1
|
Kawai M, Etani Y, Ida S. Subcutaneous adipose tissue is a positive predictor for bone mineral density in prepubertal children with Prader-Willi syndrome independent of lean mass. J Pediatr Endocrinol Metab 2022; 35:603-609. [PMID: 35286052 DOI: 10.1515/jpem-2021-0749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Emerging evidence suggests a fat depot-specific relationship with bone mineral density (BMD) in children, particularly in those who are overweight/obese. However, this has not yet been investigated in detail in children with Prader-Willi syndrome (PWS), a genetic syndrome characterized by a decreased lean mass (LM) and increased fat mass (FM). The objective of this study is to investigate the relationships of LM and FM, particularly fat distribution, with bone mineral parameters. METHODS This is a retrospective and cross-sectional study. Forty-seven prepubertal Japanese children with PWS (22 males, mean age: 6.86 years) were included. No subjects had type 2 diabetes mellitus or osteoporotic medications. LM, FM, and BMD and bone mineral content in the total body less head and the lumbar spine were measured using dual-energy x-ray absorptiometry, in addition to subcutaneous/visceral adipose tissue (SAT/VAT), and the ratio of VAT to SAT (V/S) by computed tomography at the umbilical level. Bone mineral apparent density was calculated to correct for bone size. RESULTS LM positively correlated with bone mineral parameters after controlling for age, sex, growth hormone (GH) treatment, and FM. Although FM did not correlate with bone mineral parameters, compartment-specific analysis revealed that SAT positively and V/S negatively correlated with bone mineral parameters after controlling for age, sex, GH treatment and LM. CONCLUSIONS A compartment-specific effect of FM on bone mineral parameters was noted such that SAT was a positive predictor for BMD independent of LM in prepubertal children with PWS.
Collapse
Affiliation(s)
- Masanobu Kawai
- Department of Gastroenterology, Nutrition, and Endocrinology, Osaka Women's and Children's Hospital, Izumi, Japan.,Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuri Etani
- Department of Gastroenterology, Nutrition, and Endocrinology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Shinobu Ida
- Department of Gastroenterology, Nutrition, and Endocrinology, Osaka Women's and Children's Hospital, Izumi, Japan.,Department of Clinical Laboratory, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
2
|
Association between Body Composition and Bone Mineral Density in Children and Adolescents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212126. [PMID: 34831882 PMCID: PMC8618958 DOI: 10.3390/ijerph182212126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Background: Bone mass acquisition during growth is a major determinant of the risk of developing osteoporosis later in life. Body composition is an anthropometric determinant of bone mineral density (BMD) and significantly influences its development during childhood and adolescence. Objective: This study aimed to systematically examine the association between body composition and bone mineral density in children and adolescents. Methods: Observational studies addressing this association were identified from PubMed (MEDLINE), Embase, Scopus and the Cochrane Library (up to January 2021). The study populations consisted of healthy children and adolescents. The DerSimonian and Laird method was used to compute pooled estimates of effect size and the respective 95% confidence intervals for upper limbs, femoral neck (FN), lumbar spine (LS) and total body, respectively. Subgroup analyses were further performed based on age, sex and ethnicity. Results: Thirty-one published studies were eligible for inclusion in this systematic review and meta-analysis, including three longitudinal studies. The combined population from all the studies amounted to 21,393 (11,205 males and 10,188 females). The pooled estimates of the correlation coefficients for lean mass (LM) and BMD ranged from 0.53 to 0.74 (p < 0.050), and the pooled regression coefficients ranged from 0.23 to 0.79 for FN, LS and total body (p < 0.050). For fat mass (FM), the pooled correlation coefficients ranged from 0.10 to 0.50 (p < 0.050) and the pooled regression coefficient was only significant for FN BMD with a weak strength (pooled β = 0.07, p < 0.050). The pooled regression coefficients for body fat percentage (BF%) were between −0.54 and −0.04 (p < 0.050). The subgroup analysis revealed a stronger association in Asians than in Caucasians for LM and in males compared to females for BF% (p < 0.050). Conclusions: This systematic review and meta-analysis supports a positive association between LM and BMD. BF% appears to have a deleterious effect on bone acquisition in children and adolescents.
Collapse
|
3
|
Chaplais E, Naughton G, Greene D, Dutheil F, Pereira B, Thivel D, Courteix D. Effects of interventions with a physical activity component on bone health in obese children and adolescents: a systematic review and meta-analysis. J Bone Miner Metab 2018; 36:12-30. [PMID: 28779404 DOI: 10.1007/s00774-017-0858-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Given the rise in pediatric obesity, clarifications on the relationship between obesity and bone health and on the impact of structured intervention on this relationship are needed. This systematic review and meta-analysis investigated the effect of obesity on bone health and assessed the effect of structured intervention in children and adolescents with obesity. Medline complete, OVID, CINAHL, EMBASE and PubMed databases were searched for studies on obesity and bone health variables up to September 2016, then an update occurred in March 2016. Search items included obesity, childhood, dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Twenty-three studies (14 cross-sectional and nine longitudinal) matched the inclusion criteria. Results from the meta-analysis (cross-sectional studies) confirmed that children and adolescents with obesity have higher bone content and density than their normal weight peers. Results from longitudinal studies remain inconclusive as only 50% of the included studies reported a positive effect of a structured intervention program on bone health. As such, the meta-analysis reported that structured intervention did not influence bone markers despite having beneficial effects on general health in youth with obesity.
Collapse
Affiliation(s)
- Elodie Chaplais
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), EA 3533, Blaise Pascal University, 5 Impasse Amelie Murat, TS60026 cs 60026, Aubière Cedex, 63178, Clermont-Ferrand, France.
- School of Exercise Science, Australian Catholic University, Strathfield Campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia.
- School of Exercise Science, Australian Catholic University, Melbourne Campus, Locked Bag 4115, Fitzroy MDC, Fitzroy, VIC, 3065, Australia.
- Clermont University, Clermont-Ferrand, France.
| | - Geraldine Naughton
- School of Exercise Science, Australian Catholic University, Strathfield Campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
- School of Exercise Science, Australian Catholic University, Melbourne Campus, Locked Bag 4115, Fitzroy MDC, Fitzroy, VIC, 3065, Australia
| | - David Greene
- School of Exercise Science, Australian Catholic University, Strathfield Campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
- School of Exercise Science, Australian Catholic University, Melbourne Campus, Locked Bag 4115, Fitzroy MDC, Fitzroy, VIC, 3065, Australia
| | - Frederic Dutheil
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), EA 3533, Blaise Pascal University, 5 Impasse Amelie Murat, TS60026 cs 60026, Aubière Cedex, 63178, Clermont-Ferrand, France
- School of Exercise Science, Australian Catholic University, Strathfield Campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
- CRNH-Auvergne, Clermont-Ferrand, France
- Occupational Medicine, University Hospital CHU G. Montpied, Clermont-Ferrand, France
- School of Exercise Science, Australian Catholic University, Melbourne Campus, Locked Bag 4115, Fitzroy MDC, Fitzroy, VIC, 3065, Australia
- Clermont University, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), University Hospital CHU G. Montpied, 63000, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), EA 3533, Blaise Pascal University, 5 Impasse Amelie Murat, TS60026 cs 60026, Aubière Cedex, 63178, Clermont-Ferrand, France
- CRNH-Auvergne, Clermont-Ferrand, France
- Clermont University, Clermont-Ferrand, France
| | - Daniel Courteix
- Laboratory of the Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), EA 3533, Blaise Pascal University, 5 Impasse Amelie Murat, TS60026 cs 60026, Aubière Cedex, 63178, Clermont-Ferrand, France
- School of Exercise Science, Australian Catholic University, Strathfield Campus, Locked Bag 2002, Strathfield, NSW, 2135, Australia
- CRNH-Auvergne, Clermont-Ferrand, France
- School of Exercise Science, Australian Catholic University, Melbourne Campus, Locked Bag 4115, Fitzroy MDC, Fitzroy, VIC, 3065, Australia
- Clermont University, Clermont-Ferrand, France
| |
Collapse
|
4
|
Sontam DM, Vickers MH, Firth EC, O'Sullivan JM. A Memory of Early Life Physical Activity Is Retained in Bone Marrow of Male Rats Fed a High-Fat Diet. Front Physiol 2017; 8:476. [PMID: 28736532 PMCID: PMC5500658 DOI: 10.3389/fphys.2017.00476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Studies have reported opposing effects of high-fat (HF) diet and mechanical stimulation on lineage commitment of the bone marrow stem cells. Yet, how bone marrow modulates its gene expression in response to the combined effects of mechanical loading and a HF diet has not been addressed. We investigated whether early-life (before onset of sexual maturity at 6 weeks of age) voluntary physical activity can modulate the effects of a HF diet on male Sprague Dawley rats. In the bone marrow, early-life HF diet resulted in adipocyte hypertrophy and a pro-inflammatory and pro-adipogenic gene expression profile. The bone marrow of the rats that undertook wheel exercise while on a HF diet retained a memory of the early-life exercise. This memory lasted at least 60 days after the cessation of the voluntary exercise. Our results are consistent with the marrow adipose tissue having a unique response to HF feeding in the presence or absence of exercise.
Collapse
Affiliation(s)
- Dharani M Sontam
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| | - Elwyn C Firth
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand.,Department of Sport and Exercise Science, University of AucklandAuckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of AucklandAuckland, New Zealand.,Gravida: National Centre for Growth and Development, University of AucklandAuckland, New Zealand
| |
Collapse
|
5
|
Jeddi M, Dabbaghmanesh MH, Ranjbar Omrani G, Ayatollahi SMT, Bagheri Z, Bakhshayeshkaram M. Relative Importance of Lean and Fat Mass on Bone Mineral Density in Iranian Children and Adolescents. Int J Endocrinol Metab 2015; 13:e25542. [PMID: 26401143 PMCID: PMC4577805 DOI: 10.5812/ijem.25542v2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/16/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Body weight is made up of lean and fat mass and both are involved in growth and development. Impression of these two components in bone density accrual has been controversial. OBJECTIVES The aim of this study was to evaluate the relationship between fat and lean mass and bone density in Iranian children and adolescents. PATIENTS AND METHODS A cross-sectional study was performed on 472 subjects (235 girls, 237 boys) aged 9-18 years old in Fars Province. The participants' weight, height, waist circumference, stage of puberty, and level of physical activity were recorded. Bone Mineral Content (BMC), Bone Mineral Density (BMD), total body fat and lean mass were measured using dual-energy X-ray absorptiometry. RESULTS Results showed that 12.2% of boys and 12.3% of girls were overweight and 5.5% of boys and 4.7% of girls were obese. Obese individuals had greater total body BMD (0.96 ± 0.11) than normal-weight ones (0.86 ± 0.11) (P < 0.001). We found the greatest correlation between total body BMD and total body lean mass (R = 0.78. P < 0.001) and the least correlation with total body fat percentage (R = 0.03, P = 0.44). Total lean mass in more active boys was 38.1 ± 10.9 and in less active boys was 32.3 ± 11.0 (P < 0.001). The results of multiple regression analysis showed that age and total body lean mass were independent factors of BMD in growing children and adolescents. CONCLUSIONS These findings suggest that lean mass was the most important predictor of BMD in both genders. Physical activity appears to positively impact on lean mass and needs to be considered in physical education and health-enhancing programs in Iranian school children.
Collapse
Affiliation(s)
- Marjan Jeddi
- Endocrine and Metabolism Research Center, Department of Internal Medicine, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammad Hossein Dabbaghmanesh
- Endocrine and Metabolism Research Center, Department of Internal Medicine, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Mohammad Hossein Dabbaghmanesh, Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, P. O. Box: 71345-1414, Shiraz, IR Iran. Tel: +98-7136281569, Fax: +987136473096, E-mail:
| | - Gholamhossein Ranjbar Omrani
- Endocrine and Metabolism Research Center, Department of Internal Medicine, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | | | - Zahra Bagheri
- Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | | |
Collapse
|
6
|
Moon RJ, Cole ZA, Crozier SR, Curtis EM, Davies JH, Gregson CL, Robinson SM, Dennison EM, Godfrey KM, Inskip HM, Cooper C, Harvey NC. Longitudinal changes in lean mass predict pQCT measures of tibial geometry and mineralisation at 6-7 years. Bone 2015; 75:105-10. [PMID: 25703480 PMCID: PMC4556067 DOI: 10.1016/j.bone.2015.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Studies in childhood suggest that both body composition and early postnatal growth are associated with bone mineral density (BMD). However, little is known of the relationships between longitudinal changes in fat (FM) and lean mass (LM) and bone development in pre-pubertal children. We therefore investigated these associations in a population-based mother-offspring cohort, the Southampton Women's Survey. METHODS Total FM and LM were assessed at birth and 6-7 years of age by dual-energy x-ray absorptiometry (DXA). At 6-7 years, total cross-sectional area (CSA) and trabecular volumetric BMD (vBMD) at the 4% site (metaphysis) of the tibia was assessed using peripheral quantitative computed tomography [pQCT (Stratec XCT-2000)]. Total CSA, cortical CSA, cortical vBMD and strength-strain index (SSI) were measured at the 38% site (diaphysis). FM, LM and bone parameters were adjusted for age and sex and standardised to create within-cohort z-scores. Change in LM (ΔLM) or FM (ΔFM) was represented by change in z-score from birth to 7 years old and conditioned on the birth measurement. Linear regression was used to explore the associations between ΔLM or ΔFM and standardised pQCT outcomes, before and after mutual adjustment and for linear growth. The β-coefficient represents SD change in outcome per unit SD change in predictor. RESULTS DXA at birth, in addition to both DXA and pQCT scans at 6-7 years, were available for 200 children (48.5% male). ΔLM adjusted for ΔFM was positively associated with tibial total CSA at both the 4% (β=0.57SD/SD, p<0.001) and 38% sites (β=0.53SD/SD, p<0.001), cortical CSA (β=0.48SD/SD, p<0.001) and trabecular vBMD (β=0.30SD/SD, p<0.001), but not with cortical vBMD. These relationships persisted after adjustment for linear growth. In contrast, ΔFM adjusted for ΔLM was only associated with 38% total and cortical CSA, which became non-significant after adjustment for linear growth. CONCLUSION In this study, gain in childhood LM was positively associated with bone size and trabecular vBMD at 6-7 years of age. In contrast, no relationships between change in FM and bone were observed, suggesting that muscle growth, rather than accrual of fat mass, may be a more important determinant of childhood bone development.
Collapse
Affiliation(s)
- Rebecca J Moon
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Zoe A Cole
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; Rheumatology, Salisbury Hospital NHS Foundation Trust, Salisbury, UK
| | - Sarah R Crozier
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Elizabeth M Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Sian M Robinson
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK; NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Nuffield Orthopedic Centre, Headington, Oxford OX3 7HE, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
7
|
Shaikh MG, Crabtree N, Kirk JMW, Shaw NJ. The relationship between bone mass and body composition in children with hypothalamic and simple obesity. Clin Endocrinol (Oxf) 2014; 80:85-91. [PMID: 23745601 DOI: 10.1111/cen.12263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/22/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Obesity has been associated with a positive influence on bone mass. This is thought to be due to a mechanical load exerted on the skeleton, together with various hormones and adipocytokines that control appetite and weight, such as leptin, some of which directly affect bone mass. However, there are conflicting reports of the association between fat mass and bone mass in children. Animal studies demonstrate increased bone mass where there is impaired central leptin signalling. Hypothalamic damage can cause abnormal central leptin action, which contributes to the development of obesity. OBJECTIVE The objective of this study was to investigate the relationship between body composition and bone mass in hypothalamic and simple childhood obesity, in conjunction with the effect of the adipocytokines, leptin and adiponectin. DESIGN This was a cross-sectional study of three groups of children, those with hypothalamic obesity (HO), those with congenital hypopituitarism (CH) and those with simple obesity (SO). RESULTS A total of 65 children (HO = 26 [11 males], CH = 17 [eight males] and SO = 22 [15 males]) had body composition assessed using dual-energy X-ray absorptiometry together with measurement of serum leptin and adiponectin. No significant differences were seen in bone mass once bone density (BMD) was adjusted for differences in body size between groups. Significantly elevated levels of leptin and adiponectin were seen in the HO group compared with the SO group (P < 0·01, P < 0·05, respectively). CONCLUSION Adiposity is associated with increased bone mass; however, this relationship is complex. Despite the presence of hyperleptinaemia, increased bone mass in the HO group was not seen. This may be due to the effects of other factors such as adiponectin, abnormal hypothalamic signalling, pituitary hormone deficiencies and disruption of normal homoeostatic mechanisms within the hypothalamus.
Collapse
Affiliation(s)
- M Guftar Shaikh
- Department of Endocrinology, Royal Hospital for Sick Children, Glasgow, UK
| | | | | | | |
Collapse
|
8
|
Vandewalle S, Taes Y, Van Helvoirt M, Debode P, Herregods N, Ernst C, Roef G, Van Caenegem E, Roggen I, Verhelle F, Kaufman JM, De Schepper J. Bone size and bone strength are increased in obese male adolescents. J Clin Endocrinol Metab 2013; 98:3019-28. [PMID: 23666962 DOI: 10.1210/jc.2012-3914] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Controversy exists on the effect of obesity on bone development during puberty. OBJECTIVE Our objective was to determine differences in volumetric bone mineral density (vBMD) and bone geometry in male obese adolescents (ObAs) in overlap with changes in bone maturation, muscle mass and force development, and circulating sex steroids and IGF-I. We hypothesized that changes in bone parameters are more evident at the weight-bearing site and that changes in serum estradiol are most prominent. DESIGN, SETTING, AND PARTICIPANTS We recruited 51 male ObAs (10-19 years) at the entry of a residential weight-loss program and 51 healthy age-matched and 51 bone-age-matched controls. MAIN OUTCOME MEASURES vBMD and geometric bone parameters, as well as muscle and fat area were studied at the forearm and lower leg by peripheral quantitative computed tomography. Muscle force was studied by jumping mechanography. RESULTS In addition to an advanced bone maturation, differences in trabecular bone parameters (higher vBMD and larger trabecular area) and cortical bone geometry (larger cortical area and periosteal and endosteal circumference) were observed in ObAs both at the radius and tibia at different pubertal stages. After matching for bone age, all differences at the tibia, but only the difference in trabecular vBMD at the radius, remained significant. Larger muscle area and higher maximal force were found in ObAs compared with controls, as well as higher circulating free estrogen, but similar free testosterone and IGF-I levels. CONCLUSIONS ObAs have larger and stronger bones at both the forearm and lower leg. The observed differences in bone parameters can be explained by a combination of advanced bone maturation, higher estrogen exposure, and greater mechanical loading resulting from a higher muscle mass and strength.
Collapse
Affiliation(s)
- S Vandewalle
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Laddu DR, Farr JN, Laudermilk MJ, Lee VR, Blew RM, Stump C, Houtkooper L, Lohman TG, Going SB. Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls. Arch Osteoporos 2013; 8:156. [PMID: 24113839 PMCID: PMC4416207 DOI: 10.1007/s11657-013-0156-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/23/2013] [Indexed: 02/03/2023]
Abstract
UNLABELLED Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. INTRODUCTION Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. PURPOSE Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8-13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength-strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. RESULTS Baseline TBFM and AFM were positively associated with the change in femur BSI (r = 0.20, r = 0.17, respectively) and femur trabecular vBMD (r = 0.19, r = 0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r = 0.16, r = 0.15, respectively), and femur total and trabecular vBMD (r = 0.12, r = 0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p < 0.05. CONCLUSIONS Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future studies in obese children will be needed to test this possibility.
Collapse
Affiliation(s)
- Deepika R Laddu
- Department of Nutritional Sciences, University of Arizona, 1713 E. University Blvd. #93, Tucson, AZ, 85721-0093, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
During normal childhood and adolescence, the skeleton undergoes tremendous change. Utilizing the processes of modeling and remodeling, the skeleton acquires its adult configuration and ultimately achieves peak bone mass. Optimization of peak bone mass requires the proper interaction of environmental, dietary, hormonal, and genetic influences. A variety of acute and chronic conditions, as well as genetic polymorphisms, are associated with reduced bone density, which can lead to an increased risk of fracture both in childhood and later during adulthood. Bone densitometry has an established role in the evaluation of adults with bone disorders, and the development of suitable reference ranges for children now permits the application of this technology to younger individuals. We present a brief overview of the factors that determine bone density and the emerging role of bone densitometry in the assessment of bone mass in growing children and adolescents.
Collapse
Affiliation(s)
- Michael A. Levine
- Director, Center for Bone Health, Chief, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Professor of Pediatrics and Medicine, University of Pennsylvania Perelman School of Medicine, U.S.A.
| |
Collapse
|
11
|
Caffarelli C, Gonnelli S, Tanzilli L, Hayek J, Vichi V, Franci MB, Lucani B, Nuti R. The relationship between serum ghrelin and body composition with bone mineral density and QUS parameters in subjects with Rett syndrome. Bone 2012; 50:830-5. [PMID: 22306927 DOI: 10.1016/j.bone.2012.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/16/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
Several studies have reported that females with Rett's syndrome frequently have marked decreases in bone mineral density (BMD). However, the pathogenesis of impaired bone status in RTT girls remains controversial. This study aimed to investigate whether ghrelin, an orexigenic peptide secreted by the stomach, was associated with body composition parameters, bone mineral density and quantitative ultrasound (QUS) in girls with Rett's syndrome. In 123 Rett girls (13.6±8.2 years) and in 55 similar age range controls we evaluated ghrelin serum levels, 25OHD, quantitative ultrasound parameters at phalanxes by Bone Profiler-IGEA (amplitude dependent speed of sound: AD-SoS and bone transmission time: BTT), total body bone mineral density (BMD-WB) by Hologic QDR 4500. Whole body mineral content (BMC-WB), BMC-WB/height, fat mass (FM), fat percentage and lean mass (LM) were determined by using the same DXA device. We found that serum ghrelin levels were significantly higher in the Rett patients with respect to the control group (p<0.05). In Rett girls ghrelin serum levels were inversely correlated with both age (R(2)=0.17, p<0.001) and BMI (R(2)=0.14, p<0.001). Moreover, in Rett subjects the values of BMD-WB, BMC-WB, BMC-WB/height and QUS parameters were significantly lower than in control subjects. Fat mass and lean mass were lower in Rett subjects than in controls, but the difference reached the statistical significance only for lean mass. In Rett girls ghrelin serum levels were not predictors of bone status. Instead, we found that in Rett subjects, lean mass, age and 25OHD were significant independent predictors of BMC-WB/h, whereas both age and height were independent predictors of BMD-WB. Moreover, AD-SoS was predicted by age, fat percentage and height; while BTT was predicted only by height. In conclusion, our findings indicate that ghrelin levels were higher in Rett girls with respect to healthy controls, and negatively associated with both DXA and QUS parameters. However, in our study ghrelin was not found to be an independent predictor of bone mass, so supporting the hypothesis that ghrelin is elevated in Rett subjects in a compensatory manner.
Collapse
Affiliation(s)
- C Caffarelli
- Department of Internal Medicine, Endocrine-Metabolic Science and Biochemistry, University of Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dimitri P, Bishop N, Walsh JS, Eastell R. Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 2012; 50:457-66. [PMID: 21619952 DOI: 10.1016/j.bone.2011.05.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/14/2011] [Accepted: 05/09/2011] [Indexed: 01/19/2023]
Abstract
With the rise in obesity worldwide, an important debate has developed as to whether excess fat has a detrimental or protective effect on skeletal health in children and adults. Obese children appear to be over represented in fracture groups and recent evidence suggests that fat may be detrimental to bone accrual in children, although this effect may be confined to adolescence during rapid skeletal growth. Fat induced alterations in hormonal factors and cytokines during growth may play a pivotal role in disturbing bone accrual. In contrast, the widely accepted opinion is that fat appears to be protective of bone in adults and minimises bone loss in postmenopausal women. Recent evidence suggests that in adults, site specific fat depots may exert differing effects on bone (with visceral fat acting as a pathogenic fat depot and subcutaneous fat exerting protective effects), and that the effects of fat mass on bone and fracture risk may vary by skeletal site; obesity protects against hip and vertebral fractures but is a risk factor for fractures of the humerus and ankle. The incidence of fracture during adolescence is rising and osteoporosis remains a considerable health burden in older adults. Understanding the effects of fat mass on bone during growth and early adulthood is vital in informing future health strategies and pharmacotherapies to optimise peak bone mass and prevent fracture.
Collapse
Affiliation(s)
- P Dimitri
- The NIHR Bone Biomedical Research Unit, Sheffield, UK.
| | | | | | | |
Collapse
|
13
|
Macdonald-Wallis C, Tobias JH, Davey Smith G, Lawlor DA. Parental smoking during pregnancy and offspring bone mass at age 10 years: findings from a prospective birth cohort. Osteoporos Int 2011; 22:1809-19. [PMID: 20967424 PMCID: PMC3092913 DOI: 10.1007/s00198-010-1415-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
Abstract
UNLABELLED We investigated an intrauterine influence of maternal smoking during pregnancy on childhood bone mass. Daughters, but not sons, of mothers who smoked had higher bone mass at age 10years. This appears to be due to familial factors related to parental smoking influencing increased offspring adiposity rather than a direct intrauterine effect. INTRODUCTION Neonatal studies have demonstrated an adverse relationship between maternal smoking in pregnancy and foetal bone mineral accrual. We aimed to investigate an intrauterine influence of maternal smoking during pregnancy on offspring bone mass at mean age 9.9 years. METHODS We compared associations of maternal and paternal smoking in pregnancy with offspring total body less head (TBLH) and spine bone mineral content (BMC), bone area (BA), bone mineral density (BMD) and area-adjusted BMC (ABMC) in 7,121 children in the Avon Longitudinal Study of Parents and Children. RESULTS Maternal smoking in any trimester was associated with increased TBLH BMC, BA and BMD in girls (mean difference [95% CI] (sex-specific SD scores), 0.13 [0.05-0.22], 0.13 [0.04-0.21], 0.13 [0.04-0.22], respectively) but not boys (0.01 [-0.07-0.09], 0.00 [-0.08-0.08], 0.04 [-0.05-0.12]), and also with spine BMC, BA and BMD in girls (0.13 [0.03-0.23], 0.12 [0.03-0.22], 0.10 [0.00-0.21]) but not boys (0.03 [-0.06-0.12], 0.00 [-0.09-0.09], 0.05 [-0.04-0.14]), but not with ABMC. Paternal smoking associations were similar, with no statistical evidence for a difference between maternal and paternal effects. Maternal associations increased on adjustment for offspring birth weight and gestational age, but attenuated to the null after adjustment for current height and weight. CONCLUSIONS We found little evidence that maternal smoking was related to bone mass in boys. In girls, maternal smoking associations were similar to those of paternal smoking, suggesting that these were attributable to shared familial characteristics, not intrauterine mechanisms.
Collapse
Affiliation(s)
- C Macdonald-Wallis
- MRC Centre for Causal Analyses in Translational Epidemiology, Department of Social Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| | | | | | | |
Collapse
|
14
|
Viljakainen HT, Pekkinen M, Saarnio E, Karp H, Lamberg-Allardt C, Mäkitie O. Dual effect of adipose tissue on bone health during growth. Bone 2011; 48:212-7. [PMID: 20858556 DOI: 10.1016/j.bone.2010.09.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/05/2010] [Accepted: 09/15/2010] [Indexed: 11/26/2022]
Abstract
Recent studies suggest association between body fat and childhood bone health, although conflicting findings have also been reported. The aim of the present study was to examine the association between body fat content and areal BMD, volumetric BMD, bone turnover markers, and calcitropic factors in apparently healthy children and adolescents. The study was carried out as a school based cross-sectional cohort study with 186 subjects (61% girls) aged from 7 to 19 years. Background characteristics, including medical history and lifestyle factors, were collected. Anthropometry, BMD and body composition measurements with DXA and pQCT, a fasting blood sample and a second morning void urine sample were obtained. The subjects were divided into three groups, representing low, intermediate and high adiposity, based on age and gender specific fat percentage Z-scores. Multivariate analysis was performed to all bone variables using lean body mass, pubertal development, dietary intake of calcium and intensity of physical activity as covariates. In pQCT, a significant difference between the groups was observed in cortical BMD (MANOVA; p=0.02) in proximal radius, the intermediate group having the highest values. Similarly, DXA-derived LS and WB BMD Z-scores differed significantly between the groups (MANOVA; p=0.026 and p=0.036, respectively), with highest values in the intermediate group. High body fat content associated also with low bone turnover markers, low PTH, high S-Ca and high urinary calcium excretion. The differences in biochemical markers explain our and others' findings of bone health in children and adolescents with different body fat content. These findings suggest that normal body fat content is beneficial for bone health in growing children and adolescents while both low and high body fat content have adverse skeletal effects.
Collapse
Affiliation(s)
- Heli T Viljakainen
- Hospital for Children and Adolescents, Helsinki University Central Hospital, Biomedicum Helsinki 2, Tukholmankatu 8 C, PO Box 705, 00029 HUS, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
15
|
Xu L, Nicholson P, Wang QJ, Wang Q, Alén M, Cheng S. Fat mass accumulation compromises bone adaptation to load in Finnish women: a cross-sectional study spanning three generations. J Bone Miner Res 2010; 25:2341-9. [PMID: 20499343 DOI: 10.1002/jbmr.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Body weight and lean mass correlate with bone mass, but the relationship between fat mass and bone remains elusive. The study population consisted of 396 girls and 138 premenopausal mothers and 114 postmenopausal grandmothers of these girls. Body composition and tibial length were assessed using dual-energy X-ray absorptiometry (DXA), and bone traits were determined at the tibia using peripheral quantitative computed tomography (pQCT) in the girls at the ages of 11.2 ± 0.8, 13.2 ± 0.9, and 18.3 ± 1.0 years and in the mothers (44.7 ± 4.1 years) and grandmothers (70.7 ± 6.3 years). The values of relative bone strength index (RBSI), an index reflecting the ratio of bone strength to the load applied on the tibia, were correlated among family members (all p < .05). The mean values of RBSI were similar among 11- and 18-year-old girls and premenopausal women but significantly lower in 13-year-old girls and postmenopausal women. However, in each age group, subjects in the highest BMI tertiles had the lowest RBSI values (all p < .01). RBSI was inversely associated with body weight (all p < .01), indicating a deficit in bone strength relative to the applied load from greater body weight. RBSI was inversely associated with fat mass (all p < .001) across age groups and generations but remained relatively constant with increasing lean mass in girls and premenopausal women (all p > .05), indicating that the bone-strength deficit was attributable to increased fat mass, not lean mass. Moreover, the adverse effect of fat mass was age-dependent, with every unit increase in fat mass associated with a greater decrease in RBSI in pre- and postmenopausal women than in girls (all p < .001). This is largely due to the different capacity of young and adult bones to increase diaphyseal width by periosteal apposition in response to increased load. In summary, increasing body weight with fat accumulation is accompanied by an age-dependent relative bone-strength deficit in women because the beneficial effects of increased fat mass on bone, if any, do not compensate for the mechanical burden that it imposes.
Collapse
Affiliation(s)
- Leiting Xu
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Hrafnkelsson H, Sigrudsson G, Magnusson KT, Johannsson E, Sigurdsson EL. Factors associated with bone mineral density and content in 7-year-old children. Bone 2010; 46:1058-62. [PMID: 19969116 DOI: 10.1016/j.bone.2009.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/17/2009] [Accepted: 11/30/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the bone status of 7-year-old school children in Reykjavik, Iceland, and to see if gender, height, lean body mass and fat mass is associated with bone mineral density (BMD) and bone mineral content (BMC) in the lumbar vertebrae and hip. STUDY DESIGN A cross-sectional study of a sample of 7-year-old school children. SETTING Six elementary schools in Reykjavik, Iceland. SUBJECTS All children attending second grade in these six schools were invited to participate. Three hundred twenty-six children were invited and 211 (65%) participated in the study. MAIN OUTCOME MEASURES Lean body mass, bone mineral density, bone mineral content and total fat mass. RESULTS Both BMD and BMC were positively correlated with sex, height and lean body mass. Fat mass was positively correlated to BMC but not BMD in the total body and lumbar vertebrae. When analyzed with multiple linear regression, the bone area and lean body mass (LBM) were positively associated with BMC in the hip and total body, but total fat mass (TFM) was negatively associated with BMC, the model explaining about 88% of the variance (R2) in the total body bone mineral content (TBMC) and 74% of the variance (R2) in the BMC of the hip. LBM was positively associated with total body bone mineral density (TBMD) but TFM negatively associated. Neither height nor gender contributed to total BMC and BMD in our multiple linear regression models. CONCLUSION The study emphasizes that fat mass may play different roles in children and adults and that both LBM and TFM should be taken into consideration when interpreting BMC and BMD for children.
Collapse
|
17
|
Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone 2010; 46:977-84. [PMID: 20060079 PMCID: PMC2842480 DOI: 10.1016/j.bone.2009.12.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 10/20/2022]
Abstract
Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and strength in young girls, this relationship is significantly attenuated after adjustment for MCSA. Nevertheless, girls with higher TBFM relative to body mass have markedly diminished vBMD, geometry, and bone strength at metaphyseal and diaphyseal sites of the femur and tibia.
Collapse
Affiliation(s)
- Joshua N. Farr
- Department of Physiological Sciences, University of Arizona, Tucson AZ
| | - Zhao Chen
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson AZ
| | | | - Timothy G. Lohman
- Department of Physiological Sciences, University of Arizona, Tucson AZ
| | - Scott B. Going
- Department of Nutritional Sciences, University of Arizona, Tucson AZ
| |
Collapse
|
18
|
Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res 2010; 25:527-36. [PMID: 19778184 DOI: 10.1359/jbmr.090823] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fat mass predicts bone accrual in prepubertal children, but obese children have increased fracture risk. We hypothesised that bone size and mass would vary according to prior fracture in obese children. One hundred and three children (52 obese) underwent dual-energy X-ray absorptiometry (DXA) scanning of the lumbar spine, total body, and radial metaphysis and diaphysis. We derived body size-adjusted bone mineral density (BMD) estimates for each site using commonly employed procedures. Following adjustment for either age, age(2) and weight, or height and weight based on a reference group of nonobese controls without previous fracture, obese children with prior fracture showed a 0.8 to 1.2 SD reduction in total body areal BMD (aBMD), a 3.0 SD decrease in lumbar (L2-4) aBMD, and a 2.0 SD reduction in radial shaft aBMD. These changes were significant at p < .005. Lumbar volumetric BMD (vBMD) calculated by Carter and Kröger algorithms was significantly reduced in obese children with prior fracture (2.0 to 3.3 SD). Eighteen percent of obese children fulfilled the criteria for osteoporosis. Despite greater lean mass for height in obese children (p < .0001), total body bone mineral content (BMC) for lean mass was reduced (p = .002). Multiple regression models adjusting for height, weight, and gender demonstrated an inverse relationship between total body fat mass and total body, lumbar, and ultradistal radius BMC and aBMD. The data suggest that fat mass substantially inhibits bone accrual in children with prior fracture. These children may require targeted interventions to increase bone mass during adolescence to achieve optimal peak bone mass and reduce the risk of osteoporosis later in life.
Collapse
|
19
|
Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM. Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr 2009; 90:1104-11. [PMID: 19710192 DOI: 10.3945/ajcn.2009.28025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.
Collapse
Affiliation(s)
- Gaele Ducher
- Centre for Physical Activity and Nutrition Research, Deakin University, Burwood, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Goulding A, Taylor RW, Grant AM, Jones S, Taylor BJ, Williams SM. Relationships of appendicular LMI and total body LMI to bone mass and physical activity levels in a birth cohort of New Zealand five-year olds. Bone 2009; 45:455-9. [PMID: 19450717 DOI: 10.1016/j.bone.2009.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/23/2009] [Accepted: 05/13/2009] [Indexed: 11/29/2022]
Abstract
The present study was undertaken to determine whether children with lower bone mass display lower muscle mass for their height than those with high bone mineral content (BMC) and whether appendicular lean mass (bone-free lean mass in arms plus legs) is associated with physical activity and/or BMC in preschool children. 158 children (59% male) from a New Zealand cohort born in 2001-2002 were studied close to their fifth birthday. Body composition was measured by dual energy X-ray absorptiometry (Lunar DPX-L). Lean mass index (LMI) was calculated as lean mass (kg) divided by height in metres squared. Physical activity was assessed objectively by accelerometry (Actical Mini-Mitter). Girls and boys had similar heights, weights and daily accelerometry counts but boys had lower fat mass, and higher lean mass and total body BMC than the girls (P<0.00l). In both sexes children with greater quantities of total and regional lean mass and higher LMI values had significantly higher bone mass. Appendicular LMI was more strongly associated with BMC than LMI. Accelerometry counts showed no associations with height but were positively associated with lean mass (r=0.23, P<0.03), appendicular LMI (r=0.25 P<0.01), total body BMC (r=0.24, P<0.02) and total body less head BMC (r=0.27 P<0.009) in the boys, but not in the girls. Greater time spent in more intense physical activity was also associated with higher appendicular lean mass and TBLH BMC only in the boys. We conclude that children with lower BMC values display not only lower lean mass but also lower total and appendicular lean mass for their height, than those with higher BMC values. The sex differences in associations of accelerometry counts to lean mass and BMC have been noted by others and require further investigation.
Collapse
Affiliation(s)
- Ailsa Goulding
- Department of Medical and Surgical Sciences, University of Otago, Great King Street, PO Box 913, Dunedin 9054, New Zealand.
| | | | | | | | | | | |
Collapse
|