicate that renal dysfunction with advancing age increases oxidative stress and induces AGEs formation in collagen-containing tissues. The correlation of skin pentosidine concentration and eGFR, with AGEs formation in bone collagen suggests that pentosidine would be a useful indirect index of decreased bone quality. Skin AGEs estimated by autofluorescence in clinical situations may not be suitable as an indirect assessment of bone quality. Because urine pentosidine correlated positively with bone pentosidine and skin pentosidine in females, urine pentosidine may be a candidate for an indirect assessment of bone quality.
Collapse
Affiliation(s)
- Yoshikuni Kida
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Akira Shinohara
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shigeru Soshi
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
31
|
Ohuchi K, Miyakoshi N, Kasukawa Y, Segawa T, Kinoshita H, Sato C, Fujii M, Shimada Y. Effects of teriparatide on bone in autochthonous transgenic model mice for diabetes mellitus (Akita mice). Osteoporos Sarcopenia 2019; 5:109-115. [PMID: 31938729 PMCID: PMC6953529 DOI: 10.1016/j.afos.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The purpose of this study is to evaluate the effects of teriparatide (TPTD) on bone mineral density (BMD), bone strength, and bone quality in Akita mouse models of diabetes mellitus. METHODS Twelve-week-old female Akita mice and control mice (C57/BL/6NCrSlc) were divided into 4 groups: control mice treated with vehicle (n = 7) or TPTD (n = 6); and Akita mice treated with vehicle (n = 6) or TPTD (n = 7). TPTD or vehicle was administered subcutaneously 3 times a week for 8 weeks. Blood glucose, serum sclerostin, total tibial BMD, femoral shaft bone strength, and bone quality using Fourier-transform infrared spectroscopy imaging were evaluated. RESULTS No significant differences in serum sclerostin levels were evident among these groups after 8 weeks of treatment. TPTD significantly increased BMD in control mice (+12.7%, P = 0.02) and Akita mice (+29.2%, P = 0.001) compared with vehicle. Maximum load and stiffness were significantly higher in Akita mice treated with TPTD than in Akita mice treated with vehicle (+56.6%, P = 0.03 and + 90.5%, P = 0.02, respectively). On Fourier-transform infrared spectroscopy imaging, the mineral/matrix ratio was significantly lower in Akita mice treated with vehicle than in control mice (-12.2%, P = 0.02), and TPTD treatment significantly increased the mineral/matrix ratio (P = 0.003). CONCLUSIONS TPTD thus improved BMD and bone strength in both control mice and Akita mice, with improvements in the mineral/matrix ratio among Akita mice.
Collapse
Affiliation(s)
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Kohno K, Yamada W, Ishitsuka A, Sekine M, Virgona N, Ota M, Yano T. Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells. Biosci Biotechnol Biochem 2019; 84:526-535. [PMID: 31743080 DOI: 10.1080/09168451.2019.1693252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysyl oxidase (LOX) is required for the formation of bone collagen cross-links. Inactivation of the LOX gene in osteoblasts by DNA methylation and JAK signaling has been reported to cause loss of cross-links and an increased risk of fractures. Tocotrienols (T3s) have proven benefits on bone strength, but their potential effects on LOX remain largely unknown. Thus, the present study investigates the in vitro effects of T3s on LOX expression in human osteoblastic MG-63 cells. Results indicated that Tocotrienol-Rich Fraction (TRF), the δ-T3 rich oil extracted from Annatto was the most effective and significantly increased LOX expression. TRF treatment decreased de-novo methyltransferases (DNMTs), DNMT3A and DNMT3B levels. In addition, TRF significantly inhibited JAK2 activation and decreased expression of Fli1, a transcription factor of DNMTs. We conclude that TRF induced an increase in LOX expression via inhibition of de-novo methylation and reduction of Fli1 expression by the inactivation of JAK2.Abbreviations: CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; Fli1: friend leukemia virus integration 1; JAK: janus kinase; LOX: lysyl oxidase; PCR: polymerase chain reaction; STAT: signal transducers and activators of transcription; T3s: tocotrienols; TPs: tocopherols; TRF: Tocotrienol-Rich Fraction.
Collapse
Affiliation(s)
- Kakeru Kohno
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan
| | - Wakana Yamada
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Aya Ishitsuka
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Miki Sekine
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Nantiga Virgona
- Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Masako Ota
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| | - Tomohiro Yano
- Graduate School of Food and Nutritional Sciences, Toyo University, Itakura, Gunma, Japan.,Research Institute for Life Innovation, Toyo University, Itakura, Gunma, Japan
| |
Collapse
|
33
|
Wang J, Chen L, Zhang Y, Li CG, Zhang H, Wang Q, Qi X, Qiao L, Da WW, Cui XJ, Lu S, Wang YJ, Shu B. Association between serum vitamin B 6 concentration and risk of osteoporosis in the middle-aged and older people in China: a cross-sectional study. BMJ Open 2019; 9:e028129. [PMID: 31278103 PMCID: PMC6615830 DOI: 10.1136/bmjopen-2018-028129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To determine the relationship between serum vitamin B6 (Vit B6) concentration and the status of bone mineral density and identify the relationship between serum Vit B6 and bone metabolism parameters in middle-aged and older people in China. DESIGN The present study was a cross-sectional study within the framework of an ongoing prospective population-based cohort study. SETTING AND PARTICIPANTS A total of 1829 residents (men ≥50 years and women ≥45 years) from two subdistricts were recruited from July 2015 to February 2016 in Shanghai, China. MEASURES Recruited residents were grouped (control, osteopenia and osteoporosis) according to their lumbar spine bone mineral density, measured through dual-energy X-ray absorptiometry. Serum Vit B6 concentrations, bone turnover marker concentrations and calcium and phosphorus metabolism parameters were assessed. RESULTS No significant linear trend between serum Vit B6 concentrations and lumbar bone mass was observed in the men. In the women, the average osteoporosis risk was 61% higher at serum Vit B6 concentrations of <19.2 μg/L than at those of >26.9 μg/L (OR 1.61, 95% CI 1.00 to 2.58). However, there was no significance after controlling of serum 25-hydroxy-vitamin D concentration and parathyroid hormone concentration, respectively. In the osteoporotic women, the serum Vit B6 concentration was significantly negatively correlated to concentrations of bone turnover marker including N-terminal propeptide of type I collagen, β-C-terminal telopeptide of type I collagen and osteocalcin. It was also positively related to the serum 25-hydroxy-vitamin D concentration and inversely related to the serum parathyroid hormone concentration. CONCLUSIONS A relatively low serum Vit B6 concentration, even in the normal range, may be a risk factor for osteoporosis in postmenopausal women, which is dependent on serum 25-hydroxy-vitamin D concentration and parathyroid hormone concentration. TRIAL REGISTRATION NUMBER NCT02958020; Post-results.
Collapse
Affiliation(s)
- Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Lin Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Yan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Chen-guang Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Hao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Qiang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Xiaofeng Qi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Liang Qiao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Wei-wei Da
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Xue-jun Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| | - Yong-jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory, Ministry of Education of China, Shanghai, China
| |
Collapse
|
34
|
Hunt HB, Torres AM, Palomino PM, Marty E, Saiyed R, Cohn M, Jo J, Warner S, Sroga GE, King KB, Lane JM, Vashishth D, Hernandez CJ, Donnelly E. Altered Tissue Composition, Microarchitecture, and Mechanical Performance in Cancellous Bone From Men With Type 2 Diabetes Mellitus. J Bone Miner Res 2019; 34:1191-1206. [PMID: 30866111 PMCID: PMC6650336 DOI: 10.1002/jbmr.3711] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 01/07/2023]
Abstract
People with type 2 diabetes mellitus (T2DM) have normal-to-high BMDs, but, counterintuitively, have greater fracture risks than people without T2DM, even after accounting for potential confounders like BMI and falls. Therefore, T2DM may alter aspects of bone quality, including material properties or microarchitecture, that increase fragility independently of bone mass. Our objective was to elucidate the factors that influence fragility in T2DM by comparing the material properties, microarchitecture, and mechanical performance of cancellous bone in a clinical population of men with and without T2DM. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 31, age = 65 ± 8 years, HbA1c = 7.1 ± 0.9%; non-DM: n = 34, age = 62 ± 9 years, HbA1c = 5.5 ± 0.4%). The T2DM specimens had greater concentrations of the advanced glycation endproduct pentosidine (+ 36%, P < 0.05) and sugars bound to the collagen matrix (+ 42%, P < 0.05) than the non-DM specimens. The T2DM specimens trended toward a greater bone volume fraction (BV/TV) (+ 24%, NS, P = 0.13) and had greater mineral content (+ 7%, P < 0.05) than the non-DM specimens. Regression modeling of the mechanical outcomes revealed competing effects of T2DM on bone mechanical behavior. The trend of higher BV/TV values and the greater mineral content observed in the T2DM specimens increased strength, whereas the greater values of pentosidine in the T2DM group decreased postyield strain and toughness. The long-term medical management and presence of osteoarthritis in these patients may influence these outcomes. Nevertheless, our data indicate a beneficial effect of T2DM on cancellous microarchitecture, but a deleterious effect of T2DM on the collagen matrix. These data suggest that high concentrations of advanced glycation endproducts can increase fragility by reducing the ability of bone to absorb energy before failure, especially for the subset of T2DM patients with low BV/TV. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Ashley M Torres
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Pablo M Palomino
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eric Marty
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rehan Saiyed
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Matthew Cohn
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Jonathan Jo
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Stephen Warner
- Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Grazyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Karen B King
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.,Surgical Service/Orthopaedic Service, Rocky Mountain Veterans Affairs Regional Medical Center, Aurora, CO, USA
| | - Joseph M Lane
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Christopher J Hernandez
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
35
|
The Relationship between Nutrient Patterns and Bone Mineral Density in Postmenopausal Women. Nutrients 2019; 11:nu11061262. [PMID: 31163708 PMCID: PMC6628050 DOI: 10.3390/nu11061262] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
In women, the menopausal transition is characterized by acid-base imbalance, estrogen deficiency and rapid bone loss. Research into nutritional factors that influence bone health is therefore necessary. In this study, the relationship between nutrient patterns and nutrients important for bone health with bone mineral density (BMD) was explored. In this cross-sectional analysis, 101 participants aged between 54 and 81 years were eligible. Body composition and BMD analyses were performed using dual-energy X-ray absorptiometry (DXA). Nutrient data were extracted from a 3-day diet diary (3-DDD) using Foodworks 9 and metabolic equivalent (MET-minutes) was calculated from a self-reported New Zealand physical activity questionnaire (NZPAQ). Significant positive correlations were found between intakes of calcium (p = 0.003, r = 0.294), protein (p = 0.013, r = 0.246), riboflavin (p = 0.020, r = 0.232), niacin equivalent (p = 0.010, r = 0.256) and spine BMD. A nutrient pattern high in riboflavin, phosphorus and calcium was significantly positively correlated with spine (p < 0.05, r = 0.197) and femoral neck BMD (p < 0.05, r = 0.213), while the nutrient pattern high in vitamin E, α-tocopherol, β-carotene and omega 6 fatty acids was negatively correlated with hip (p < 0.05, r = −0.215) and trochanter BMD (p < 0.05, r = −0.251). These findings support the hypothesis that a nutrient pattern high in the intake of vitamin E, α-tocopherol and omega 6 fatty acids appears to be detrimental for bone health in postmenopausal women.
Collapse
|
36
|
Yoshitake S, Mashiba T, Saito M, Fujihara R, Iwata K, Takao-Kawabata R, Yamamoto T. Once-Weekly Teriparatide Treatment Prevents Microdamage Accumulation in the Lumbar Vertebral Trabecular Bone of Ovariectomized Cynomolgus Monkeys. Calcif Tissue Int 2019; 104:402-410. [PMID: 30564860 DOI: 10.1007/s00223-018-0500-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 01/22/2023]
Abstract
The effect of teriparatide treatment on microdamage accumulation has yet to be examined in animal studies. The purpose of this study was to investigate the effect of once-weekly teriparatide treatment on bone microdamage accumulation and the relationship between microdamage parameters and bone mass, architecture, turnover, and collagen cross-linking in the lumbar vertebral trabecular bone of ovariectomized (OVX) cynomolgus monkeys. Female monkeys were divided into four groups (n = 18-20 per group): (1) SHAM group, (2) OVX group, (3) OVX with 1.2 µg/kg once-weekly teriparatide group (LOW group), (4) OVX with 6.0 µg/kg once-weekly teriparatide group (HIGH group). After 18 months, all animals were double-labeled with calcein for histomorphometry. L3 and L7 lumbar vertebrae were harvested and analyzed for differences in histomorphometry, microdamage, and collagen cross-linking. The iliac crest was also analyzed for differences in bone turnover. In the OVX group, cancellous bone mass was reduced and microdamage accumulation was increased as compared with the SHAM control. Once-weekly teriparatide at both doses prevented the decrease in bone mass and increase in microdamage accumulation, and improved the distribution of collagen cross-linkage types. Regression analyses indicated that decreased microdamage accumulation was associated with reduced non-enzymatic cross-link pentosidine rather than increased cancellous bone mass or enzymatic cross-links. These findings suggest that once-weekly teriparatide treatment decreases microdamage accumulation by recovering the balance in collagen cross-links.
Collapse
Affiliation(s)
- Shingo Yoshitake
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tasuku Mashiba
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8, Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ryuji Fujihara
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Ken Iwata
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Ryoko Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka, 410-2321, Japan
| | - Tetsuji Yamamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
37
|
Kanazawa M, Matsumoto Y, Takahashi K, Suzuki H, Uzuka H, Nishimiya K, Shimokawa H. Treadmill exercise prevents reduction of bone mineral density after myocardial infarction in apolipoprotein E-deficient mice. Eur J Prev Cardiol 2019; 27:28-35. [PMID: 30857427 DOI: 10.1177/2047487319834399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Recent clinical studies demonstrated the association between myocardial infarction (MI) and osteoporotic fractures. We examined whether MI causes bone loss and the effects of exercise training on bone in mice after MI. METHODS We created a MI model in 16-week-old male apolipoprotein E-deficient mice (n = 42), which were randomly assigned to exercise group (MI-Ex) and sedentary group (MI-Sed). We also performed sham operations in other mice (n = 10). Treadmill exercise training was performed from one week after operation to eight weeks. At eight weeks, the bone parameters of the femur were measured by quantitative computed tomography, followed by histological analysis (n = 10-17). RESULTS Bone mineral density (BMD) of the femur was significantly decreased in the MI-Sed group as compared with the sham group (P < 0.001), whereas the BMD was significantly increased in the MI-Ex group as compared with the MI-Sed group (P < 0.05). In histological analysis, Rho-associated coiled-coil kinase 2 and tartrate-resistant acid phosphate positive (bone resorptive) area in distal femur were significantly increased in the MI-Sed group as compared with the sham group (P < 0.05), whereas those parameters were significantly decreased in the MI-Ex group as compared with the MI-Sed group (P < 0.05). In contrast, alkaline phosphatase (ALP)-positive (bone-forming) area was significantly decreased in the MI-Sed group as compared with the sham group (P < 0.05), whereas ALP-positive area was significantly increased in the MI-Ex group as compared with the MI-Sed group (P < 0.05). CONCLUSIONS The present study demonstrates that MI reduces BMD and treadmill exercise training prevents the reduction of BMD in apolipoprotein E-deficient mice.
Collapse
Affiliation(s)
- Masanori Kanazawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kikuyo Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironori Uzuka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
38
|
Chavarry NGM, Perrone D, Farias MLF, Dos Santos BC, Domingos AC, Schanaider A, Feres-Filho EJ. Alendronate improves bone density and type I collagen accumulation but increases the amount of pentosidine in the healing dental alveolus of ovariectomized rabbits. Bone 2019; 120:9-19. [PMID: 30282057 DOI: 10.1016/j.bone.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND It has been shown that the oral aminobisphosphonate sodium alendronate (ALN) therapy reduces the risk of main fractures in osteoporotic women, but its effect on the jaw bones is poorly known. Here, we hypothesized that ALN affects the newly formed alveolar bone, particularly the quality of the type I collagen cross-linking. METHODS Osteoporosis was induced by ovariectomy (OVX) in 6-month old rabbits. Six weeks following surgery, eight animals were treated by oral gavage with ALN (OVX + ALN) and ten received placebo (OVX + Pbo). Another six rabbits which were sham operated also received placebo (SHAM + Pbo). One month following the beginning of treatment, the upper and lower left first premolars were removed. Six weeks later, the upper and the lower right first premolars were also extracted. One month after the second extraction, biopsies were collected from the maxillary extraction sites and collagen crosslinks were analyzed in the newly formed bone tissue by HPLC. Also, at this time, mandibular bone segments were subjected to μCT. RESULTS Animals treated with ALN achieved a roughly 2-time greater bone volume fraction value at a late healing period than animals in the other groups (p < 0.05). Collagen mean results were 2- to 4-times superior in the OVX + ALN group than in the control groups (p < 0.05). ALN-treated animals presented higher amounts of the non-enzymatic collagen cross-link pentosidine (PEN) than the sham-operated rabbits (p < 0.05), whereas the OVX + Pbo group presented the highest amount of PEN (p < 0.05). CONCLUSION Alendronate increases bone volume and collagen accumulation, but does not fully rescue the non-osteoporotic alveolar tissue quality as is evident from the increased quantity of pentosidine.
Collapse
Affiliation(s)
| | - Daniel Perrone
- Laboratory of Nutritional Biochemistry and Food, Chemistry Institute, Federal University of Rio de Janeiro, RJ CEP 21941-909, Brazil
| | - Maria Lucia Fleiuss Farias
- Division of Endocrinology, School of Medicine, Federal University of Rio de Janeiro, RJ CEP 21941-913, Brazil
| | - Bernardo Camargo Dos Santos
- Department of Nuclear Engineering (COPPE), School of Engineering, Federal University of Rio de Janeiro, RJ CEP 21941-972, Brazil
| | - Andrea Castro Domingos
- Department of Oral Pathology, Oral Radiology and Oral Diagnosis, School of Dentistry, Federal University of Rio de Janeiro, RJ CEP 21941-971, Brazil
| | - Alberto Schanaider
- Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, RJ CEP 21941-913, Brazil
| | - Eduardo Jorge Feres-Filho
- Division of Graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, RJ CEP 21941-971, Brazil.
| |
Collapse
|
39
|
AO M, INUIYA N, OHTA J, KUROSE S, TAKAOKA H, ABE Y, NIKI N, INOUE S, TANAKA S, MIYAWAKI T, TANAKA K. Relationship between Homocysteine, Folate, Vitamin B 12 and Physical Performance in the Institutionalized Elderly. J Nutr Sci Vitaminol (Tokyo) 2019; 65:1-7. [DOI: 10.3177/jnsv.65.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Misora AO
- Department of Food and Nutrition, Kyoto Women’s University
| | - Nao INUIYA
- Department of Food and Nutrition, Kyoto Women’s University
| | - Junko OHTA
- Faculty of Nutrition, Kobe Gakuin University
| | - Satoshi KUROSE
- Department of Health Science, Graduate School of Medicine, Kansai Medical University
| | | | | | - Naho NIKI
- Nursing Care Center, Care House Ajisai
| | | | | | | | - Kiyoshi TANAKA
- Department of Food and Nutrition, Kyoto Women’s University
- Faculty of Nutrition, Kobe Gakuin University
| |
Collapse
|
40
|
Elevated Microdamage Spatially Correlates with Stress in Metastatic Vertebrae. Ann Biomed Eng 2019; 47:980-989. [PMID: 30673956 DOI: 10.1007/s10439-018-02188-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Metastasis of cancer to the spine impacts bone quality. This study aims to characterize vertebral microdamage secondary to metastatic disease considering the pattern of damage and its relationship to stress and strain under load. Osteolytic and mixed osteolytic/osteoblastic vertebral metastases were produced in athymic rats via HeLa cervical or canine Ace-1 prostate cancer cell inoculation, respectively. After 21 days, excised motion segments (T12-L2) were µCT scanned, stained with BaSO4 and re-imaged. T13-L2 motion segments were loaded in axial compression to induce microdamage, re-stained and re-imaged. L1 (loaded) and T12 (unloaded) vertebrae were fixed, sample blocks cut, polished and BSE imaged. µFE models were generated of all L1 vertebrae with displacement boundary conditions applied based on the loaded µCT images. µCT stereological analysis, BSE analysis and µFE derived von Mises stress and principal strains were quantitatively compared (ANOVA), spatial correlations determined and patterns of microdamage assessed qualitatively. BaSO4 identified microdamage was found to be spatially correlated with regions of high stress in µFEA. Load-induced microdamage was shown to be elevated in the presence of osteolytic and mixed metastatic disease, with diffuse, crossed hatched areas of microdamage present in addition to linear microdamage and microfractures in metastatic tissue, suggesting diminished bone quality.
Collapse
|
41
|
Hisatomi Y, Kugino K. Changes in bone density and bone quality caused by single fasting for 96 hours in rats. PeerJ 2019; 6:e6161. [PMID: 30643677 PMCID: PMC6330036 DOI: 10.7717/peerj.6161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/22/2018] [Indexed: 01/22/2023] Open
Abstract
Background Young women occasionally engage in dietary restrictions accompanied by fasting for the purpose of losing weight, but such restrictions have various effects on body functions. The recent increase in the number of people suffering from osteoporosis has become a major social problem mainly in industrialized countries.Therefore, we think it is important to understand the effects of fasting on bone vulnerability, especially to bone quality. Methods Animals used male Wister rats weighing 130 g (6 weeks of age), and were divided into a control group (n = 5) and a fasting group (n = 6). The experimental period was 14 days, the control group had ad libitum food throughout the experimental period, the fasted group was fasted for 4 days, and than, had ad libitum food for 10 days. In this study, parameters related to bone fragility due to three-dimensional bone architecture were determined on Contrast enhanced micro-CT images of the lumbar spine and were used as a method for the evaluation of bone quality. In addition, a time-course observation of each individual was carried out during the fasting period and later upon resuming food intake. Cross-sectional images of all vertebrae were obtained from radiographic computed tomography and were analyzed by using Latheta software ver. 3.0 (Hitachi-Aloka Medical, Nagasaki, Japan). The region of interest that was misrecognized in each cross-sectional image was made consistent with the anatomical structure by carrying out corrections manually and by identifying the cortical bone areas and cancellous bone areas. Results Our findings showed that while single fasting for 96 h did not cause any major change in the macroscopic morphology of bone, it caused a marked decrease in bone density. In addition, the minimum cross-sectional moment, which indicated the “strength against bending” as well as the polar moment that indicated the “strength against torsion” were both lower than in non-fasted rats. Further, after resumption of feeding, bone mineral content in the fasting group recovered rapidly and starting at day 4 after resumption of feeding, there was no difference with the control group. On the other hand, the values of the minimum cross-sectional moment and polar moment did not recover, and the difference with the control group increased during the feeding period. Discussion On the basis of this study, the authors estimate that the fasting-induced decrease in bone minimum cross-sectional moment and polar moment may have been due to changes affecting some factors involved in bone quality, and thus could be useful as a parameter in future studies aimed at elucidating bone quality. At least, in the case where bone change accompanied with a change in macroscopic distribution of mineral components occurs, the values of minimum cross-sectional moment and polar moment are considered to be bone parameters that will provide valuable information to elucidate bone quality.
Collapse
Affiliation(s)
- Yuko Hisatomi
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Kenji Kugino
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| |
Collapse
|
42
|
Huang KC, Chuang PY, Yang TY, Huang TW, Chang SF. Hyperglycemia inhibits osteoblastogenesis of rat bone marrow stromal cells via activation of the Notch2 signaling pathway. Int J Med Sci 2019; 16:696-703. [PMID: 31217737 PMCID: PMC6566748 DOI: 10.7150/ijms.32707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Bone fragility and related fractures are increasingly being recognized as an important diabetic complication. Mesenchymal progenitors often serve as an important source of bone formation and regeneration. In the present study, we have evaluated the effects of diabetes on osteoblastogenesis of mesenchymal progenitors. Methods: Primary bone marrow stromal cells (BMSCs) were isolated from control and streptozotocin-induced diabetic rats. These cells were evaluated for the effects of in vivo hyperglycemia on the survival and function of mesenchymal progenitors. We concomitantly investigated the effects of different concentrations of glucose, osmolality, and advanced glycation end product (AGE) on osteogenic differentiation and matrix mineralization of rat bone marrow mesenchymal stem cells (RMSC-bm). The relationship between the expression levels of Notch proteins and the corresponding ALP levels was also examined. Results: Our results revealed that in vivo hyperglycemia increased cell proliferation rate but decreased osteogenic differentiation and matrix mineralization of primary rat BMSCs. In vitro high glucose treatment, instead of high AGE treatment, induced a dose-dependent inhibition of osteoblastogenesis of RMSC-bm cells. Activation of the Notch2 signaling pathway, instead of the Notch1 or osmotic response pathways, was associated with these diabetic effects on osteoblastogenesis of mesenchymal progenitors. Conclusions: Hyperglycemia might inhibit osteoblastogenesis of mesenchymal progenitors via activation of the Notch2 signaling pathway.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan City 33302, Taiwan.,Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Po-Yao Chuang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Tien-Yu Yang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Tsan-Wen Huang
- Department of Orthopaedic Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| |
Collapse
|
43
|
Toledano M, Osorio E, Aguilera FS, Toledano-Osorio M, López-López MT, Osorio R. Stored potential energy increases and elastic properties alterations are produced after restoring dentin with Zn-containing amalgams. J Mech Behav Biomed Mater 2018; 91:109-121. [PMID: 30553207 DOI: 10.1016/j.jmbbm.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
The aim of this research was to ascertain the mechanical and chemical behavior of sound and caries-affected dentin (CAD), after the placement of Zn-free vs containing amalgam restorations. Peritubular and intertubular dentin were evaluated using, a) nanoindenter in scanning mode; the load and displacement responses were used to perform the nano-Dynamic mechanical analysis and to estimate the complex (E * ) and storage modulus (E'); b) Raman spectroscopy was used to describe the hierarchical cluster analysis (HCA). Assessments were performed before restoration placement and after restoring, and after 3 months of storage with thermocycling (100,000cy/5 °C and 55 °C). When CAD was treated with Zn-containing restorations, differences between E * and E' at both peritubular and intertubular dentin augmented, with energy concentration and production of implications in the mechanical performance of the restored teeth. E * and E' were very low at intratubular dentin of CAD restored with Zn-containing restorations. The relative presence of minerals, the phosphate crystallinity and the crosslinking of collagen increased their values at both types of dentin (peritubular and intertubular) when CAD was treated with Zn-containing restorations. The nature and secondary structure of collagen improved in CAD treated with Zn-containing amalgams. Different levels of dentin remineralization were revealed by hierarchical cluster analysis.
Collapse
Affiliation(s)
- Manuel Toledano
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain.
| | - Estrella Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Fátima S Aguilera
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| | - Modesto T López-López
- University of Granada, Faculty of Science, Applied Physics Department, Fuente Nueva s/n, 18071 Granada, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Dental Materials Section, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
44
|
Tariq S, Tariq S, Lone KP. Interplay of vitamin D, vitamin B 12, homocysteine and bone mineral density in postmenopausal females. Health Care Women Int 2018; 39:1340-1349. [PMID: 29485366 DOI: 10.1080/07399332.2018.1444042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 01/19/2023]
Abstract
Osteoporosis is most common age related, multifactorial disease. The aim of the researchers were to discover the association between serum homocysteine, vitamin D, vitamin B12 and bone mineral density in postmenopausal non-osteoporotic and osteoporotic females. In this cross- sectional study, 156 postmenopausal females between 50-70 years of age were recruited and divided into two groups, non-osteoporotic (n = 52) and osteoporotic (n = 104). There was significant negative correlation of homocysteine with vitamin D and B12 in postmenopausal non-osteoporotic and homocysteine with vitamin B12 in postmenopausal osteoporotic females. Serum homocysteine levels were predicted by vitamin D in postmenopausal non-osteoporotic and vitamin B12 in postmenopausal osteoporotic females.
Collapse
Affiliation(s)
- Sundus Tariq
- a Assistant Professor Physiology, University Medical and Dental College , Faisalabad, Pakistan
- b PhD Scholar Physiology, University of Health Sciences , Lahore , Pakistan
| | - Saba Tariq
- c Assistant Professor Pharmacology, University Medical and Dental College , Faisalabad , Pakistan
- d PhD Scholar Pharmacology and Therapeutics, University of Health Sciences , Lahore , Pakistan
| | - Khalid Parvez Lone
- e Department of Physiology/ Metabolic Disorders , University of Health Sciences , Lahore , Pakistan
| |
Collapse
|
45
|
Rahman N, Khan R, Badshah S. Effect of x-rays and gamma radiations on the bone mechanical properties: literature review. Cell Tissue Bank 2018; 19:457-472. [PMID: 30426337 DOI: 10.1007/s10561-018-9736-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022]
Abstract
The bone auto grafting, isografting, allografting and xenografting are used for defective bone replacement or treatment in almost all living species. The X-ray and Gamma (electromagnetic radiation) sterilization performed on the donor bone graft to prevent toxicity or migration of virus/bacterial infections from donors to reciver. Conversely, X-ray and Gamma radiation deteriorates the bone mechanical properties and bone become more susceptible to fracture. Fracture toughness as well as other mechanical properties of bone change with these radiations. In this literature review the effect of the X-rays and Gamma radiation on bone mechanical properties are discussed. All relevant literature was reviewed. After reviewing the literature only the research relating to the effect of X-rays and Gamma radiations on bone mechanical properties are included. Literature studies showed significant effect of the X-rays and Gamma radiations on the mechanical properties of the bones. In some studies the differences exists on the doses of radiations which were discussed in this study. The high energetic electromagnetic radiation (X-rays and Gamma radiations) changed/modify the collagen network of the bone, which reduced the mechanical properties of bone; however these changes depend on the radiation dose.
Collapse
Affiliation(s)
- Noor Rahman
- Department of Mechanical Engineering, Faculty of Engineering and Technology, International Islamic University, Islamabad, H-10, Pakistan.
| | - Rafiullah Khan
- Department of Mechanical Engineering, Faculty of Engineering and Technology, International Islamic University, Islamabad, H-10, Pakistan
| | - Saeed Badshah
- Department of Mechanical Engineering, Faculty of Engineering and Technology, International Islamic University, Islamabad, H-10, Pakistan
| |
Collapse
|
46
|
Burke M, Akens M, Kiss A, Willett T, Whyne C. Mechanical behavior of metastatic vertebrae are influenced by tissue architecture, mineral content, and organic feature alterations. J Orthop Res 2018; 36:3013-3022. [PMID: 29978906 DOI: 10.1002/jor.24105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/01/2018] [Indexed: 02/04/2023]
Abstract
Diminished vertebral mechanical behavior with metastatic involvement is typically attributed to modified architecture and trabecular bone content. Previous work has identified organic and mineral phase bone quality changes in the presence of metastases, yet limited work exists on the potential influence of such tissue level modifications on vertebral mechanical characteristics. This work seeks to determine correlations between features of bone (structural and tissue level) and mechanical behavior in metastatically involved vertebral bone. It is hypothesized that tissue level properties (mineral and organic) will improve these correlations beyond architectural properties and BMD alone. Twenty-four female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic (N = 8) or mixed (osteolytic/osteoblastic, N = 7) metastases, respectively. Twenty-one days post-inoculation L1-L3 pathologic vertebral motion segments were excised and μCT imaged. 3D morphometric parameters and axial rigidity of the L2 vertebrae were quantified. Sequential loading and μCT imaging measured progression of failure, stiffness and peak force. Relationships between mechanical testing (whole bone and tissue-level) and tissue-level material property modifications with metastatic involvement were evaluated utilizing linear regression models. Osteolytic involvement reduced vertebral trabecular bone volume, structure, CT-derived axial rigidity, stiffness and failure force compared to healthy controls (N = 9). Mixed metastases demonstrated similar trends. Previously assessed collagen cross-linking and proline-based residues were correlated to mechanical behavior and improved the predictive ability of the regression models. Similarly, collagen organization improved predictive regression models for metastatic bone hardness. This work highlights the importance of both bone content/architecture and organic tissue-level features in characterizing metastatic vertebral mechanics. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3013-3022, 2018.
Collapse
Affiliation(s)
- Mikhail Burke
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, Ontario.,Techna, University Health Network, Toronto, Ontario
| | - Alex Kiss
- Evaluative Clinical Sciences, Hurvitz Brain Science Program, Sunnybrook Research Institute, Toronto, Ontario
| | - Thomas Willett
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Ontario
| | - Cari Whyne
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, 2075 Bayview Ave., Room S620, Toronto, Ontario,. M4N 3M5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario.,Department of Surgery, University of Toronto, Toronto, Ontario
| |
Collapse
|
47
|
Effect of type 2 diabetes mellitus on treatment outcomes of patients with postmenopausal osteoporosis: a retrospective study. J Diabetes Metab Disord 2018; 17:181-187. [PMID: 30918853 DOI: 10.1007/s40200-018-0359-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/27/2018] [Indexed: 12/14/2022]
Abstract
Objectives The aim of this study is to investigate the effect of type 2 diabetes mellitus (T2DM) on the treatment outcomes of patients with postmenopausal osteoporosis (PMOP). Material and method Thirty-five patients who had been diagnosed as PMOP by lumbar and/or femoral neck bone mineral density screening (BMD) and who had comorbid T2DM were included in the study. Thirty-five patients who had been diagnosed as PMOP but who had no comorbidity including DM constituted the control group. Demographic features, biochemical parameters, femoral and lumbar T scores were all recorded. All patients were treated with bisphosphonate, calcium and vitamin D and the same parameters were evaluated at the end of the first and fifth year. Results Lumbar T scores and serum osteocalcin levels before treatment were significantly lower in the DM + PMOP group (p < 0,05). At the end of 5 years, despite the lumbar T score having increased, the femoral T score was found to be significantly lower in the DM + PMOP group. In the PMOP group, there was significant improvement in the T scores and serum osteocalcin levels following a 5-year treatment period (p < 0,05). Conclusions T2DM has unfavorable effects on treatment prognosis in patients with PMOP. Different risk factors of PMOP which differ in the general population maybe more important when evaluating fracture risk in patients wtih T2DM.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Homocystinuria is a congenital metabolic disorder in which cystathionine β-synthase deficiency results in a prominent increase in homocysteine (serum levels > 100 μM), causing mental retardation, atherosclerotic cerebral infarction, and osteoporosis accompanied by fragility fractures. Encountering a case with excessive homocysteinemia such as that seen in hereditary homocystinuria is unlikely during usual medical examinations. However, in individuals who have vitamin B or folate deficiency, serum homocysteine concentrations are known to increase. These individuals may also have a polymorphism in methylenetetrahydrofolate reductase, MTHFR (C677T: TT type), which regulates homocysteine metabolism. These changes in homocysteine levels may elicit symptoms resembling those of homocystinuria (e.g., Alzheimer's disease, atherosclerosis, osteoporosis). RECENT FINDINGS High serum homocysteine has been shown to have detrimental effects on neural cells, vascular endothelial cells, osteoblasts, and osteoclasts. Homocysteine is also known to increase oxidative stress, disrupt cross-linking of collagen molecules, and increase levels of advanced glycation end products, which results in reduced bone strength through a mechanism that goes beyond low bone density and increased bone resorption. Therefore, high serum homocysteine may be regarded as a factor that can reduce both bone mass and impair bone quality. In this review, we outline the epidemiology and pathophysiology of osteoporosis associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Mitsuru Saito
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Keishi Marumo
- Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
49
|
Jiang N, Xia W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int 2018; 29:1721-1736. [PMID: 29736760 DOI: 10.1007/s00198-018-4532-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Substantial evidence exists that diabetes mellitus is associated with an increased risk of osteoporotic fractures. Low bone strength as well as bone extrinsic factors are probably contributing to the increased bone fragility in diabetes. Bone density and quality are important determinants of bone strength. Although bone mineral density (BMD) and the fracture risk assessment tool (FRAX) are very useful clinical tools in assessing bone strength, they may underestimate the fracture risk in diabetes mellitus. Through advances in new technologies such as trabecular bone score (TBS) and peripheral quantitative computed tomography (pQCT), we can better assess the bone quality and fracture risk of patients with diabetes mellitus. Invasive assessments such as microindentation and histomorphometry have been great complement to the existing bone analysis techniques. Bone turnover markers have been found to be altered in diabetes mellitus patients and may be associated with fractures. This review will give a brief summary of the current development and clinical uses of these assessments.
Collapse
Affiliation(s)
- N Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
50
|
Valderrábano RJ, Linares MI. Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification. Clin Diabetes Endocrinol 2018; 4:9. [PMID: 29721333 PMCID: PMC5918531 DOI: 10.1186/s40842-018-0060-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal fractures can result when there are co-morbid conditions that negatively impact bone strength. Fractures represent an important source of morbidity and mortality, especially in older populations. Diabetes mellitus is a metabolic disorder that has reached worldwide epidemic proportions and is increasingly being recognized as a risk factor for fracture. Type 1 and Type 2 diabetes have different effects on bone mineral density but share common pathways, which lead to bone fragility. In this review, we discuss the available data on diabetes and fractures, bone density and the clinical implications for fracture risk stratification in current practice.
Collapse
Affiliation(s)
- Rodrigo J Valderrábano
- University of Miami Miller School of Medicine, Dominion Tower 1400 NW 10th Ave, Ste. 805A, Miami, FL 33136 USA
| | - Maria I Linares
- University of Miami Miller School of Medicine, Dominion Tower 1400 NW 10th Ave, Ste. 805A, Miami, FL 33136 USA
| |
Collapse
|