1
|
Rossi M, Terreri S, Battafarano G, Rana I, Buonuomo PS, Di Giuseppe L, D'Agostini M, Porzio O, Di Gregorio J, Cipriani C, Jenkner A, Gonfiantini MV, Bartuli A, Del Fattore A. Analysis of circulating osteoclast and osteogenic precursors in patients with Gorham-Stout disease. J Endocrinol Invest 2024; 47:2775-2784. [PMID: 38556572 DOI: 10.1007/s40618-024-02365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE Gorham-Stout disease is a very rare disorder characterized by progressive bone erosion and angiomatous proliferation; its etiopathogenesis is still unknown, and diagnosis is still performed by exclusion criteria. The alteration of bone remodeling activity has been reported in patients; in this study, we characterized circulating osteoclast and osteogenic precursors that could be important to better understand the osteolysis observed in patients. METHODS Flow cytometry analysis of PBMC (Peripheral Blood Mononuclear Cells) was performed to characterize circulating osteoclast and osteogenic precursors in GSD patients (n = 9) compared to healthy donors (n = 55). Moreover, ELISA assays were assessed to evaluate serum levels of bone markers including RANK-L (Receptor activator of NF-κB ligand), OPG (Osteoprotegerin), BALP (Bone Alkaline Phosphatase) and OCN (Osteocalcin). RESULTS We found an increase of CD16-/CD14+CD11b+ and CD115+/CD14+CD11b+ osteoclast precursors in GSD patients, with high levels of serum RANK-L that could reflect the increase of bone resorption activity observed in patients. Moreover, no significant alterations were found regarding osteogenic precursors and serum levels of BALP and OCN. CONCLUSION The analysis of circulating bone cell precursors, as well as of RANK-L, could be relevant as an additional diagnostic tool for these patients and could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- M Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - S Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - G Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - I Rana
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P S Buonuomo
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - L Di Giuseppe
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - M D'Agostini
- Clinical Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - O Porzio
- Clinical Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - J Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - A Jenkner
- Pediatric Palliative Care Center, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M V Gonfiantini
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Bartuli
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
2
|
Ramzan F, Salim A, Hussain A, Khan I. Unleashing the Healing Power of Mesenchymal Stem Cells for Osteochondral Abnormalities. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 01/11/2025]
|
3
|
Feehan J, Tripodi N, Kondrikov D, Wijeratne T, Gimble J, Hill W, Apostolopoulos V, Duque G. Differential Responses to Aging Among the Transcriptome and Proteome of Mesenchymal Progenitor Populations. J Gerontol A Biol Sci Med Sci 2024; 79:glae147. [PMID: 38837176 PMCID: PMC11369222 DOI: 10.1093/gerona/glae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/06/2024] Open
Abstract
The biological aging of stem cells (exhaustion) is proposed to contribute to the development of a variety of age-related conditions. Despite this, little is understood about the specific mechanisms which drive this process. In this study, we assess the transcriptomic and proteomic changes in 3 different populations of mesenchymal progenitor cells from older (50-70 years) and younger (20-40 years) individuals to uncover potential mechanisms driving stem cell exhaustion in mesenchymal tissues. To do this, we harvested primary bone marrow mesenchymal stem and progenitor cells (MPCs), circulating osteoprogenitors (COP), and adipose-derived stem cells (ADSCs) from younger and older donors, with an equal number of samples from men and women. These samples underwent RNA sequencing and label-free proteomic analysis, comparing the younger samples to the older ones. There was a distinct transcriptomic phenotype in the analysis of pooled older stem cells, suggestive of suppressed proliferation and differentiation; however, these changes were not reflected in the proteome of the cells. Analyzed independently, older MPCs had a distinct phenotype in both the transcriptome and proteome consistent with altered differentiation and proliferation with a proinflammatory immune shift in older adults. COP cells showed a transcriptomic shift to proinflammatory signaling but no consistent proteomic phenotype. Similarly, ADSCs displayed transcriptomic shifts in physiologies associated with cell migration, adherence, and immune activation but no proteomic change with age. These results show that there are underlying transcriptomic changes with stem cell aging that may contribute to a decline in tissue regeneration. However, the proteome of the cells was inconsistently regulated.
Collapse
Affiliation(s)
- Jack Feehan
- Department of Medicine—Western Health, University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University and University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tissa Wijeratne
- Department of Medicine—Western Health, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University and University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - William Hill
- Department of Veterans Affairs, Ralph H Johnson VA Medical Center, Charleston, South Carolina, USA
- Center for Healthy Aging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University and University of Melbourne, Melbourne, Victoria, Australia
| | - Gustavo Duque
- Bone, Muscle & Geroscience Research Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Duque G, Feehan J, Tripodi N, Kondrikov D, Wijeratne T, Gimble J, Hill W, Apostolopoulos V. Differential responses to aging amongst the transcriptome and proteome of mesenchymal progenitor populations. RESEARCH SQUARE 2023:rs.3.rs-3755129. [PMID: 38168272 PMCID: PMC10760299 DOI: 10.21203/rs.3.rs-3755129/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The biological aging of mesenchymal stem cells is proposed to contribute to the development of a range of musculoskeletal and systemic diseases associated with older adults, such as osteoporosis, sarcopenia, and frailty. Despite this, little is understood about the specific mechanisms which drive this stem cell exhaustion, with most studies evaluating indirect effects of other aging changes, such as DNA damage, senescence, and inflammaging. In this study, we assess the transcriptomic and proteomic changes in three different populations of mesenchymal progenitor cells from older (50-70 years) and younger (20-40 years) individuals to uncover potential mechanisms driving stem cell exhaustion in mesenchymal tissues. To do this, we harvested primary bone marrow mesenchymal stem and progenitor cells (MPCs), circulating osteoprogenitors (COP), and adipose-derived stem cells (ADSCs) from younger and older donors, with an equal number of samples from males and females. These samples underwent RNA sequencing and label-free proteomic analysis, comparing the younger samples to the older ones. There was a distinct transcriptomic phenotype associated with the pooled older stem cells, indicative of suppressed proliferation and differentiation; however, there was no consistent change in the proteome of the cells. Older MPCs had a distinct phenotype in both the transcriptome and proteome, again consistent with altered differentiation and proliferation, but also a pro-inflammatory immune shift in older adults. COP cells showed a strong transcriptomic shift to pro-inflammatory signaling but no consistent proteomic phenotype. Similarly, ADSCs displayed transcriptomic shift in physiologies associated with cell migration, adherence, and immune activation, but no consistent proteomic change with age. These results show that there are underlying transcriptomic changes with stem cell aging that likely contribute to a decline in tissue regeneration; however, contextual factors such as the microenvironment and general health status also have a strong role in this.
Collapse
|
5
|
Circulating Osteogenic Progenitor Cells Enhanced with Teriparatide or Denosumab Treatment. J Clin Med 2022; 11:jcm11164749. [PMID: 36012987 PMCID: PMC9409740 DOI: 10.3390/jcm11164749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Circulating osteogenic precursor (COP) cells are peripheral blood cells with a capacity for osteogenesis. The objective of our study was to ascertain the percentage of COPs as an early biomarker of osteoporosis and the effect of these cells in response to Denosumab (DmAb) (anti-resorptive) or to Teriparatide (TPDP) (anabolic) as very effective drugs in the treatment of the illness. A first study was conducted on healthy volunteers, with three age ranges, to determine the percentage of COPs and relate it to their anthropometric and biochemical characteristics, followed by a second longitudinal study on patients with osteoporosis, whereby one group of patients was treated with TPTD and another with DmAb. All were analyzed by cytometry for COP percentage in blood, bone turnover markers, and bone mass. Our findings show that COPs are influenced by age and become more prolific in the stages of growth and skeletal maturation. A higher percentage of COPs is found in osteoporotic disease, which could constitute a predictive marker thereof. We also show how treatment with TPTD or DmAb mobilizes circulating osteogenic precursors in the blood. Significant increases in % COPs were observed after 12 months of treatment with Dmb (21.9%) and TPTD (17%). These results can be related to an increase in osteogenesis and, consequently, a better and more efficient repair of bone tissue.
Collapse
|
6
|
Ledoux C, Boaretti D, Sachan A, Müller R, Collins CJ. Clinical Data for Parametrization of In Silico Bone Models Incorporating Cell-Cytokine Dynamics: A Systematic Review of Literature. Front Bioeng Biotechnol 2022; 10:901720. [PMID: 35910035 PMCID: PMC9335409 DOI: 10.3389/fbioe.2022.901720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In silico simulations aim to provide fast, inexpensive, and ethical alternatives to years of costly experimentation on animals and humans for studying bone remodeling, its deregulation during osteoporosis and the effect of therapeutics. Within the varied spectrum of in silico modeling techniques, bone cell population dynamics and agent-based multiphysics simulations have recently emerged as useful tools to simulate the effect of specific signaling pathways. In these models, parameters for cell and cytokine behavior are set based on experimental values found in literature; however, their use is currently limited by the lack of clinical in vivo data on cell numbers and their behavior as well as cytokine concentrations, diffusion, decay and reaction rates. Further, the settings used for these parameters vary across research groups, prohibiting effective cross-comparisons. This review summarizes and evaluates the clinical trial literature that can serve as input or validation for in silico models of bone remodeling incorporating cells and cytokine dynamics in post-menopausal women in treatment, and control scenarios. The GRADE system was used to determine the level of confidence in the reported data, and areas lacking in reported measures such as binding site occupancy, reaction rates and cell proliferation, differentiation and apoptosis rates were highlighted as targets for further research. We propose a consensus for the range of values that can be used for the cell and cytokine settings related to the RANKL-RANK-OPG, TGF-β and sclerostin pathways and a Levels of Evidence-based method to estimate parameters missing from clinical trial literature.
Collapse
Affiliation(s)
- Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Akanksha Sachan
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Caitlyn J. Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department for Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VI,United States
- *Correspondence: Caitlyn J. Collins,
| |
Collapse
|
7
|
Shen H, Jiang W, Yu Y, Feng Y, Zhang T, Liu Y, Guo L, Zhou N, Huang X. microRNA-146a mediates distraction osteogenesis via bone mesenchymal stem cell inflammatory response. Acta Histochem 2022; 124:151913. [PMID: 35759812 DOI: 10.1016/j.acthis.2022.151913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
Distraction osteogenesis (DO) is a widely used surgical technique to repair bone defects, partly owing to its high efficiency in inducing osteogenesis; however, the process of osteogenesis is complex, and the precise mechanism is still unclear. Among the factors identified for an effective DO procedure, well-controlled inflammation is essential. We aimed to explore how microRNA(miR)-146a, a negative regulator of inflammation, influences osteogenesis in DO. First, we established canine right mandibular DO and bone fracture models to evaluate the expression level of miR-146a in response to these procedures. Second, bone marrow mesenchymal stem cells (BMSCs) were isolated from healthy puppies and cultured with lipopolysaccharide (LPS) to observe how inflammation affects osteogenesis. Finally, the osteogenesis activity of BMSCs transfected with lentiviral vector either overexpressing (miR-146a-up) or inhibited for miR-146a expression was evaluated. miR-146a-up-transfected BMSCs were injected locally into the distraction gaps of the DO model canines. On days 42 and 56 post-surgery, the bone volume/tissue volume and bone mineral density values were evaluated via using micro-computed tomography, and newly formed tissues were harvested and evaluated via histological staining. The expression of miR-146a in both the DO canine model and LPS-stimulated BMSCs increased. Overexpression of miR-146a enhanced cell proliferation, migration, and osteogenic differentiation. Additionally, the newly formed callus was improved in canine mandibles injected with miR-146a-up-transfected BMSCs. In summary, miR-146a regulates mandibular DO by improving osteogenesis, and can serve as a potential target to shorten the therapy period of DO.
Collapse
Affiliation(s)
- Huijuan Shen
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Weidong Jiang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yangyang Yu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yuan Feng
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Tao Zhang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Yan Liu
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Lina Guo
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China
| | - Nuo Zhou
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| | - Xuanping Huang
- Departement of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, Nanning 530021, People's Republic of China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, People's Republic of China.
| |
Collapse
|
8
|
Feehan J, Nurgali K, Apostolopoulos V, Duque G. Development and validation of a new method to isolate, expand, and differentiate circulating osteogenic precursor (COP) cells. Bone Rep 2021; 15:101109. [PMID: 34368409 PMCID: PMC8326352 DOI: 10.1016/j.bonr.2021.101109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Circulating osteogenic precursor (COP) cells are a population of progenitor cells in the peripheral blood with the capacity to form bone in vitro and in vivo. They have characteristics of the mesenchymal stem and progenitor pool found in the bone marrow; however, more recently, a population of COP cells has been identified with markers of the hematopoietic lineage such as CD45 and CD34. While this population has been associated with several bone pathologies, a lack of cell culture models and inconsistent characterization has limited mechanistic research into their behavior and physiology. In this study, we describe a method for the isolation of CD45+/CD34+/alkaline phosphatase (ALP) + COP cells via fluorescence-activated cell sorting, as well as their expansion and differentiation in culture. Hematopoietic COP cells are a discreet population within the monocyte fraction of the peripheral blood mononuclear cells, which form proliferative, fibroblastoid colonies in culture. Their expression of hematopoietic markers decreases with time in culture, but they express markers of osteogenesis and deposit calcium with differentiation. It is hoped that this will provide a standard for their isolation, for consistency in future research efforts, to allow for the translation of COP cells into clinical settings.
Collapse
Affiliation(s)
- Jack Feehan
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Gustavo Duque
- Department of Medicine – Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), The University of Melbourne, Western Health and Victoria University, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Corresponding author at: Level 3, Western Centre for Health Research and Education, Sunshine Hospital, Furlong Road, St Albans, 3021 Melbourne, Australia.
| |
Collapse
|
9
|
Smith C, Lin X, Scott D, Brennan-Speranza TC, Al Saedi A, Moreno-Asso A, Woessner M, Bani Hassan E, Eynon N, Duque G, Levinger I. Uncovering the Bone-Muscle Interaction and Its Implications for the Health and Function of Older Adults (the Wellderly Project): Protocol for a Randomized Controlled Crossover Trial. JMIR Res Protoc 2021; 10:e18777. [PMID: 33835038 PMCID: PMC8065561 DOI: 10.2196/18777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bone and muscle are closely linked anatomically, biochemically, and metabolically. Acute exercise affects both bone and muscle, implying a crosstalk between the two systems. However, how these two systems communicate is still largely unknown. We will explore the role of undercarboxylated osteocalcin (ucOC) in this crosstalk. ucOC is involved in glucose metabolism and has a potential role in muscle maintenance and metabolism. OBJECTIVE The proposed trial will determine if circulating ucOC levels in older adults at baseline and following acute exercise are associated with parameters of muscle function and if the ucOC response to exercise varies between older adults with low muscle quality and those with normal or high muscle quality. METHODS A total of 54 men and women aged 60 years or older with no history of diabetes and warfarin and vitamin K use will be recruited. Screening tests will be performed, including those for functional, anthropometric, and clinical presentation. On the basis of muscle quality, a combined equation of lean mass (leg appendicular skeletal muscle mass in kg) and strength (leg press; one-repetition maximum), participants will be stratified into a high or low muscle function group and randomized into the controlled crossover acute intervention. Three visits will be performed approximately 7 days apart, and acute aerobic exercise, acute resistance exercise, and a control session (rest) will be completed in any order. Our primary outcome for this study is the effect of acute exercise on ucOC in older adults with low muscle function and those with high muscle function. RESULTS The trial is active and ongoing. Recruitment began in February 2018, and 38 participants have completed the study as of May 26, 2019. CONCLUSIONS This study will provide novel insights into bone and muscle crosstalk in older adults, potentially identifying new clinical biomarkers and mechanistic targets for drug treatments for sarcopenia and other related musculoskeletal conditions. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12618001756213; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375925. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/18777.
Collapse
Affiliation(s)
- Cassandra Smith
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Xuzhu Lin
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - David Scott
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia.,Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Tara C Brennan-Speranza
- School of Medical Sciences and School of Public Health, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia
| | - Mary Woessner
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ebrahim Bani Hassan
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nir Eynon
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Department of Medicine-Western Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Itamar Levinger
- Australian Institute for Musculoskeletal Science, University of Melbourne and Western Health, Melbourne, VIC, Australia.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Feehan J, Kassem M, Pignolo RJ, Duque G. Bone From Blood: Characteristics and Clinical Implications of Circulating Osteogenic Progenitor (COP) Cells. J Bone Miner Res 2021; 36:12-23. [PMID: 33118647 DOI: 10.1002/jbmr.4204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
Circulating osteogenic progenitor (COP) cells are a population of cells in the peripheral blood with the capacity for bone formation, as well as broader differentiation into mesoderm-like cells in vitro. Although some of their biological characteristics are documented in vitro, their role in diseases of the musculoskeletal system remains yet to be fully evaluated. In this review, we provide an overview of the role of COP cells in a number of physiological and pathological conditions, as well as identify areas for future research. In addition, we suggest possible areas for clinical utilization in the management of musculoskeletal diseases. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jack Feehan
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia.,Department of Medicine, University of Melbourne-Western Health, Melbourne, VIC, Australia
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Robert J Pignolo
- Department of Medicine, Mayo Clinic School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia.,Department of Medicine, University of Melbourne-Western Health, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Patino E, Doty SB, Bhatia D, Meza K, Zhu YS, Rivella S, Choi ME, Akchurin O. Carbonyl iron and iron dextran therapies cause adverse effects on bone health in juveniles with chronic kidney disease. Kidney Int 2020; 98:1210-1224. [PMID: 32574618 PMCID: PMC7606334 DOI: 10.1016/j.kint.2020.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022]
Abstract
Anemia is a frequent complication of chronic kidney disease (CKD), related in part to the disruption of iron metabolism. Iron therapy is very common in children with CKD and excess iron has been shown to induce bone loss in non-CKD settings, but the impact of iron on bone health in CKD remains poorly understood. Here, we evaluated the effect of oral and parenteral iron therapy on bone transcriptome, bone histology and morphometry in two mouse models of juvenile CKD (adenine-induced and 5/6-nephrectomy). Both modalities of iron therapy effectively improved anemia in the mice with CKD, and lowered bone Fgf23 expression. At the same time, iron therapy suppressed genes implicated in bone formation and resulted in the loss of cortical and trabecular bone in the mice with CKD. Bone resorption was activated in untreated CKD, but iron therapy had no additional effect on this. Furthermore, we assessed the relationship between biomarkers of bone turnover and iron status in a cohort of children with CKD. Children treated with iron had lower levels of circulating biomarkers of bone formation (bone-specific alkaline phosphatase and the amino-terminal propeptide of type 1 procollagen), as well as fewer circulating osteoblast precursors, compared to children not treated with iron. These differences were independent of age, sex, and glomerular filtration rate. Thus, iron therapy adversely affected bone health in juvenile mice with CKD and was associated with low levels of bone formation biomarkers in children with CKD.
Collapse
Affiliation(s)
- Edwin Patino
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stephen B Doty
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kelly Meza
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Yuan-Shan Zhu
- Clinical and Translational Science Center, Weill Cornell Medicine, New York, New York, USA; Division of Endocrinology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Stefano Rivella
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA
| | - Oleh Akchurin
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA; NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York, USA.
| |
Collapse
|
12
|
Increase in bone metabolic markers and circulating osteoblast-lineage cells after orthognathic surgery. Sci Rep 2019; 9:20106. [PMID: 31882726 PMCID: PMC6934478 DOI: 10.1038/s41598-019-56484-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 12/12/2019] [Indexed: 12/30/2022] Open
Abstract
Increased mineralisation rate and bone formation after surgery or fracture is the regional acceleratory phenomenon (RAP), and its systemic impact is the systemic acceleratory phenomenon (SAP). The proportion of circulating osteoblast lineage cells, including osteocalcin-positive (OCN+) cells, in the peripheral blood is markedly higher during pubertal growth and in patients with bone fractures. This study aimed to elucidate the dynamic changes in bone metabolic activity after orthognathic surgery by longitudinal prospective observation. Peripheral venous blood samples were collected from patients who had undergone orthognathic surgery, and serum bone metabolic markers and the proportion of OCN+ cells were measured. Orthognathic surgery induces systemic dynamic changes in bone metabolic activity by targeting steps in the bone healing process and related proteins, such as surgical stress/inflammation (C-reactive protein), bone resorption (type I collagen C-telopeptide), and bone formation (alkaline phosphatase and bone-specific alkaline phosphatase). During the early post-operative period, the population of OCN+ cells significantly increased. Confocal microscopy revealed that OCN proteins were localised in the cytoplasm in Triton X-100-treated OCN+ cells. Furthermore, OCN, ALP, and COL1A1 gene expression was detected in OCN+ cells, suggesting the contribution of the local maturation of bone marrow-derived OCN+ cells at the site of bone healing.
Collapse
|
13
|
Therapeutic effects of whole-body vibration on fracture healing in ovariectomized rats: a systematic review and meta-analysis. Menopause 2019; 26:677-686. [PMID: 30562321 DOI: 10.1097/gme.0000000000001285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Whole-body vibration (WBV), providing cyclic mechanical stimulation, has been used to accelerate fracture healing in preclinical studies. This study aimed to summarize and evaluate the effects of WBV on bone healing in ovariectomized rat models and then analyze its potential effects on fractures in human postmenopausal osteoporosis. METHODS PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, VIP, SinoMed, and WanFang databases were searched from their inception date to September 2017, and an updated search was conducted in January 2018. Studies that evaluated the effects of WBV on bone healing compared with control groups in ovariectomized rats were included. Two authors selected studies, extracted data, and assessed the methodological quality. Meta-analyses were performed when the same outcomes were reported in two or more studies. RESULTS Nine eligible studies were selected. In treatment groups, callus areas were significantly improved in the first 3 weeks, normalized total bone volume and total tissue volume values increased dramatically at 8 weeks, and the mechanical tests showed a significant difference at the end point of the study. CONCLUSIONS This study suggested that WBV could accelerate callus formation in the early phase of bone healing, promote callus mineralization and maturity in the later phase, and restore mechanical properties of bones.
Collapse
|
14
|
Circulating osteogenic precursor cells: Building bone from blood. EBioMedicine 2018; 39:603-611. [PMID: 30522933 PMCID: PMC6354620 DOI: 10.1016/j.ebiom.2018.11.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Circulating osteogenic precursor (COP) cells constitute a recently discovered population of circulating progenitor cells with the capacity to form not only bone but other mesenchymal tissues. There is a small, but growing body of literature exploring these cells, but with a great deal of disagreement and contradiction within it. This review explores the origins and biological characterization of these cells, including the identification strategies used to isolate these cells from the peripheral blood. It also examines the available knowledge on the in vitro and in vivo behaviour of these cells, in the areas of plastic adherence, differentiation capacity, proliferation, and cellular homing. We also review the implications for future use of COP cells in clinical practice, particularly in the area of regenerative medicine and the treatment and assessment of musculoskeletal disease. Circulating Osteogenic Precursors are circulating cells with characteristics of bone marrow mesenchymal stem cells. They are able to differentiate into bone, fat, cartilage and muscle, but many other characteristics remain unknown. They are heterogenous, with at least two specific populations present, with displaying different markers and behaviors.
Collapse
|
15
|
Wang X, Wang C, Gou W, Xu X, Wang Y, Wang A, Xu W, Guo Q, Liu S, Lu Q, Meng H, Yuan M, Peng J, Lu S. The optimal time to inject bone mesenchymal stem cells for fracture healing in a murine model. Stem Cell Res Ther 2018; 9:272. [PMID: 30359311 PMCID: PMC6202840 DOI: 10.1186/s13287-018-1034-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bone marrow is an important source of stem cells, which can promote bone fracture healing. METHODS We investigated the optimal time to inject bone marrow mesenchymal stem cells (BMSCs) in a C57 murine unilateral, transverse, femur fracture model. BMSCs transfected with red fluorescent protein (RFP-BMSCs) were injected via the tail vein on day 1, 7, or 14 post-fracture. AMD3100 (inhibitor of stromal cell-derived factor 1 [SDF-1]) was also injected before RFP-BMSCs in one group for comparison; a control group received saline injections. RFP-BMSC migration and fracture healing were evaluated by in vivo fluorescence assay. Micro-CT was performed and mechanical testing and histological analysis. Chemokine levels were evaluated by quantitative real-time PCR and western blotting. RESULTS Following injection on day 7 post-fracture, RFP-BMSCs more frequently homed to the fracture site and remained for a longer duration. Bone volume and bone mineral density were increased when BMSCs were injected on day 7 post-fracture (P < 0.05). The mechanical properties of fractured femurs were improved following day-7 BMSC injection. Histology confirmed that BMSC injection improved the formation of new bones. CONCLUSIONS Chemokines that induce BMSC migration were highly expressed, and protein levels of osteogenesis-related factors were increased. Seven days after fracture may be the optimal time for injection of BMSCs to promote fracture healing. Additionally, the SDF-1/CXCR4 pathway may play an important role in fracture healing following BMSC injection.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Cheng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wenlong Gou
- Department of Orthopaedics, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaolong Xu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qiang Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Mei Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Kelly RR, McDonald LT, Pellegrini VD, Cray JJ, Larue AC. Identification of circulating murine CD34 +OCN + cells. Cytotherapy 2018; 20:1371-1380. [PMID: 30340982 DOI: 10.1016/j.jcyt.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AIMS Previous studies identified a circulating human osteoblastic population that expressed osteocalcin (OCN), increased following fracture and pubertal growth, and formed mineralized colonies in vitro and bone in vivo. A subpopulation expressed CD34, a hematopoietic/endothelial marker. These findings led to our hypothesis that hematopoietic-derived CD34+OCN+ cells exist in the circulation of mice and are modulated after fracture. METHODS Flow cytometry was used to identify CD34+OCN+ cells in male B6.SJL-PtprcaPepcb/BoyJ and Vav-Cre/mTmG (VavR) mice. Non-stabilized tibial fractures were created by three-point bend. Fractures were longitudinally imaged by micro-computed tomography, and immunofluorescent staining was used to evaluate CD34+OCN+ cells within fracture callus. AMD3100 (10 mg/kg) was injected subcutaneously for 3 days and the CD34+OCN+ population was evaluated by flow cytometry. RESULTS Circulating CD34+OCN+ cells were identified in mice and confirmed to be of hematopoietic origin (CD45+; Vav1+) using two mouse models. Both circulating and bone marrow-derived CD34+OCN+ cells peaked three weeks post-non-stabilized tibial fracture, suggesting association with cartilage callus transition to bone and early mineralization. Co-expression of CD34 and OCN in the fracture callus at two weeks post-fracture was observed. By three weeks, there was 2.1-fold increase in number of CD34+OCN+ cells, and these were observed throughout the fracture callus. AMD3100 altered CD34+OCN+ cell levels in peripheral blood and bone marrow. DISCUSSION Together, these data demonstrate a murine CD34+OCN+ circulating population that may be directly involved in fracture repair. Future studies will molecularly characterize CD34+OCN+ cells, determine mechanisms regulating their contribution, and examine if their number correlates with improved fracture healing outcomes.
Collapse
Affiliation(s)
- Ryan R Kelly
- Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lindsay T McDonald
- Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Vincent D Pellegrini
- Department of Orthopedics, Medical University of South Carolina, Charleston, SC, USA
| | - James J Cray
- Division of Anatomy, The Ohio State University, Columbus, OH, USA
| | - Amanda C Larue
- Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
17
|
Sassi F, Buondonno I, Luppi C, Spertino E, Stratta E, Di Stefano M, Ravazzoli M, Isaia G, Trento M, Passera P, Porta M, Isaia GC, D’Amelio P. Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord 2018; 18:55. [PMID: 30089481 PMCID: PMC6083573 DOI: 10.1186/s12902-018-0283-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/01/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Here we study the effect of type 2 diabetes (T2DM) on bone cell precursors, turnover and cytokines involved in the control of bone cell formation and activity. METHODS We enrolled in the study 21 T2DM women and 21 non diabetic controls matched for age and body mass index (BMI). In each subject we measured bone cell precursors, Receptor Activator of Nuclear Factor κB (RANKL), Osteoprotegerin (OPG), Sclerostin (SCL) and Dickoppf-1 (DKK-1) as cytokines involved in the control of osteoblast and osteoclast formation and activity, bone density (BMD) and quality trough trabecular bone score (TBS) and bone turnover. T2DM patients and controls were compared for the analyzed variables by one way ANOVA for Gaussian ones and by Mann-Whitney or Kruskal-Wallis test for non-Gaussian variables. RESULTS RANKL was decreased and DKK-1 increased in T2DM. Accordingly, patients with T2DM have lower bone turnover compared to controls. BMD and TBS were not significantly different from healthy controls. Bone precursor cells were more immature in T2DM. However the number of osteoclast precursors was increased and that of osteoblasts decreased. CONCLUSIONS Patients with T2DM have more immature bone cells precursors, with increased number of osteoclasts and decreased osteoblasts, confirming low bone turnover and reduced cytokines such as RANKL and DKK-1. BMD and TBS are not significantly altered in T2DM although, in contrast with other studies, this may be due to the match of patients and controls for BMI rather than age.
Collapse
Affiliation(s)
- Francesca Sassi
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Ilaria Buondonno
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Chiara Luppi
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Elena Spertino
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Emanuela Stratta
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Marco Di Stefano
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Marco Ravazzoli
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Gianluca Isaia
- Geriatric Division, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Marina Trento
- Department of Medical Science, Internal Medicine, University of Torino, Torino, Italy
| | - Pietro Passera
- Department of Medical Science, Internal Medicine, University of Torino, Torino, Italy
| | - Massimo Porta
- Department of Medical Science, Internal Medicine, University of Torino, Torino, Italy
| | - Giovanni Carlo Isaia
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| | - Patrizia D’Amelio
- Department of Medical Science, Gerontology and Bone Metabolic Diseases, University of Torino, Corso Bramante 88/90, 10126 Torino, Italy
| |
Collapse
|
18
|
Salamanna F, Borsari V, Contartese D, Nicoli Aldini N, Fini M. Link between estrogen deficiency osteoporosis and susceptibility to bone metastases: A way towards precision medicine in cancer patients. Breast 2018; 41:42-50. [PMID: 30007267 DOI: 10.1016/j.breast.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023] Open
Abstract
Different fields of cancer management consider bone health to be of increasing clinical importance for patients: 1) presence of bone metastases in many solid tumors, 2) use of bone-targeted treatments in the reduction of bone metastasis, 3) effects of cancer treatment on reproductive hormones, critical for normal bone remodeling maintenance. Additionally, bone microenvironment is further complicated by the decline of ovarian sex steroid production and by the related increase in inflammatory factors linked to menopause, which result in accelerated bone loss and increased risk of osteoporosis (OP). Similarly, cancers and metastasis to bone showed a close relationship with sex hormones (particularly estrogen). Thus, these findings raise a question: Could pre-existing estrogen deficiency OP promote and/or influence cancer cell homing and tumor growth in bone? Although some preclinical and clinical evidence exists, it is mandatory to understand this aspect that would be relevant in the clinical theatre, where physicians need to understand the treatments available to reduce the risk of skeletal disease in cancer patients. This descriptive systematic review summarizes preclinical and clinical studies dealing with bimodal interactions between pre-existing estrogen deficiency OP and bone metastasis development and provides evidence supporting differences in tumor growth and colonization between healthy and OP status. Few studies evaluated the impact of estrogen deficiency OP on the susceptibility to bone metastases. Therefore, implementing biological knowledge, could help researchers and clinicians to have a better comprehension of the importance of pre- and post-menopausal bone microenvironment and its clinical implications for precision medicine in cancer patients.
Collapse
Affiliation(s)
- F Salamanna
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - V Borsari
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - D Contartese
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - N Nicoli Aldini
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - M Fini
- Laboratory of Biomechanics and Technology Innovation, Rizzoli RIT Department, IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| |
Collapse
|
19
|
Hebb JH, Ashley JW, McDaniel L, Lopas LA, Tobias J, Hankenson KD, Ahn J. Bone healing in an aged murine fracture model is characterized by sustained callus inflammation and decreased cell proliferation. J Orthop Res 2018; 36:149-158. [PMID: 28708309 PMCID: PMC6385606 DOI: 10.1002/jor.23652] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/11/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Geriatric fractures take longer to heal and heal with more complications than those of younger patients; however, the mechanistic basis for this difference in healing is not well understood. To improve this understanding, we investigated cell and molecular differences in fracture healing between 5-month-old (young adult) and 25-month-old (geriatric) mice healing utilizing high-throughput analysis of gene expression. Mice underwent bilateral tibial fractures and fracture calluses were harvested at 5, 10, and 20 days post-fracture (DPF) for analysis. Global gene expression analysis was performed using Affymetrix MoGene 1.0 ST microarrays. After normalization, data were compared using ANOVA and evaluated using Principal Component Analysis (PCA), CTen, heatmap, and Incromaps analysis. PCA and cross-sectional heatmap analysis demonstrated that DPF followed by age had pronounced effects on changes in gene expression. Both un-fractured and 20 DPF aged mice showed increased expression of immune-associated genes (CXCL8, CCL8, and CCL5) and at 10 DPF, aged mice showed increased expression of matrix-associated genes, (Matn1, Ucma, Scube1, Col9a1, and Col9a3). Cten analysis suggested an enrichment of CD8+ cells and macrophages in old mice relative to young adult mice and, conversely, a greater prevalence of mast cells in young adult mice relative to old. Finally, consistent with the PCA data, the classic bone healing pathways of BMP, Indian Hedgehog, Notch and Wnt clustered according to the time post-fracture first and age second. CLINICAL SIGNIFICANCE Greater understanding of age-dependent molecular changes with healing will help form a mechanistic basis for therapies to improve patient outcomes. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:149-158, 2018.
Collapse
Affiliation(s)
- John H Hebb
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jason W Ashley
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Department of Biology, College of Science, Technology, Engineering, and Mathematics, Eastern Washington University, Cheney, WA
| | - Lee McDaniel
- Georgetown University School of Medicine, Washington D.C
| | - Luke A Lopas
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Tobias
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Department of Orthopaedic Surgery, School of Medicine, University of Michigan, Ann Arbor, MI,Co-corresponding Authors: , Department of Orthopaedic Surgery, 2019 BSRB, 109 Zina Pitcher 48109, Phone: 734-395-7838, Jaimo Ahn, , Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market St, Suite 6121, Philadelphia, PA 19104, Phone: (215) 294-9141
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Co-corresponding Authors: , Department of Orthopaedic Surgery, 2019 BSRB, 109 Zina Pitcher 48109, Phone: 734-395-7838, Jaimo Ahn, , Department of Orthopaedic Surgery, University of Pennsylvania, 3737 Market St, Suite 6121, Philadelphia, PA 19104, Phone: (215) 294-9141
| |
Collapse
|
20
|
Wang C, Qi B, Zhang C, Cheng J. Identification of key genes influenced by fixation stability in early fracture hematoma and elucidation of their roles in fracture healing. Exp Ther Med 2017; 14:4633-4638. [PMID: 29201161 PMCID: PMC5704280 DOI: 10.3892/etm.2017.5192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to identify the key genes influenced by fixation stability in early fracture hematoma and to elucidate their roles in fracture healing. The GSE53256 gene expression profile, including six fracture hematoma tissues, was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in the fracture hematoma tissues from old rats with rigid fixation compared with semi-rigid fixation were identified using the limma package. Furthermore, Gene Ontology (GO) enrichment analysis for DEGs was performed using BiNGO, and a protein-protein interaction (PPI) network was constructed based on the Search Tool for the Retrieval of Interacting Genes database. A total of 265 DEGs (158 upregulated and 107 downregulated) in the fracture hematoma tissues were screened out. Additionally, the overrepresented GO terms were mainly associated with the extracellular region, positive regulation of locomotion and response to external stimulus. Transforming growth factor, β 1 (Tgfβ1), chemokine (C-X-C motif) ligand 12 (Cxcl12), matrix metallopeptidase 9 (mmp9) and serpin peptidase inhibitor, clade E, member 1 (serpine1) had higher degrees and were hub nodes in the PPI network. In conclusion, fixation stability may influence the fracture healing process, and important DEGs, including Cxcl12, mmp9, Tgfβ1 and serpine1, may be important in this process.
Collapse
Affiliation(s)
- Chengxue Wang
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Baochang Qi
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Congfeng Zhang
- Department of Orthopedics, The Second People's Hospital of Yushu, Changchun, Jilin 130041, P.R. China
| | - Jieping Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
21
|
Manavalan JS, Arpadi S, Tharmarajah S, Shah J, Zhang CA, Foca M, Neu N, Bell DL, Nishiyama KK, Kousteni S, Yin MT. Abnormal Bone Acquisition With Early-Life HIV Infection: Role of Immune Activation and Senescent Osteogenic Precursors. J Bone Miner Res 2016; 31:1988-1996. [PMID: 27283956 PMCID: PMC5399769 DOI: 10.1002/jbmr.2883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Chronic immune activation associated with human immunodeficiency virus (HIV) infection may have negative consequences on bone acquisition in individuals infected with HIV early in life. Bone mineral density (BMD) and microarchitecture were characterized in 38 HIV-infected men on antiretroviral therapy (18 perinatally-infected, 20 adolescence-infected) and 20 uninfected men age 20 to 25 years by dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT). Flow cytometry was utilized to measure CD4+/CD8+ activation (HLADR+CD38+) and senescence (CD28-CD57+) and to quantify circulating osteogenic precursor (COP) cells in peripheral blood mononuclear cells using antibodies to RUNX2 and osteocalcin (OCN). Telomere lengths were measured in sorted COP cells using qPCR. DXA-derived areal BMD Z-scores and HRpQCT-derived volumetric BMD (vBMD) measures were lower in HIV-infected than uninfected men. Proportion of activated and senescent CD4+ and CD8+ T cells were higher in HIV-infected than uninfected men. The percentage of COP cells (mean ± SE) was lower in HIV-infected than uninfected (0.19% ± 0.02% versus 0.43% ± 0.06%; p < 0.0001) men, and also lower in perinatally-infected than adolescence-infected men (0.15% ± 0.02% versus 0.22% ± 0.03%; p < 0.04). A higher proportion of COP cells correlated with higher bone stiffness, a measure of bone strength, whereas a higher proportion of activated CD4+ T cells correlated with lower BMD and stiffness and lower proportion of COP cells. T cell activation with HIV-infection was associated with decreased numbers of osteogenic precursors as well as lower peak bone mass and bone strength. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John S Manavalan
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Stephen Arpadi
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | | | - Jayesh Shah
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Chiyuan A Zhang
- Department of Medicine, University of California, San Francisco, CA
| | - Marc Foca
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Natalie Neu
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - David L Bell
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Kyle K Nishiyama
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Michael T Yin
- Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
22
|
Shi Y, Wang F, Tiwari S, Yesilbas M, Steubesand N, Weitkamp JT, Klüter T, Lippross S, Eglin D, Seekamp A, Fuchs S. Role of myeloid early endothelial progenitor cells in bone formation and osteoclast differentiation in tissue construct based on hydroxyapatite poly(ester-urethane) scaffolds. J Orthop Res 2016; 34:1922-1932. [PMID: 26945676 DOI: 10.1002/jor.23222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
Engineering of a vascularized bone construct is a highly challenging task which needs to take into account the impact of different components on the bone regeneration process. Bone repair influencing factors in such constructs range from the material properties and scaffold design, to the interaction of different cell types contributing to bone formation and remodeling or neovascularization, respectively. In this context, early endothelial progenitor cells (EPC), mononuclear cells isolated from the peripheral blood, express the endothelial marker CD31 but also a series of myeloid markers and have been shown to support the formation of vessel-like structures. These cells are also characterized by a highly adaptable phenotype influenced by other cells creating an instructive niche. The present study was designed to investigate the impact of EPC on bone formation or remodeling using a co-culture system of outgrowth endothelial cells, mature endothelial cells isolated from the peripheral blood cell cultures, and mesenchymal stem cells grown on hydroxyapatite poly(ester-urethane) scaffolds. The formation of vessel-like structures in these constructs was shown by CLSM and immunohistochemistry and further evaluated by real time RT-PCR. Osteogenic differentiation in these constructs was investigated by von Kossa, Alizarin Red, and real time PCR. Data indicated that osteogenic differentiation occurred within the constructs after 14 days of culture but without a direct influence by EPC in this process. Finally, although we observed a series of osteoclast related makers in the constructs when EPC were included, no indications for an increased osteoclast-like activity, which might lead to increased bone resorption, were observed. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1922-1932, 2016.
Collapse
Affiliation(s)
- Yang Shi
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - Fanlu Wang
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - Sanjay Tiwari
- Molecular Imaging North Competence Center (MOINCC), Kiel, Germany
| | - Meran Yesilbas
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - Nadine Steubesand
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - Jan-Tobias Weitkamp
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - Tim Klüter
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - Sebastian Lippross
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - David Eglin
- AO Research Institute Davos, Davos, Switzerland
| | - Andreas Seekamp
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Arnold-Heller-Straße 3, University Medical Center Schleswig-Holstein, UKSH, 24105, Kiel, Germany
| |
Collapse
|
23
|
Mori G, D'Amelio P, Faccio R, Brunetti G. Bone-immune cell crosstalk: bone diseases. J Immunol Res 2015; 2015:108451. [PMID: 26000310 PMCID: PMC4427089 DOI: 10.1155/2015/108451] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 01/14/2023] Open
Abstract
Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.
Collapse
Affiliation(s)
- Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Patrizia D'Amelio
- Department of Medical Science, Section of Gerontology and Bone Metabolism Diseases, University of Torino, 10126 Torino, Italy
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy
| |
Collapse
|
24
|
Immunohistochemical identification of osteoclasts and multinucleated macrophages. Cell Immunol 2014; 292:53-6. [DOI: 10.1016/j.cellimm.2014.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 02/07/2023]
|
25
|
In-vivo imaging of the fracture healing in medaka revealed two types of osteoclasts before and after the callus formation by osteoblasts. Dev Biol 2014; 394:292-304. [PMID: 25131195 DOI: 10.1016/j.ydbio.2014.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/28/2014] [Accepted: 08/09/2014] [Indexed: 11/22/2022]
Abstract
The fracture healing research, which has been performed in mammalian models not only for clinical application but also for bone metabolism, revealed that generally osteoblasts are induced to enter the fracture site before the induction of osteoclasts for bone remodeling. However, it remains unknown how and where osteoclasts and osteoblasts are induced, because it is difficult to observe osteoclasts and osteoblasts in a living animal. To answer these questions, we developed a new fracture healing model by using medaka. We fractured one side of lepidotrichia in a caudal fin ray without injuring the other soft tissues including blood vessels. Using the transgenic medaka in which osteoclasts and osteoblasts were visualized by GFP and DsRed, respectively, we found that two different types of functional osteoclasts were induced before and after osteoblast callus formation. The early-induced osteoclasts resorbed the bone fragments and the late-induced osteoclasts remodeled the callus. Both types of osteoclasts were induced near the surface on the blood vessels, while osteoblasts migrated from adjacent fin ray. Transmission electron microscopy revealed that no significant ruffled border and clear zone were observed in early-induced osteoclasts, whereas the late-induced osteoclasts had clear zones but did not have the typical ruffled border. In the remodeling of the callus, the expression of cox2 mRNA was up-regulated at the fracture site around vessels, and the inhibition of Cox2 impaired the induction of the late-induced osteoclasts, resulting in abnormal fracture healing. Finally, our developed medaka fracture healing model brings a new insight into the molecular mechanism for controlling cellular behaviors during the fracture healing.
Collapse
|
26
|
Fındık Y, Baykul T. Effects of low-intensity pulsed ultrasound on autogenous bone graft healing. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 117:e255-60. [DOI: 10.1016/j.oooo.2012.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/26/2012] [Accepted: 05/29/2012] [Indexed: 12/22/2022]
|
27
|
|
28
|
Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. INTERNATIONAL ORTHOPAEDICS 2013; 37:2491-8. [PMID: 23948983 DOI: 10.1007/s00264-013-2059-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/26/2013] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are non-haematopoietic stromal stem cells that have many sources, such as bone marrow, periosteum, vessel walls, adipose, muscle, tendon, peripheral circulation, umbilical cord blood, skin and dental tissues. They are capable of self-replication and of differentiating into, and contributing to the regeneration of, mesenchymal tissues, such as bone, cartilage, ligament, tendon, muscle and adipose tissue. The homing of MSCs may play an important role in the repair of bone fractures. As a composite material, the formation and growth of bone tissue is a complex process, including molecular, cell and biochemical metabolic changes. The recruitment of factors with an adequate number of MSCs and the micro-environment around the fracture are effective for fracture repair. Several studies have investigated the functional expression of various chemokine receptors, trophic factors and adhesion molecules in human MSCs. Many external factors affect MSC homing. MSCs have been used as seed cells in building tissue-engineered bone grafts. Scaffolds seeded with MSCs are most often used in tissue engineering and include biotic and abiotic materials. This knowledge provides a platform for the development of novel therapies for bone regeneration with endogenous MSCs.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Peoples Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Jawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, Babij P, Genovese MC. Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res 2013; 31:155-63. [PMID: 22887736 DOI: 10.1002/jor.22186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/12/2012] [Indexed: 02/04/2023]
Abstract
Sclerostin is a glycoprotein secreted by osteocytes and inhibits osteoblastogenesis via inhibition of Wnt signaling. We hypothesized that sclerostin antibody (Scl-AbIII) would accelerate the healing of a murine femoral non-critical size bone defect model. A unilateral and unicortical 0.8 mm-sized drill hole was made in the proximal femoral shaft of adult female nude mice. One group of mice received subcutaneous injections of Scl-AbIII and a second group received vehicle only. Reporter MC3T3 osteoprogenitor cells were injected via the tail vein 3 days after surgery to monitor systemic trafficking of exogenous osteoprogenitors. Bioluminescence imaging (BLI), microcomputed tomography (microCT), micropositron emission tomography (microPET) and histological analysis were used to compare the bone healing responses to Scl-AbIII treatment. Bone mineral density (BMD) significantly increased at the defect site after week 1, and was significantly higher in the treatment compared with the control group at all time points. This finding was also confirmed on histological analysis by increased deposition of new woven bone. MicroPET scanning showed a trend for greater activity in the control group at day 21 compared with the Scl-AbIII group, indicating early bone maturation following treatment with Scl-AbIII. Whereas the BLI signals derived from the injected osteoprogenitor cells showed no differences between vehicle and Scl-AbIII treated groups, systemic migration of MC3T3 cells to the bone defect was clearly identified in both groups using immunohistochemistry. Systemic administration of Scl-AbIII resulted in earlier healing and maturation of a non-critical size bone defect. These findings underscore the potential use of Scl-AbIII for treatment of complicated fractures, non-unions, and other clinical scenarios.
Collapse
Affiliation(s)
- Muhammad U Jawad
- Department of Orthopaedic Surgery, Stanford University, 450 Broadway Street, Mail Code 6342 Redwood City, Stanford, California 94063, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wong HL, Siu WS, Shum WT, Gao S, Leung PC, Ko CH. Application of Chinese herbal medicines to revitalize adult stem cells for tissue regeneration. Chin J Integr Med 2012; 18:903-8. [PMID: 23238998 DOI: 10.1007/s11655-012-1293-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Indexed: 12/11/2022]
Abstract
It has been established in the recent several decades that adult stem cells play a crucial role in tissue renewal and regeneration. Adult stem cells locate in certain organs can differentiate into functional entities such as macrophages and bone cells. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are two of the most important populations of adult stem cells. The application of these stem cells offers a new insight in treating various pathological conditions, through replenishing cells of specific functions by turning on or off the differentiating program within quiescent stem cell niches. Apart from that, they are also capable to travel through the circulation, migrate to injury sites and differentiate to enhance regeneration process. Recently, Chinese medicine (CM) has shown to be potential candidates to activate adult stem cells for tissue regeneration. This review summarizes our own, as well as others' findings concerning the use of Chinese herbal medicine in the regulation processes of adult stem cells differentiation and their movement in tissue repair and rejuvenation. A number of Chinese herbs are used as therapeutic agents and presumably preventive agents on metabolic disorders. In our opinion, the activation of adult stem cells self-regeneration not only provides a novel way to repair tissue damage, but also reduces the use of targeted drug that adversely altering the normal metabolism of human subjects.
Collapse
Affiliation(s)
- Hing-Lok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
31
|
Owen HC, Vanhees I, Solie L, Roberts SJ, Wauters A, Luyten FP, Van Cromphaut S, Van den Berghe G. Critical illness-related bone loss is associated with osteoclastic and angiogenic abnormalities. J Bone Miner Res 2012; 27:1541-52. [PMID: 22461003 DOI: 10.1002/jbmr.1612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Critically ill patients are at increased risk of fractures during rehabilitation, and can experience impaired healing of traumatic and surgical bone fractures. In addition, markers of bone resorption are markedly increased in critically ill patients, while markers of bone formation are decreased. In the current study, we have directly investigated the effect of critical illness on bone metabolism and repair. In a human in vitro model of critical illness, Fluorescence-activated cell sorting (FACS) analysis revealed an increase in circulating CD14+/CD11b+ osteoclast precursors in critically ill patient peripheral blood compared to healthy controls. In addition, the formation of osteoclasts was increased in patient peripheral blood mononuclear cell (PBMC) cultures compared to healthy controls, both in the presence and absence of osteoclastogenic factors receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Culturing PBMCs with 10% critically ill patient serum further increased osteoclast formation and activity in patient PBMCs only, and neutralization studies revealed that immunoglobulin G (IgG) antibody signaling through the immunoreceptor Fc receptor common γ chain III (FcRγIII) played an important role. When analyzing bone formation, no differences in osteogenic differentiation were observed using human periosteal-derived cells (hPDCs) treated with patient serum in vitro, but a decrease in the expression of vascular endothelial growth factor receptor 1 (VEGF-R1) suggested impaired vascularization. This was confirmed using serum-treated hPDCs implanted onto calcium phosphate scaffolds in a murine in vivo model of bone formation, where decreased vascularization and increased osteoclast activity led to a decrease in bone formation in scaffolds with patient serum-treated hPDCs. Together, these findings may help to define novel therapeutic targets to prevent bone loss and optimize fracture healing in critically ill patients.
Collapse
Affiliation(s)
- Helen C Owen
- Department and Laboratory of Intensive Care Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
D'Amelio P, Tamone C, Sassi F, D'Amico L, Roato I, Patanè S, Ravazzoli M, Veneziano L, Ferracini R, Pescarmona GP, Isaia GC. Teriparatide increases the maturation of circulating osteoblast precursors. Osteoporos Int 2012; 23:1245-53. [PMID: 21617993 DOI: 10.1007/s00198-011-1666-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022]
Abstract
UNLABELLED This study shows that teriparatide promotes the circulating osteoblast (OB) precursor degree of maturation in patients affected by postmenopausal osteoporosis. INTRODUCTION Anabolic treatment with teriparatide has proven effective for the therapy of postmenopausal osteoporosis and significantly reduces the risk of non-vertebral fragility fractures. The aim of this study was to investigate the effect of teriparatide on circulating OB precursors. METHODS We evaluated by flow cytometry and real-time PCR the expression of OBs typical markers in peripheral blood mononuclear cells during treatment with teriparatide plus calcium and vitamin D, raloxifene plus calcium and vitamin D or calcium and vitamin D alone at various time points. Serum bone alkaline phosphatase and osteocalcin (OC) were measured as markers of bone turnover. RESULTS Our results show that circulating OB precursors are more numerous and more immature in patients affected by fragility fractures than in osteoporotic patients without fractures. We also show that teriparatide treatment increases the expression of alkaline phosphatase and of OC in OB precursors; thus, it increases their degree of maturation. CONCLUSIONS We suggest that teriparatide acts as anabolic agents also by promoting the maturation of OB precursors.
Collapse
Affiliation(s)
- P D'Amelio
- Department of Surgical and Medical Disciplines Gerontology Section, University of Torino-Italy, Corso Bramante 88/90, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
D'Amelio P, Roato I, D'Amico L, Veneziano L, Suman E, Sassi F, Bisignano G, Ferracini R, Gargiulo G, Castoldi F, Pescarmona GP, Isaia GC. Bone and bone marrow pro-osteoclastogenic cytokines are up-regulated in osteoporosis fragility fractures. Osteoporos Int 2011; 22:2869-77. [PMID: 21116815 DOI: 10.1007/s00198-010-1496-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/29/2010] [Indexed: 12/21/2022]
Abstract
UNLABELLED This study evaluates cytokines production in bone and bone marrow of patients with an osteoporotic fracture or with osteoarthritis by real time PCR, Western blot and immunohistochemistry. We demonstrate that the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in patients with osteoporotic fractures. INTRODUCTION Fragility fractures are the resultant of low bone mass and poor bone architecture typical of osteoporosis. Cytokines involved in the control of bone cell maturation and function are produced by both bone itself and bone marrow cells, but the roles of these two sources in its control and the amounts they produce are not clear. This study compares their production in patients with an osteoporotic fracture and those with osteoarthritis. METHODS We evaluated 52 femoral heads from women subjected to hip-joint replacement surgery for femoral neck fractures due to low-energy trauma (37), or for osteoarthritis (15). Total RNA was extracted from both bone and bone marrow, and quantitative PCR was used to identify the receptor activator of nuclear factor kB Ligand (RANKL), osteoprotegerin (OPG), macrophage colony stimulating factor (M-CSF), transforming growth factor β (TGFβ), Dickoppf-1 (DKK-1) and sclerostin (SOST) expression. Immunohistochemistry and Western blot were performed in order to quantify and localize in bone and bone marrow the cytokines. RESULTS We found an increase of RANKL/OPG ratio, M-CSF, SOST and DKK-1 in fractured patients, whereas TGFβ was increased in osteoarthritic bone. Bone marrow produced greater amounts of RANKL, M-CSF and TGFβ compared to bone, whereas the production of DKK-1 and SOST was higher in bone. CONCLUSIONS We show that bone marrow cells produced the greater amount of pro-osteoclastogenic cytokines, whereas bone cells produced higher amount of osteoblast inhibitors in patients with fragility fracture, thus the cytokine pattern is shifted towards osteoclast activation and osteoblast inhibition in these patients.
Collapse
Affiliation(s)
- P D'Amelio
- Gerontology Section, Department of Surgical and Medical Disciplines, University of Torino, Corso Bramante 88/90, Torino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang X, Tao XA, Liang JQ, Huang YJ, Yang XP. The dynamic changes of circulating OCN+ cells versus insulinlike growth factor-I during primary healing of orthognathic surgeries. Oral Surg Oral Med Oral Pathol Oral Radiol 2011; 113:734-40. [PMID: 22677019 DOI: 10.1016/j.tripleo.2011.05.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/25/2011] [Accepted: 05/19/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study was to determine the dynamic changes of circulating osteocalcin(+) (OCN(+)) cells and insulinlike growth factor-I (IGF-I) in peripheral blood during early primary repair of jaw bones in patients with orthognathic surgery. STUDY DESIGN The expression of bone-related genes was detected by RT-PCR in circulating OCN(+) cells. The numbers of OCN(+) cells and serum level of IGF-I were determined by flow cytometry, immunocytochemical staining, and ELISA. RESULTS OCN(+) cells significantly increased in peripheral blood, and reached the peak at 1 to 2 weeks after surgery (P < .05). IGF-I in patients significantly decreased 1 week after surgery (P < .05), and then returned gradually to the normal level. There was no significant correlation between the number of circulating OCN(+) cells and the level of IGF-I (P > .05). CONCLUSIONS These findings suggested that circulating OCN(+) cells, at least in part, could be mobilized in response to bone injury, and contribute to bone repair in patients with orthognathic surgery.
Collapse
Affiliation(s)
- Xi Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|