1
|
da Silva MMR, Bilezikian JP, de Paula FJA. Phosphate metabolism: its impact on disorders of mineral metabolism. Endocrine 2025; 88:1-13. [PMID: 39527339 DOI: 10.1007/s12020-024-04092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Regulatory molecules typically work cooperatively to ensure the efficient functioning of hormonal systems. Examples include LH and FSH in reproductive biology, insulin and glucagon in glucose metabolism. Similarly, calcium and phosphorus are important regulators of skeletal homeostasis. In the circulation, these molecules are under the control of PTH, 1,25(OHD), and FGF23. In turn, these hormones depend upon a mutual and complex interplay among themselves. For example, alterations in calcium metabolism influence phosphorus homeostasis, as occurs in primary hyperparathyroidism (PHPT). Not as well recognized is the influence that abnormalities in phosphorus metabolism can have on calcium homeostasis. In this review, we call attention to the impact that abnormalities in phosphorus can have on calcium metabolism.
Collapse
Affiliation(s)
- Maisa Monseff Rodrigues da Silva
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil
| | - John P Bilezikian
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons. Columbia University, New York, NY, USA
| | - Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Romano BC, de Araújo IM, Ribeiro MSP, Parreiras e Silva LT, Dick-de-Paula I, Fukada SY, Porto FM, Jorgetti V, de Assis Pereira F, Elias LLK, de Paula FJA. Low-calorie and high-protein diet has diverse impacts on the muscle, bone, and bone marrow adipose tissues. JBMR Plus 2025; 9:ziae150. [PMID: 39677928 PMCID: PMC11646085 DOI: 10.1093/jbmrpl/ziae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
The present study was designed to evaluate the influence of a high-protein diet under conditions of calorie restriction (CR) in the muscle, adipose tissue, bone, and marrow adipose tissue (MAT). It included three groups of 20 female Wistar Hannover rats, fed with the following diets for 8 wk: control group (C) fed with an AIN93M diet, CR group (R) fed with an AIN-93M diet modified to 30% CR, and CR + high-protein group (H) fed with an AIN-93M diet modified to 30% CR with 40% protein. Body composition was determined by DXA. The femur was used for histomorphometry and the estimation of adipocytes. Microcomputed tomography (μCT) was employed to analyze the bone structure. Hematopoietic stem cells from the bone marrow were harvested for osteoclastogenesis. Body composition revealed that the gain in lean mass surpassed the increase in fat mass only in the H group. Bone histomorphometry and μCT showed that a high-protein diet did not mitigate CR-induced bone deterioration. In addition, the number of bone marrow adipocytes and the differentiation of hematopoietic stem cells into osteoclasts were higher in H than in the other groups. These results indicated that under CR, a high-protein diet was beneficial for muscle mass. However, as the μCT scanning detected significant bone deterioration, this combined diet might accentuate the detrimental effect on the skeleton caused by CR. Remarkably, the H group rats exhibited greater MAT expansion and elevated hematopoietic stem cell differentiation into osteoclasts than the CR and control counterparts. These data suggest that a high protein may not be an appropriate strategy to preserve bone health under CR conditions.
Collapse
Affiliation(s)
- Beatriz Coimbra Romano
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil
| | - Iana Mizumukai de Araújo
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil
| | - Mariana S P Ribeiro
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of São Paulo, Ribeirão Preto 14.040-903, Brazil
| | - Luciana T Parreiras e Silva
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil
| | - Ingid Dick-de-Paula
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil
| | - Sandra Y Fukada
- Department of Bio-Molecular Sciences, School of Pharmaceutical Science, University of São Paulo, Ribeirão Preto 14.040-903, Brazil
| | - Felipe Manoel Porto
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil
| | - Vanda Jorgetti
- Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo 01.246-903, Brazil
| | | | - Lucila Leico Kagohara Elias
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil
| | | |
Collapse
|
3
|
Cao X, Ying Z, Li X, Zhang J, Hoogendijk EO, Liu Z. Serum 25-hydroxyvitamin D in relation to disability in activities of daily living, mobility, and objective physical functioning among Chinese older adults. Exp Gerontol 2021; 148:111290. [PMID: 33647362 DOI: 10.1016/j.exger.2021.111290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Vitamin D deficiency is common among older adults, but its association with physical function is not fully understood. The aim of this study was to investigate the associations between serum 25-hydroxyvitamin D and disability in activities of daily living (ADL), mobility, and objective physical functioning among Chinese older adults. METHODS We used cross-sectional data of 2225 older adults (≥65 years) who participated in the 2011/2012 main survey of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) and the 2012 biomarker sub-study. Serum levels of 25-hydroxyvitamin D were measured by enzyme immunoassay. Outcomes included ADL disability, mobility disability, and disability in three objective physical examinations (standing-up from a chair, picking-up a book from the floor, and turning-around 360°). RESULTS The multiple regression models suggested that participants in the serum 25-hydroxyvitamin D deficiency group had higher odds of ADL disability (OR: 4.08; 95% confidence interval (CI): 2.81, 5.92), mobility disability (OR: 1.59; 95% CI: 1.05, 2.41), and disability in standing-up from a chair (OR: 2.43; 95% CI: 1.60, 3.69), picking-up a book from the floor (OR: 3.09; 95% CI: 2.07, 4.60), and turning-around 360° (OR: 3.09; 95% CI: 2.07, 4.60). Subgroup analyses revealed that some of the above associations (particularly those with mobility disability and disability in turning-around 360°) were only statistically significant among the oldest-old. CONCLUSIONS Among the oldest-old in China, serum 25-hydroxyvitamin D deficiency was associated with disability in ADL, mobility, and objective physical functioning, highlighting the importance of managing the serum 25-hydroxyvitamin D level to promote healthy aging.
Collapse
Affiliation(s)
- Xingqi Cao
- Department of Big Data in Health Science and Center for Clinical Big Data and Analytics, Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhimin Ying
- Department of Orthopedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xueqin Li
- Department of Big Data in Health Science and Center for Clinical Big Data and Analytics, Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyun Zhang
- Department of Big Data in Health Science and Center for Clinical Big Data and Analytics, Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Emiel O Hoogendijk
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC-location VU University Medical Center, Amsterdam, Netherlands
| | - Zuyun Liu
- Department of Big Data in Health Science and Center for Clinical Big Data and Analytics, Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Lopez AG, Kerlan V, Desailloud R. Non-classical effects of vitamin D: Non-bone effects of vitamin D. ANNALES D'ENDOCRINOLOGIE 2020; 82:43-51. [PMID: 33279474 DOI: 10.1016/j.ando.2020.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Our understanding of vitamin D has improved considerably in recent years. The role of vitamin D in preventing osteoporotic fractures is now well-established. However, an important controversy has emerged in the last decade concerning the effects of the active form of vitamin D (1,25-dihydroxy-vitamin D) on tissues other than bone (non-classical effects). The demonstration that the vitamin D receptor (VDR) is ubiquitously, expressed combined with increasing observational data supporting a relationship between the level of 25-hydroxy-vitamin D in the serum and chronic metabolic disorders, cardiovascular disease and neoplasms, have led to its redefinition as a steroid hormone and the proposal of its use in preventing and/or treating those diseases. This article is an update on the different non-bone or non-classical effects of "vitamin-hormone D", and its potential preventive or therapeutic role in certain diseases, however, this review is not exhaustive. The different modalities of substitution or supplementation proposed in France by the Groupe de Recherche et d'Information sur les Ostéoporoses (GRIO) are also summarised.
Collapse
Affiliation(s)
- Antoine-Guy Lopez
- Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen University Hospital, Rouen, France.
| | - Véronique Kerlan
- Department of Endocrinology, Diabetes and Metabolic Diseases, Hôpital de la Cavale Blanche, Brest, France
| | - Rachel Desailloud
- Department of Endocrinology, Diabetes and Nutrition, and PériTox, UMR-I 01 INERIS, University Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
5
|
de Paula FJA. Vitamin D: more does not mean better. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:493-494. [PMID: 33047904 PMCID: PMC10118955 DOI: 10.20945/2359-3997000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
6
|
Abstract
The skeleton harbors an array of lineage cells that have an essential role in whole body homeostasis. Adipocytes start the colonization of marrow space early in postnatal life, expanding progressively and influencing other components of the bone marrow through paracrine signaling. In this unique, closed, and hypoxic environment close to the endosteal surface and adjacent to the microvascular space the marrow adipocyte can store or provide energy, secrete adipokines, and target neighboring bone cells. Adipocyte progenitors can also migrate from the bone marrow to populate white adipose tissue, a process that accelerates during weight gain. The marrow adipocyte also has an endocrine role in whole body homeostasis through its varied secretome that targets distant adipose depots, skeletal muscle, and the nervous system. Further insights into the biology of this unique and versatile cell will undoubtedly lead to novel therapeutic approaches to metabolic and age-related disorders such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Francisco J A de Paula
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil;
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA;
| |
Collapse
|
7
|
Shen F, Wang Y, Sun H, Zhang D, Yu F, Yu S, Han H, Wang J, Ba Y, Wang C, Li W, Li X. Vitamin D receptor gene polymorphisms are associated with triceps skin fold thickness and body fat percentage but not with body mass index or waist circumference in Han Chinese. Lipids Health Dis 2019; 18:97. [PMID: 30975133 PMCID: PMC6460735 DOI: 10.1186/s12944-019-1027-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Background Evidence shows that low serum vitamin D concentrations account for an increased risk of obesity by inducing vitamin D receptor (VDR) hypofunction. Although the correlation between single nucleotide polymorphisms (SNPs) of VDR gene and obesity-related anthropometric measures (such as body mass index [BMI] and waist circumference[WC]) has already been tested, there are only few studies on the association between direct measures of body fat percentage (BFP) and triceps skinfold thickness and the SNPs of VDR. The aim of the present study was to evaluate the effect of VDR gene polymorphism on multiple obesity indexes in Han Chinese, including BMI, WC, BFP and triceps skinfold thickness. Methods In this cross-sectional study, five hundred and seventeen healthy Chinese adults were enrolled in the trial. Four loci in VDR gene (rs2228570 [FokI], rs2189480, rs2239179 and rs7975232[ApaI]) were genotyped by TaqMan probe assays. Obesity indexes including BMI, WC, BFP and triceps skinfold thickness were used to evaluate the relationship to the VDR SNPs. Multiple logistic regression, linear regression and general multifactor dimensionality reduction (GMDR) were performed to analyze the correlation of VDR gene and obesity indexes. Results None of the VDR SNPs were associated with BMI and WC, the C allele of FokI and the T allele of ApaI were associated with an increase in BFP (β = 0.069,P = 0.007; β = 0.087, P = 0.022 respectively); the G allele of rs2239179 and the T allele of ApaI were associated with an increase in triceps skin fold thickness (β = 0.074, P = 0.001; β = 0.122, P < 0.001 respectively). In regards to adiposity-related metabolic parameters, we found that the GT genotype of ApaI was associated with higher level of total cholesterol (TC) (P = 0.013) and Low-density lipoprotein cholesterol (LDL-C) (P = 0.001). Conclusions Though we failed to prove that VDR SNPs were in correlation with BMI and WC, we did establish the association between VDR variants and BFP, as well as triceps skinfold thickness. Data obtained suggested that the VDR variants play an important role in regulating adipose tissue activity and adiposity among Han Chinese. Electronic supplementary material The online version of this article (10.1186/s12944-019-1027-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Shen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Yan Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Hualei Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Dongdong Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Fei Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Songcheng Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Han Han
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Jun Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Yue Ba
- Department of Occupational and Environmental Health Science, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Chongjian Wang
- Department of Epidemiological and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China
| | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Henan, 450001, China.
| |
Collapse
|
8
|
Motyl KJ, Beauchemin M, Barlow D, Le PT, Nagano K, Treyball A, Contractor A, Baron R, Rosen CJ, Houseknecht KL. A novel role for dopamine signaling in the pathogenesis of bone loss from the atypical antipsychotic drug risperidone in female mice. Bone 2017; 103:168-176. [PMID: 28689816 PMCID: PMC5573184 DOI: 10.1016/j.bone.2017.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
Abstract
Atypical antipsychotic (AA) drugs, including risperidone (RIS), are used to treat schizophrenia, bipolar disorder, and autism, and are prescribed off-label for other mental health issues. AA drugs are associated with severe metabolic side effects of obesity and type 2 diabetes. Cross-sectional and longitudinal data also show that risperidone causes bone loss and increases fracture risk in both men and women. There are several potential mechanisms of bone loss from RIS. One is hypogonadism due to hyperprolactinemia from dopamine receptor antagonism. However, many patients have normal prolactin levels; moreover we demonstrated that bone loss from RIS in mice can be blocked by inhibition of β-adrenergic receptor activation with propranolol, suggesting the sympathetic nervous system (SNS) plays a pathological role. Further, when, we treated ovariectomized (OVX) and sham operated mice daily for 8weeks with RIS or vehicle we demonstrated that RIS causes significant trabecular bone loss in both sham operated and OVX mice. RIS directly suppressed osteoblast number in both sham and OVX mice, but increased osteoclast number and surface in OVX mice alone, potentially accounting for the augmented bone loss. Thus, hypogonadism alone cannot explain RIS induced bone loss. In the current study, we show that dopamine and RIS are present in the bone marrow compartment and that RIS can exert its effects directly on bone cells via dopamine receptors. Our findings of both direct and indirect effects of AA drugs on bone are relevant for current and future clinical and translational studies investigating the mechanism of skeletal changes from AA drugs.
Collapse
Affiliation(s)
- Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, USA
| | - Megan Beauchemin
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, USA
| | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Annika Treyball
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, USA
| | - Anisha Contractor
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, USA
| | - Karen L Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA.
| |
Collapse
|
9
|
Carvalho AL, DeMambro VE, Guntur AR, Le P, Nagano K, Baron R, de Paula FJA, Motyl KJ. High fat diet attenuates hyperglycemia, body composition changes, and bone loss in male streptozotocin-induced type 1 diabetic mice. J Cell Physiol 2017. [PMID: 28631813 DOI: 10.1002/jcp.26062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a growing and alarming prevalence of obesity and the metabolic syndrome in type I diabetic patients (T1DM), particularly in adolescence. In general, low bone mass, higher fracture risk, and increased marrow adipose tissue (MAT) are features of diabetic osteopathy in insulin-deficient subjects. On the other hand, type 2 diabetes (T2DM) is associated with normal or high bone mass, a greater risk of peripheral fractures, and no change in MAT. Therefore, we sought to determine the effect of weight gain on bone turnover in insulin-deficient mice. We evaluated the impact of a 6-week high-fat (HFD) rich in medium chain fatty acids or low-fat diet (LFD) on bone mass and MAT in a streptozotocin (STZ)-induced model using male C57BL/6J mice at 8 weeks of age. Dietary intervention was initiated after diabetes confirmation. At the endpoint, lower non-fasting glucose levels were observed in diabetic mice fed with high fat diet compared to diabetic mice fed the low fat diet (STZ-LFD). Compared to euglycemic controls, the STZ-LFD had marked polydipsia and polyphagia, as well as reduced lean mass, fat mass, and bone parameters. Interestingly, STZ-HFD mice had higher bone mass, namely less cortical bone loss and more trabecular bone than STZ-LFD. Thus, we found that a HFD, rich in medium chain fatty acids, protects against bone loss in a T1DM mouse model. Whether this may also translate to T1DM patients who are overweight or obese in respect to maintenance of bone mass remains to be determined through longitudinal studies.
Collapse
Affiliation(s)
- Adriana Lelis Carvalho
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Victoria E DeMambro
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Anyonya R Guntur
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Phuong Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Kenichi Nagano
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts
| | - Roland Baron
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts
| | | | - Katherine J Motyl
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
10
|
Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, Colao A. Low vitamin D status and obesity: Role of nutritionist. Rev Endocr Metab Disord 2017; 18:215-225. [PMID: 28229265 DOI: 10.1007/s11154-017-9410-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low vitamin D status and obesity have concomitantly reached epidemic levels worldwide. Up to now the direction of the association between low vitamin D status and obesity, the exact mechanisms responsible for this association and the clinical usefulness to increase vitamin D status for reducing adiposity still warrant further evaluation. The aim of the present review was to examine the current evidence linking low vitamin D status and obesity in relation to the role of the nutritionist. On the one side, considering obesity as a causal factor, low sun exposure in obese individuals due to their sedentary lifestyle and less outdoor activity, vitamin D sequestration in adipose tissue, and volumetric dilution of ingested or cutaneously synthesized vitamin D3 in the large fat mass of obese patients, might represent some of the factors playing a major role in the pathogenesis of the low vitamin D status. On the other side, the expression of both vitamin D3 receptors and enzymes responsible for vitamin D3 metabolism in adipocytes depicted a role for the low vitamin D status per se in the development of obesity by modulating adipocyte differentiation and lipid metabolism. Nutritionists need to accurately address the aspects influencing the low vitamin D status in obesity and the vitamin D supplementation in obese individuals.
Collapse
Affiliation(s)
- Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Luigi Barrea
- I.O.S. & COLEMAN Srl, 80011 Acerra, Naples, Italy
| | | | | | | | - Francesco Orio
- Department of Sports Science and Wellness, "Parthenope" University of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
11
|
Spirlandeli AL, Dick-de-Paula I, Zamarioli A, Jorgetti V, Ramalho LN, Nogueira-Barbosa MH, Volpon JB, Jordão AA, Cunha FQ, Fukada SY, de Paula FJ. Hepatic Osteodystrophy: The Mechanism of Bone Loss in Hepatocellular Disease and the Effects of Pamidronate Treatment. Clinics (Sao Paulo) 2017; 72:231-237. [PMID: 28492723 PMCID: PMC5401620 DOI: 10.6061/clinics/2017(04)07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES: The present study was designed to evaluate the bone phenotypes and mechanisms involved in bone disorders associated with hepatic osteodystrophy. Hepatocellular disease was induced by carbon tetrachloride (CCl4). In addition, the effects of disodium pamidronate on bone tissue were evaluated. METHODS: The study included 4 groups of 15 mice: a) C = mice subjected to vehicle injections; b) C+P = mice subjected to vehicle and pamidronate injections; c) CCl4+V = mice subjected to CCl4 and vehicle injections; and d) CCl4+P = mice subjected to CCl4 and pamidronate injections. CCl4 or vehicle was administered for 8 weeks, while pamidronate or vehicle was injected at the end of the fourth week. Bone histomorphometry and biomechanical analysis were performed in tibiae, while femora were used for micro-computed tomography and gene expression. RESULTS: CCl4 mice exhibited decreased bone volume/trabecular volume and trabecular numbers, as well as increased trabecular separation, as determined by bone histomorphometry and micro-computed tomography, but these changes were not detected in the group treated with pamidronate. CCl4 mice showed increased numbers of osteoclasts and resorption surface. High serum levels of receptor activator of nuclear factor-κB ligand and the increased expression of tartrate-resistant acid phosphatase in the bones of CCl4 mice supported the enhancement of bone resorption in these mice. CONCLUSION: Taken together, these results suggest that bone resorption is the main mechanism of bone loss in chronic hepatocellular disease in mice.
Collapse
Affiliation(s)
- Adriano L. Spirlandeli
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Ingrid Dick-de-Paula
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Ariane Zamarioli
- Departamento de Biomecânica, Medicina e Rehabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, BR
| | - Vanda Jorgetti
- Departamento de Nefrologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - Leandra N.Z. Ramalho
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Marcello H. Nogueira-Barbosa
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Jose B. Volpon
- Departamento de Biomecânica, Medicina e Rehabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, BR
| | - Alceu A. Jordão
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Fernando Q. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Sandra Y. Fukada
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
| | - Francisco J.A. de Paula
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
12
|
Hou QK, Huang YQ, Luo YW, Wang B, Liu YM, Deng RD, Zhang SX, Lai YT, Li WY, Chen DF. (+)-Cholesten-3-one induces osteogenic differentiation of bone marrow mesenchymal stem cells by activating vitamin D receptor. Exp Ther Med 2017; 13:1841-1849. [PMID: 28565776 PMCID: PMC5443208 DOI: 10.3892/etm.2017.4200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/25/2016] [Indexed: 12/25/2022] Open
Abstract
In our previous reports, it was revealed that steroids in traditional Chinese medicine (TCM) have the therapeutic potential to treat bone disease. In the present study, an in vitro model of a vitamin D receptor response element (VDRE) reporter gene assay in mesenchymal stem cells (MSCs) was used to identify steroids that enhanced osteogenic differentiation of MSCs. (+)-cholesten-3-one (CN), which possesses a ketone group that is modified in cholesterol and cholesterol myristate, effectively promoted the activity of the VDRE promoter. Phenotypic cellular analysis indicated that CN induced differentiation of MSCs into osteogenic cells and increased expression of specific osteogenesis markers, including alkaline phosphatase, collagen II and Runt-related transcription factor 2. Furthermore, CN significantly increased the expression of osteopontin, the target of the vitamin D receptor (VDR), which indicated that CN may activate vitamin D receptor signaling. Over-expression of VDR or knockdown studies with VDR-small interfering RNA revealed that the pro-differentiation effects induced by CN required VDR. Furthermore, the present study determined that the C-terminal region of the VDR is responsible for the action of CN. Taken together, the present findings demonstrated that CN induced osteogenic differentiation of MSCs by activating VDR. The present study explored the regulation of stem cells by using a series of similar steroids and provided evidence to support a potential strategy for the screening of novel drugs to treat bone disease in the future.
Collapse
Affiliation(s)
- Qiu-Ke Hou
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China.,Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Yong-Quan Huang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Yi-Wen Luo
- Department of Trauma, Orthopedics and Traumatology Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Bin Wang
- Department of Trauma, Orthopedics and Traumatology Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Ya-Mei Liu
- Department of Diagnosis of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Ru-Dong Deng
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Sai-Xia Zhang
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Ying-Tao Lai
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Wang-Yang Li
- Department of Trauma, Orthopedics and Traumatology Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Dong-Feng Chen
- Department of Anatomy, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
13
|
Dessordi R, Spirlandeli AL, Zamarioli A, Volpon JB, Navarro AM. Boron supplementation improves bone health of non-obese diabetic mice. J Trace Elem Med Biol 2017; 39:169-175. [PMID: 27908411 DOI: 10.1016/j.jtemb.2016.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 09/08/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Diabetes Mellitus is a condition that predisposes a higher risk for the development of osteoporosis. The objective of this study was to investigate the influence of boron supplementation on bone microstructure and strength in control and non-obese diabetic mice for 30days. The animals were supplemented with 40μg/0,5ml of boron solution and controls received 0,5ml of distilled water daily. We evaluated the biochemical parameters: total calcium, phosphorus, magnesium and boron; bone analysis: bone computed microtomography, and biomechanical assay with a three point test on the femur. This study consisted of 28 animals divided into four groups: Group water control - Ctrl (n=10), Group boron control - Ctrl±B (n=8), Group diabetic water - Diab (n=5) and Group diabetic boron - Diab±B (n=5). The results showed that cortical bone volume and the trabecular bone volume fraction were higher for Diab±B and Ctrl±B compared to the Diab and Ctrl groups (p≤0,05). The trabecular specific bone surface was greater for the Diab±B group, and the trabecular thickness and structure model index had the worst values for the Diab group. The boron serum concentrations were higher for the Diab±B group compared to non-supplemented groups. The magnesium concentration was lower for Diab and Diab±B compared with controls. The biomechanical test on the femur revealed maintenance of parameters of the bone strength in animals Diab±B compared to the Diab group and controls. The results suggest that boron supplementation improves parameters related to bone strength and microstructure of cortical and trabecular bone in diabetic animals and the controls that were supplemented.
Collapse
Affiliation(s)
- Renata Dessordi
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences, State University of São Paulo-UNESP, Brazil.
| | - Adriano Levi Spirlandeli
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo-FMRP/USP, Brazil
| | - Ariane Zamarioli
- Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - José Batista Volpon
- Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Anderson Marliere Navarro
- Department of Clinical Medicine, Ribeirão Preto Medical School, University of São Paulo-FMRP/USP, Brazil
| |
Collapse
|
14
|
Ryan JW, Starczak Y, Tsangari H, Sawyer RK, Davey RA, Atkins GJ, Morris HA, Anderson PH. Sex-related differences in the skeletal phenotype of aged vitamin D receptor global knockout mice. J Steroid Biochem Mol Biol 2016; 164:361-368. [PMID: 26690785 DOI: 10.1016/j.jsbmb.2015.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/09/2015] [Accepted: 12/06/2015] [Indexed: 10/22/2022]
Abstract
The role of the vitamin D receptor (VDR) in maintaining skeletal health appears to be complex and dependent on the physiological context. Global Vdr deletion in a mouse model (Vdr-/-) results in hypocalcemia, secondary hyperparathyroidism and bone features typical of vitamin D-dependent rickets type II. When weanling Vdr-/- mice are fed a diet containing high levels of calcium, phosphorus and lactose, termed the rescue diet, normalisation of serum calcium, phosphate and parathyroid hormone levels results in prevention of rickets at 10 weeks of age. However, 17 week old male Vdr-/- mice, fed the rescue diet, have been reported as osteopenic due to a decrease in bone formation when compared to wild type mice. We now report confirmation of this finding with further data on the effect of the rescue diet on appendicular and axial skeletal structures in male and female Vdr-/- mice at 26 weeks of age compared to Vdr+/- controls. All Vdr-/- mice were normocalcemic with no evidence of any mineralization defect. However, male Vdr-/- mice exhibited significantly reduced mineral in femoral and vertebral bones when compared to control littermate Vdr+/- mice, consistent with the previously reported data. In contrast, 26-week-old female Vdr-/- mice demonstrated significantly increased femoral trabecular bone volume although there was decreased vertebral trabecular bone volume, similar to males, and femoral cortical bone volume was unchanged. Thus, the Vdr-/- mouse model displays sex- and site-specific differences in skeletal structures with long-term feeding of a rescue diet. Although the global Vdr-/- ablation does not permit the determination of skeletal mechanisms producing these differences, these data confirm skeletal changes even when fed the rescue diet.
Collapse
Affiliation(s)
- Jackson W Ryan
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia
| | - Yolandi Starczak
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia
| | - Helen Tsangari
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia
| | - Rebecca K Sawyer
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia
| | - Rachel A Davey
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia
| | - Gerald J Atkins
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia
| | - Howard A Morris
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia,.
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia; Centre for Orthopaedic and Trauma Research, School of Medicine, University of Adelaide, Adelaide, SA 5001, Australia
| |
Collapse
|
15
|
Triliana R, Lam NN, Sawyer RK, Atkins GJ, Morris HA, Anderson PH. Skeletal characterization of an osteoblast-specific vitamin D receptor transgenic (ObVDR-B6) mouse model. J Steroid Biochem Mol Biol 2016; 164:331-336. [PMID: 26343450 DOI: 10.1016/j.jsbmb.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Overexpression of the human vitamin D receptor (hVDR) transgene under control of the human osteocalcin promoter in FVB/N mice (OSVDR) was previously demonstrated to exhibit increased cortical and trabecular bone volume and strength due to decreased bone resorption and increased bone formation. An important question to address is whether the OSVDR bone phenotype persists on an alternative genetic background such as C57Bl6/J. METHODS OSVDR mice (OSV3 line) were backcrossed onto the C57Bl6/J genetic background for at least 6 generations to produce OSVDR mice with 98.4% C57Bl6/J congenicity (ObVDR-B6 mice). Hemizygous male and female ObVDR-B6 and littermate wild-type (WT) mice were fed a standard laboratory chow diet and killed at 3, 9 and 20 weeks of age for analyses of biochemical and structural variables and dynamic indices of bone histomorphometry. RESULTS At 9 weeks of age, both cortical and trabecular femoral bone volumes were increased in both male and female ObVDR-B6 mice, when compared to WT levels (P<0.05), without systemic changes to calciotropic parameters. The increase in femoral trabecular bone volume was associated with increase in MAR (P<0.01) and reduced osteoclast size (P<0.05). However, in female mice trabecular bone volume was unchanged in femoral metaphysis of 20 weeks mice and in vertebra both at 9 and 20 weeks of age. Increased cortical bone in both male and female ObVDR-B6 mice was due largely to increased periosteal expansion and was associated with increased cortical strength at 20 weeks of age. CONCLUSION Overexpression of the human VDR gene in mature osteoblasts of C57Bl6/J mice increases cortical and trabecular bone volumes and confirms the previous reports of increased bone in OSVDR mice on the FVB/N background. However, site-specific and gender-related differences in bone volume suggest that the effects of osteoblast-specific VDR overexpression are more complex than hitherto recognised.
Collapse
Affiliation(s)
- Rahma Triliana
- Faculty of Medicine, Islamic University of Malang, Malang, East Java 65144 Indonesia; School of Medicine, Faculty of Health Science, The University of Adelaide, Adelaide, 5000 SA, Australia
| | - Nga N Lam
- School of Medicine, Faculty of Health Science, The University of Adelaide, Adelaide, 5000 SA, Australia
| | - Rebecca K Sawyer
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001 SA, Australia
| | - Gerald J Atkins
- Centre for Orthopaedics and Trauma Research, The University of Adelaide, Adelaide, 5000 SA, Australia
| | - Howard A Morris
- School of Medicine, Faculty of Health Science, The University of Adelaide, Adelaide, 5000 SA, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001 SA, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001 SA, Australia.
| |
Collapse
|
16
|
Mendonça ML, Batista SL, Nogueira-Barbosa MH, Salmon CEG, Paula FJAD. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance. Clinics (Sao Paulo) 2016; 71:464-9. [PMID: 27626477 PMCID: PMC4975789 DOI: 10.6061/clinics/2016(08)09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.
Collapse
Affiliation(s)
- Maira L Mendonça
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna, Ribeirao Preto/SP, Brazil
| | - Sérgio L Batista
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna, Ribeirao Preto/SP, Brazil
| | - Marcello H Nogueira-Barbosa
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna, Ribeirao Preto/SP, Brazil
| | - Carlos E G Salmon
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Física, Ribeirão Preto/SP, Brazil
| | - Francisco J A de Paula
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Medicina Interna, Ribeirao Preto/SP, Brazil
| |
Collapse
|
17
|
Pagnotti GM, Styner M. Exercise Regulation of Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2016; 7:94. [PMID: 27471493 PMCID: PMC4943947 DOI: 10.3389/fendo.2016.00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise significantly suppresses MAT volume and induces bone formation. That exercise can both suppress MAT volume and increase bone quantity, notwithstanding the skeletal harm induced by rosiglitazone, underscores exercise as a powerful regulator of bone remodeling, encouraging marrow stem cells toward the osteogenic lineage to fulfill an adaptive need for bone formation. Thus, exercise represents an effective strategy to mitigate the deleterious effects of overeating and iatrogenic etiologies on bone and fat.
Collapse
Affiliation(s)
- Gabriel M. Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- *Correspondence: Maya Styner,
| |
Collapse
|
18
|
Motyl KJ, DeMambro VE, Barlow D, Olshan D, Nagano K, Baron R, Rosen CJ, Houseknecht KL. Propranolol Attenuates Risperidone-Induced Trabecular Bone Loss in Female Mice. Endocrinology 2015; 156:2374-83. [PMID: 25853667 PMCID: PMC4475716 DOI: 10.1210/en.2015-1099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atypical antipsychotic (AA) drugs cause significant metabolic side effects, and clinical data are emerging that demonstrate increased fracture risk and bone loss after treatment with the AA, risperidone (RIS). The pharmacology underlying the adverse effects on bone is unknown. However, RIS action in the central nervous system could be responsible because the sympathetic nervous system (SNS) is known to uncouple bone remodeling. RIS treatment in mice significantly lowered trabecular bone volume fraction (bone volume/total volume), owing to increased osteoclast-mediated erosion and reduced osteoblast-mediated bone formation. Daytime energy expenditure was also increased and was temporally associated with the plasma concentration of RIS. Even a single dose of RIS transiently elevated expression of brown adipose tissue markers of SNS activity and thermogenesis, Pgc1a and Ucp1. Rankl, an osteoclast recruitment factor regulated by the SNS, was also increased 1 hour after a single dose of RIS. Thus, we inferred that bone loss from RIS was regulated, at least in part, by the SNS. To test this, we administered RIS or vehicle to mice that were also receiving the nonselective β-blocker propranolol. Strikingly, RIS did not cause any changes in trabecular bone volume/total volume, erosion, or formation while propranolol was present. Furthermore, β2-adrenergic receptor null (Adrb2(-/-)) mice were also protected from RIS-induced bone loss. This is the first report to demonstrate SNS-mediated bone loss from any AA. Because AA medications are widely prescribed, especially to young adults, clinical studies are needed to assess whether β-blockers will prevent bone loss in this vulnerable population.
Collapse
Affiliation(s)
- Katherine J Motyl
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Victoria E DeMambro
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Deborah Barlow
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - David Olshan
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Kenichi Nagano
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Roland Baron
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Clifford J Rosen
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| | - Karen L Houseknecht
- Center for Clinical and Translational Research (K.J.M., V.E.D., D.O., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Department of Pharmaceutical Sciences (D.B., K.L.H.), College of Pharmacy, University of New England, Portland, Maine 04005; and Department of Oral Medicine (K.N., R.B.), Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts 02115
| |
Collapse
|
19
|
Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet 2014; 30:453-63. [DOI: 10.1016/j.tig.2014.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
20
|
Styner M, Thompson WR, Galior K, Uzer G, Wu X, Kadari S, Case N, Xie Z, Sen B, Romaine A, Pagnotti GM, Rubin CT, Styner MA, Horowitz MC, Rubin J. Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise. Bone 2014; 64:39-46. [PMID: 24709686 PMCID: PMC4041820 DOI: 10.1016/j.bone.2014.03.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/17/2014] [Accepted: 03/25/2014] [Indexed: 01/14/2023]
Abstract
Marrow adipose tissue (MAT), associated with skeletal fragility and hematologic insufficiency, remains poorly understood and difficult to quantify. We tested the response of MAT to high fat diet (HFD) and exercise using a novel volumetric analysis, and compared it to measures of bone quantity. We hypothesized that HFD would increase MAT and diminish bone quantity, while exercise would slow MAT acquisition and promote bone formation. Eight week-old female C57BL/6 mice were fed a regular (RD) or HFD, and exercise groups were provided voluntary access to running wheels (RD-E, HFD-E). Femoral MAT was assessed by μCT (lipid binder osmium) using a semi-automated approach employing rigid co-alignment, regional bone masks and was normalized for total femoral volume (TV) of the bone compartment. MAT was 2.6-fold higher in HFD relative to RD mice. Exercise suppressed MAT in RD-E mice by more than half compared with RD. Running similarly inhibited MAT acquisition in HFD mice. Exercise significantly increased bone quantity in both diet groups. Thus, HFD caused significant accumulation of MAT; importantly running exercise limited MAT acquisition while promoting bone formation during both diets. That MAT is exquisitely responsive to diet and exercise, and its regulation by exercise appears to be inversely proportional to effects on exercise induced bone formation, is relevant for an aging and sedentary population.
Collapse
Affiliation(s)
- Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - William R Thompson
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kornelia Galior
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Xin Wu
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Sanjay Kadari
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Natasha Case
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Romaine
- Department of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Gabriel M Pagnotti
- Department of Biomedical Engineering, State University of New York, Stony Brook, NY, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, State University of New York, Stony Brook, NY, USA
| | - Martin A Styner
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Mark C Horowitz
- Department of Orthopedics and Rehabilitation, Yale University, New Haven, CT, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Vitamin D: link between osteoporosis, obesity, and diabetes? Int J Mol Sci 2014; 15:6569-91. [PMID: 24747593 PMCID: PMC4013648 DOI: 10.3390/ijms15046569] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022] Open
Abstract
Vitamin D (1,25(OH)2D3) is a steroid hormone that has a range of physiological functions in skeletal and nonskeletal tissues, and can contribute to prevent and/or treat osteoporosis, obesity, and Type 2 diabetes mellitus (T2DM). In bone metabolism, vitamin D increases the plasma levels of calcium and phosphorus, regulates osteoblast and osteoclast the activity, and combats PTH hypersecretion, promoting bone formation and preventing/treating osteoporosis. This evidence is supported by most clinical studies, especially those that have included calcium and assessed the effects of vitamin D doses (≥800 IU/day) on bone mineral density. However, annual megadoses should be avoided as they impair bone health. Recent findings suggest that low serum vitamin D is the consequence (not the cause) of obesity and the results from randomized double-blind clinical trials are still scarce and inconclusive to establish the relationship between vitamin D, obesity, and T2DM. Nevertheless, there is evidence that vitamin D inhibits fat accumulation, increases insulin synthesis and preserves pancreatic islet cells, decreases insulin resistance and reduces hunger, favoring obesity and T2DM control. To date, there is not enough scientific evidence to support the use of vitamin D as a pathway to prevent and/or treat obesity and T2DM.
Collapse
|
22
|
Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients 2013; 5:3993-4021. [PMID: 24084056 PMCID: PMC3820056 DOI: 10.3390/nu5103993] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 01/03/2023] Open
Abstract
The metabolite of vitamin D, 1α,25-dihydroxyvitamin D₃ (also known as calcitriol), is a biologically active molecule required to maintain the physiological functions of several target tissues in the human body from conception to adulthood. Its molecular mode of action ranges from immediate nongenomic responses to longer term mechanisms that exert persistent genomic effects. The genomic mechanisms of vitamin D action rely on cross talk between 1α,25-dihydroxyvitamin D₃ signaling pathways and that of other growth factors or hormones that collectively regulate cell proliferation, differentiation and cell survival. In vitro and in vivo studies demonstrate a role for vitamin D (calcitriol) in modulating cellular growth and development. Vitamin D (calcitriol) acts as an antiproliferative agent in many tissues and significantly slows malignant cellular growth. Moreover, epidemiological studies have suggested that ultraviolet-B exposure can help reduce cancer risk and prevalence, indicating a potential role for vitamin D as a feasible agent to prevent cancer incidence and recurrence. With the preventive potential of this biologically active agent, we suggest that countries where cancer is on the rise--yet where sunlight and, hence, vitamin D may be easily acquired--adopt awareness, education and implementation strategies to increase supplementation with vitamin D in all age groups as a preventive measure to reduce cancer risk and prevalence.
Collapse
Affiliation(s)
- Meis Moukayed
- School of Arts and Sciences, American University in Dubai, P. O. Box 28282, Dubai, UAE; E-Mail:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA 94164-1603, USA
| |
Collapse
|
23
|
de Paula FJA, Rosen CJ. Bone Remodeling and Energy Metabolism: New Perspectives. Bone Res 2013; 1:72-84. [PMID: 26273493 DOI: 10.4248/br201301005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/30/2013] [Indexed: 12/27/2022] Open
Abstract
Bone mineral, adipose tissue and energy metabolism are interconnected by a complex and multilevel series of networks. Calcium and phosphorus are utilized for insulin secretion and synthesis of high energy compounds. Adipose tissue store lipids and cholecalciferol, which, in turn, can influence calcium balance and energy expenditure. Hormones long-thought to solely modulate energy and mineral homeostasis may influence adipocytic function. Osteoblasts are a target of insulin action in bone. Moreover, endocrine mediators, such as osteocalcin, are synthesized in the skeleton but regulate carbohydrate disposal and insulin secretion. Finally, osteoblasts and adipocytes originate from the same mesenchymal progenitor. The mutual crosstalk between osteoblasts and adipocytes within the bone marrow microenvironment plays a crucial role in bone remodeling. In the present review we provide an overview of the reciprocal control between bone and energy metabolism and its clinical implications.
Collapse
Affiliation(s)
- Francisco J A de Paula
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo , Brazil
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute , USA
| |
Collapse
|
24
|
Yamamoto Y, Yoshizawa T, Fukuda T, Shirode-Fukuda Y, Yu T, Sekine K, Sato T, Kawano H, Aihara KI, Nakamichi Y, Watanabe T, Shindo M, Inoue K, Inoue E, Tsuji N, Hoshino M, Karsenty G, Metzger D, Chambon P, Kato S, Imai Y. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control. Endocrinology 2013; 154:1008-20. [PMID: 23389957 DOI: 10.1210/en.2012-1542] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The physiological and beneficial actions of vitamin D in bone health have been experimentally and clinically proven in mammals. The active form of vitamin D [1α,25(OH)(2)D(3)] binds and activates its specific nuclear receptor, the vitamin D receptor (VDR). Activated VDR prevents the release of calcium from its storage in bone to serum by stimulating intestinal calcium absorption and renal reabsorption. However, the direct action of VDR in bone tissue is poorly understood because serum Ca(2+) homeostasis is maintained through tightly regulated ion transport by the kidney, intestine, and bone. In addition, conventional genetic approaches using VDR knockout (VDR-KO, VDR(-/-)) mice could not identify VDR action in bone because of the animals' systemic defects in calcium metabolism. In this study, we report that systemic VDR heterozygous KO (VDR(+/L-)) mice generated with the Cre/loxP system as well as conventional VDR heterozygotes (VDR(+/-)) showed increased bone mass in radiological assessments. Because mineral metabolism parameters were unaltered in both types of mice, these bone phenotypes imply that skeletal VDR plays a role in bone mass regulation. To confirm this assumption, osteoblast-specific VDR-KO (VDR(ΔOb/ΔOb)) mice were generated with 2.3 kb α1(I)-collagen promoter-Cre transgenic mice. They showed a bone mass increase without any dysregulation of mineral metabolism. Although bone formation parameters were not affected in bone histomorphometry, bone resorption was obviously reduced in VDR(ΔOb/ΔOb) mice because of decreased expression of receptor activator of nuclear factor kappa-B ligand (an essential molecule in osteoclastogenesis) in VDR(ΔOb/ΔOb) osteoblasts. These findings establish that VDR in osteoblasts is a negative regulator of bone mass control.
Collapse
Affiliation(s)
- Yoko Yamamoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gois MB, Salvatori R, Aguiar-Oliveira MH, Pereira FA, Oliveira CRP, Oliveira-Neto LA, Pereira RMC, Souza AHO, Melo EV, de Paula FJA. The consequences of growth hormone-releasing hormone receptor haploinsufficiency for bone quality and insulin resistance. Clin Endocrinol (Oxf) 2012; 77:379-84. [PMID: 21995288 PMCID: PMC3272308 DOI: 10.1111/j.1365-2265.2011.04263.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Growth hormone (GH)/insulin-like growth factor (IGF) axis and insulin are key determinants of bone remodelling. Homozygous mutations in the GH-releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GH deficiency (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. PATIENTS AND METHODS A cross-sectional study was performed on 76 normal subjects (68·4% females) (N/N) and 64 individuals (64·1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers [osteocalcin (OC) and CrossLaps], IGF-I, glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMA(IR) ) was calculated. RESULTS There were no differences in age or height between the two groups, but weight (P = 0·007) and BMI (P = 0·001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T-score or absolute values of stiffness and OC, but insulin (P = 0·01), HOMA(IR) (P = 0·01) and CrossLaps (P = 0·01) were lower in MUT/N. There was no correlation between OC and glucose, OC and HOMA(IR) in the 140 individuals as a whole or in the separate MUT/N or N/N groups. CONCLUSIONS This study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality.
Collapse
Affiliation(s)
- Miburge B Gois
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, Murad MH, Kovacs CS. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 2012; 33:456-92. [PMID: 22596255 PMCID: PMC3365859 DOI: 10.1210/er.2012-1000] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/18/2012] [Indexed: 12/18/2022]
Abstract
Significant controversy has emerged over the last decade concerning the effects of vitamin D on skeletal and nonskeletal tissues. The demonstration that the vitamin D receptor is expressed in virtually all cells of the body and the growing body of observational data supporting a relationship of serum 25-hydroxyvitamin D to chronic metabolic, cardiovascular, and neoplastic diseases have led to widespread utilization of vitamin D supplementation for the prevention and treatment of numerous disorders. In this paper, we review both the basic and clinical aspects of vitamin D in relation to nonskeletal organ systems. We begin by focusing on the molecular aspects of vitamin D, primarily by examining the structure and function of the vitamin D receptor. This is followed by a systematic review according to tissue type of the inherent biological plausibility, the strength of the observational data, and the levels of evidence that support or refute an association between vitamin D levels or supplementation and maternal/child health as well as various disease states. Although observational studies support a strong case for an association between vitamin D and musculoskeletal, cardiovascular, neoplastic, and metabolic disorders, there remains a paucity of large-scale and long-term randomized clinical trials. Thus, at this time, more studies are needed to definitively conclude that vitamin D can offer preventive and therapeutic benefits across a wide range of physiological states and chronic nonskeletal disorders.
Collapse
|
27
|
Weber K, Erben RG. Differences in triglyceride and cholesterol metabolism and resistance to obesity in male and female vitamin D receptor knockout mice. J Anim Physiol Anim Nutr (Berl) 2012; 97:675-83. [PMID: 22548652 DOI: 10.1111/j.1439-0396.2012.01308.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A lean phenotype has been detected in vitamin D receptor (VDR) knockout mice; however, the gender differences in fat metabolism between male and female mice both with age and in response to a high-fat diet have not been studied before. The objective of our study was to assess changes in body and fat tissue weight, food intake and serum cholesterol and triglyceride in VDR knockout mice from weaning to adulthood and after a challenge of adult animals with a high-fat diet. Although VDR knockout mice of both sexes consumed more food than wild-type and heterozygous littermates, their body weight and the weight of fat depots was lower after 6 months on a diet with 5% crude fat content. When adult animals were challenged with a high-fat diet containing 21% crude fat content for 8 weeks, VDR knockout mice of both sexes had a significantly higher food intake but gained less weight than their wild-type littermates. Cholesterol levels were higher after 2 days on the high-fat diet in both sexes, but in the VDR knockout mice, less cholesterol was detected in the serum after 8 weeks. Wild-type male mice showed signs of fatty liver disease at the end of the experiment, which was not detected in the other groups. In conclusion, lack of the VDR receptor results in reduced fat accumulation with age and when adult mice are fed a high-fat diet, despite a higher food intake of VDR knockout mice relative to their wild-type littermates. These effects can be detected in both sexes. Wild-type male mice react with the highest weight gain and cholesterol levels of all groups and develop fatty liver disease after 8 weeks on a high-fat diet, while male VDR knockout mice appear to be protected.
Collapse
Affiliation(s)
- K Weber
- Clinic of Small Animal Medicine, LMU University of Munich, Veterinaerstrasse, Muenchen, Germany.
| | | |
Collapse
|
28
|
Motyl KJ, Dick-de-Paula I, Maloney AE, Lotinun S, Bornstein S, de Paula FJA, Baron R, Houseknecht KL, Rosen CJ. Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone 2012; 50:490-8. [PMID: 21854880 PMCID: PMC3261344 DOI: 10.1016/j.bone.2011.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023]
Abstract
Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass.
Collapse
Affiliation(s)
- Katherine J Motyl
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
de Paula FJA, Rosen CJ. Vitamin D safety and requirements. Arch Biochem Biophys 2011; 523:64-72. [PMID: 22179017 DOI: 10.1016/j.abb.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/22/2022]
Abstract
Vitamin D an ancient secosteroid is essential for mineral homeostasis, bone remodeling, immune modulation, and energy metabolism. Recently, debates have emerged about the daily vitamin D requirements for healthy and elderly adults, the safety and efficacy of long term supplementation and the role of vitamin D deficiency in several chronic disease states. Since this molecule acts as both a vitamin and a hormone, it should not be surprising that the effects of supplementation are multi-faceted and complex. Yet despite significant progress in the last decade, our understanding of vitamin D physiology and the clinical relevance of low circulating levels of this vitamin remains incomplete. The present review provides the reader with a comprehensive and up-to-date understanding of vitamin D requirements and safety. It also raises some provocative research questions.
Collapse
Affiliation(s)
- Francisco J A de Paula
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900 SP, Brazil.
| | | |
Collapse
|