1
|
Proteomic Analysis of Female Synovial Fluid to Identify Novel Biomarkers for Osteoarthritis. Life (Basel) 2023; 13:life13030605. [PMID: 36983761 PMCID: PMC10054440 DOI: 10.3390/life13030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Osteoarthritis (OA) is a highly prevalent degenerative joint condition that disproportionately affects females. The pathophysiology of the disease is not well understood, which makes diagnosis and treatment difficult. Given the physical connection of synovial fluid (SF) with articular tissues, the SF’s composition can reflect relevant biological modifications, and has therefore been a focus of research. Previously, we demonstrated that extracellular vesicles isolated from the synovial fluid of OA patients carry different cargo (protein and miRNA) in a sex-specific manner. Given the increased prevalence and severity of OA in females, this study aims to identify differential protein content within the synovial fluid of female OA and non-osteoarthritic (non-OA) patients. We found that several proteins were differentially expressed in osteoarthritic females compared with age-matched controls. Presenilin, Coagulation Factor X, Lysine-Specific Demethylase 2B, Tenascin C, Leucine-Rich Repeat-Containing Protein 17 fragments, and T-Complex Protein 1 were negatively regulated in the OA group, with PGD Synthase, Tubulointerstitial Nephritis Antigen, and Nuclear Receptor Binding SET Domain Protein 1 positively regulated in the OA group. Database for Annotation, Visualization, and Integrated Discovery (DAVID) and QuickGO analyses established these proteins as significantly involved in many biological, cellular, and molecular processes. In conclusion, the protein content of female synovial fluid is altered in OA patients, which is likely to provide insights into gender-specific pathophysiology.
Collapse
|
2
|
Assessment of Bone Microstructure by Micro CT in C57BL/6J Mice for Sex-Specific Differentiation. Int J Mol Sci 2022; 23:ijms232314585. [PMID: 36498911 PMCID: PMC9735535 DOI: 10.3390/ijms232314585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
It remains uncertain which skeletal sites and parameters should be analyzed in rodent studies evaluating bone health and disease. In this cross-sectional mouse study using micro-computed tomography (µCT), we explored: (1) which microstructural parameters can be used to discriminate female from male bones and (2) whether it is meaningful to evaluate more than one bone site. Microstructural parameters of the trabecular and/or cortical compartments of the femur, tibia, thoracic and lumbar vertebral bodies, and skull were evaluated by µCT in 10 female and 10 male six-month-old C57BL/6J mice. The trabecular number (TbN) was significantly higher, while the trabecular separation (TbSp) was significantly lower in male compared to female mice at all skeletal sites assessed. Overall, bone volume/tissue volume (BV/TV) was also significantly higher in male vs. female mice (except for the thoracic spine, which did not differ by sex). Most parameters of the cortical bone microstructure did not differ between male and female mice. BV/TV, TbN, and TbSp at the femur, and TbN and TbSp at the tibia and lumbar spine could fully (100%) discriminate female from male bones. Cortical thickness (CtTh) at the femur was the best parameter to detect sex differences in the cortical compartment (AUC = 0.914). In 6-month-old C57BL/6J mice, BV/TV, TbN, and TbSp can be used to distinguish male from female bones. Whenever it is not possible to assess multiple bone sites, we propose to evaluate the bone microstructure of the femur for detecting potential sex differences.
Collapse
|
3
|
Liu H, Zhang X, Zhao Z, Zhu H, Li D, Yang Y, Zhao W, Zhang F, Wang Y, Zhu L, Ding Z, Li X. CNST is Characteristic of Leukemia Stem Cells and is Associated With Poor Prognosis in AML. Front Pharmacol 2022; 13:888243. [PMID: 35662693 PMCID: PMC9157791 DOI: 10.3389/fphar.2022.888243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Consortin (CNST) is a protein located on the trans-Golgi network that can target transmembrane proteins to the plasma membrane. Although CNST was discovered more than 10 years ago, there are still not enough studies on its function. During our search for possible new acute myeloid leukemia (AML) markers, we found that CNST was overexpressed in almost all patients with AML. By analyzing profiling data from public databases, we found that CNST expression inversely correlated with overall survival among AML patients. There was a great variation in CNST expression among different subtypes of AML, and the expression was the highest in the t(8,21) subtype, which was probably due to the direct regulation of CNST transcription by RUNX1-RUNX1T1. In addition, we analyzed the expression of CNST in different cells of the hematopoietic system. We found that CNST was associated with the low differentiation degrees of hematopoietic cells and had the highest expression level in leukemia stem cells (LSCs). Finally, we analyzed the CNST-related gene network and found that the genes negatively correlated with CNST are involved in various immune-related pathways, which indicates that CNST is likely related to immune evasion, LSC niche retention, and assembly of stress granules. In conclusion, our study suggests that CNST has the potential to be a diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Ziyan Zhao
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Hongying Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Yang Yang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China.,School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenbo Zhao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fei Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Yuefeng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Lina Zhu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| | - Zewen Ding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Mohan S, Hu Y, Edderkaoui B. Chemokine receptor 3 is a negative regulator of trabecular bone mass in female mice. J Cell Biochem 2019; 120:13974-13984. [PMID: 30977156 DOI: 10.1002/jcb.28672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
Chemokines are secreted by a wide variety of cells; their functions are dependent on the binding to their chemokine receptors (CCRs) which induce directed chemotaxis in nearby responsive cells. Chemokines and their receptors can be induced under several different conditions. Based on data from clinical studies showing an increased expression of chemokine receptor 3 (CCR3) in circulating monocytes of human subjects with lower bone mineral density (BMD) as compared to those with high BMD, we predicted a role for CCR3 in the development of peak bone mass. We, therefore, first evaluated the expression pattern of Ccr3 in bone cells, in comparison to other CCRs, that have common ligands with CCR3. While Ccr1 and Ccr3 messenger RNA (mRNA) levels increased during both RANKL-induced osteoclast differentiation and AA-induced osteoblast differentiation, the levels of Ccr5 mRNA only increased during osteoblast differentiation. To examine if CCR3 influences osteoclast and/or osteoblast differentiation, we evaluated the consequence of blocking CCR3 function using neutralizing antibody on the expression of osteoclast and osteoblast differentiation markers. Treatment with CCR3 neutralizing antibody increased mRNA levels of Trap and cathepsin K in osteoclasts and osteocalcin in osteoblasts compared to cells treated with control IgG. Based on these in vitro findings, we next assessed the role of CCR3 in vivo by evaluating the skeletal phenotypes of Ccr3 knockout and corresponding control littermate mice. Disruption of CCR3 resulted in a significant increase in femur areal BMD at 5 and 8 weeks of age by dual-energy X-ray absorptiometry. Micro-CT analysis revealed a 25% increase in trabecular bone mass at 10 weeks of age caused by corresponding changes in trabecular number and thickness compared to wild type mice. Based on our findings, we conclude that disruption of CCR3 function favors bone mass accumulation, in part via enhancement of bone metabolism. Understanding the molecular pathways through which CCR3 acts to regulate osteoclast and osteoblast functions could lead to new therapeutic approaches to prevent inflammation-induced bone loss.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, Research Service, LLVARE, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California.,Department of Medicine, Loma Linda University, Loma Linda, California.,Department of Biochemistry, Loma Linda University, Loma Linda, California.,Department of Physiology, Loma Linda University, Loma Linda, California
| | - Yan Hu
- Musculoskeletal Disease Center, Research Service, LLVARE, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, LLVARE, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, California.,Department of Medicine, Loma Linda University, Loma Linda, California
| |
Collapse
|
5
|
Yang Y, Pan F, Wu F, Squibb K, Thomson R, Winzenberg T, Jones G. Familial resemblance in trabecular and cortical volumetric bone mineral density and bone microarchitecture as measured by HRpQCT. Bone 2018; 110:76-83. [PMID: 29382612 DOI: 10.1016/j.bone.2018.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
To estimate the heritability of bone geometry, volumetric bone mineral density (vBMD) and microarchitecture of trabecular (Tb) and cortical (Ct) bone measured by high resolution peripheral quantitative computerised tomography (HRpQCT) at the distal radius and tibia and to investigate the genetic correlations of these measures. Participants were 177 mother-offspring pairs from 162 families (mothers, mean age (SD) = 52.1 (4.7) years; offspring, 25.6 (0.73) years). Trabecular and cortical bone measures were obtained by HRpQCT. Multivariable linear regression was used to analyse the association of bone measures between mother and offspring. Sequential Oligogenic Linkage Analysis Routines (SOLAR) software was utilised to conduct quantitative genetic analyses. All maternal bone measures were independently associated with the corresponding bone measures in the offspring before and after adjustment for age, sex, weight and height. Heritability estimates ranged from 24% to 67% at the radius and from 42% to 74% at the tibia. The relationship for most bone geometry measures was significantly stronger in mother-son pairs (n = 107) compared with mother-daughter pairs (n = 70) (p < 0.05). In contrast, the heritability for most vBMD and microarchitecture measures were higher in mother-daughter pairs. Bivariate analyses found moderate to strong genetic correlations across all measures between radius and tibia (Rg = 0.49 to 0.93). Genetic factors have an important role in the development of bone geometry, vBMD and microarchitecture. These factors are strongly shared for the radius and tibia but vary by sex implying a role for imprinting.
Collapse
Affiliation(s)
- Yi Yang
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Kathryn Squibb
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Russell Thomson
- Centre for Research in Mathematics, School of Engineering, Mathematics and Computing, Western Sydney University, Sydney 2751, Australia.
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia; Faculty of Health, University of Tasmania, Hobart 7000, Australia.
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| |
Collapse
|
6
|
Understanding the functional role of genistein in the bone differentiation in mouse osteoblastic cell line MC3T3-E1 by RNA-seq analysis. Sci Rep 2018; 8:3257. [PMID: 29459627 PMCID: PMC5818530 DOI: 10.1038/s41598-018-21601-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/07/2018] [Indexed: 01/23/2023] Open
Abstract
Genistein, a phyto-estrogen, can potentially replace endogenous estrogens in postmenopausal women, but the underlying molecular mechanisms remain incompletely understood. To obtain insight into the effect of genistein on bone differentiation, RNA sequencing (RNA-seq) analysis was used to detect differentially expressed genes (DEGs) in genistein-treated vs. untreated MC3T3-E1 mouse osteoblastic cells. Osteoblastic cell differentiation was monitored by measuring osteoblast differentiation factors (ALP production, bone mineralization, and expression of osteoblast differentiation markers). From RNA-seq analysis, a total of 132 DEGs (including 52 up-regulated and 80 down-regulated genes) were identified in genistein-treated cells (FDR q-value < 0.05 and fold change > 1.5). KEGG pathway and Gene Ontology (GO) enrichment analyses were performed to estimate the biological functions of DEGs and demonstrated that these DEGs were highly enriched in functions related to chemotactic cytokines. The functional relevance of DEGs to genistein-induced osteoblastic cell differentiation was further evaluated by siRNA-mediated knockdown in MC3T3-E1 cells. These siRNA knockdown experiments (of the DEGs validated by real-time qPCR) demonstrated that two up-regulated genes (Ereg and Efcab2) enhance osteoblastic cell differentiation, while three down-regulated genes (Hrc, Gli, and Ifitm5) suppress the differentiation. These results imply their major functional roles in bone differentiation regulated by genistein.
Collapse
|
7
|
Gupta S, Mukherjee S, Syed P, Pandala NG, Choudhary S, Singh VA, Singh N, Zhu H, Epari S, Noronha SB, Moiyadi A, Srivastava S. Evaluation of autoantibody signatures in meningioma patients using human proteome arrays. Oncotarget 2017; 8:58443-58456. [PMID: 28938569 PMCID: PMC5601665 DOI: 10.18632/oncotarget.16997] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/11/2017] [Indexed: 12/26/2022] Open
Abstract
Meningiomas are one of the most common tumors of the Central nervous system (CNS). This study aims to identify the autoantibody biomarkers in meningiomas using high-density human proteome arrays (~17,000 full-length recombinant human proteins). Screening of sera from 15 unaffected healthy individuals, 10 individuals with meningioma grade I and 5 with meningioma grade II was performed. This comprehensive proteomics based investigation revealed the dysregulation of 489 and 104 proteins in grades I and II of meningioma, respectively, along with the enrichment of several signalling pathways, which might play a crucial role in the manifestation of the disease. Autoantibody targets like IGHG4, CRYM, EFCAB2, STAT6, HDAC7A and CCNB1 were significantly dysregulated across both the grades. Further, we compared this to the tissue proteome and gene expression profile from GEO database. Previously reported upregulated proteins from meningioma tissue-based proteomics obtained from high-resolution mass spectrometry demonstrated an aggravated autoimmune response, emphasizing the clinical relevance of these targets. Some of these targets like SELENBP1 were tested for their presence in tumor tissue using immunoblotting. In the light of highly invasive diagnostic modalities employed to diagnose CNS tumors like meningioma, these autoantibody markers offer a minimally invasive diagnostic platform which could be pursued further for clinical translation.
Collapse
Affiliation(s)
- Shabarni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shuvolina Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Parvez Syed
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.,Department of Biochemistry/Biotechnology, University of Turku, Turun yliopisto, Finland
| | - Narendra Goud Pandala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Saket Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.,Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vedita Anand Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai, India
| | - Santosh B Noronha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
8
|
Tascau L, Gardner T, Anan H, Yongpravat C, Cardozo CP, Bauman WA, Lee FY, Oh DS, Tawfeek HA. Activation of Protein Kinase A in Mature Osteoblasts Promotes a Major Bone Anabolic Response. Endocrinology 2016; 157:112-26. [PMID: 26488807 DOI: 10.1210/en.2015-1614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein kinase A (PKA) regulates osteoblast cell function in vitro and is activated by important bone mass modulating agents. We determined whether PKA activation in osteoblasts is sufficient to mediate a bone anabolic response. Thus, a mouse model conditionally expressing a constitutively active PKA (CA-PKA) in osteoblasts (CA-PKA-OB mouse) was developed by crossing a 2.3-kb α1 (I)-collagen promoter-Cre mouse with a floxed-CA-PKA mouse. Primary osteoblasts from the CA-PKA-OB mice exhibited higher basal PKA activity than those from control mice. Microcomputed tomographic analysis revealed that CA-PKA-OB female mice had an 8.6-fold increase in femoral but only 1.16-fold increase in lumbar 5 vertebral bone volume/total volume. Femur cortical thickness and volume were also higher in the CA-PKA-OB mice. In contrast, alterations in many femoral microcomputed tomographic parameters in male CA-PKA-OB mice were modest. Interestingly, the 3-dimensional structure model index was substantially lower both in femur and lumbar 5 of male and female CA-PKA-OB mice, reflecting an increase in the plate to rod-like structure ratio. In agreement, femurs from female CA-PKA-OB mice had greater load to failure and were stiffer compared with those of control mice. Furthermore, the CA-PKA-OB mice had higher levels of serum bone turnover markers and increased osteoblast and osteoclast numbers per total tissue area compared with control animals. In summary, constitutive activation of PKA in osteoblasts is sufficient to increase bone mass and favorably modify bone architecture and improve mechanical properties. PKA activation in mature osteoblasts is, therefore, an important target for designing anabolic drugs for treating diseases with bone loss.
Collapse
Affiliation(s)
- Liana Tascau
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Thomas Gardner
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hussein Anan
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Charlie Yongpravat
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Christopher P Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Francis Y Lee
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Daniel S Oh
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| | - Hesham A Tawfeek
- National Center for the Medical Consequences of Spinal Cord Injury (C.P.C., W.A.B., H.A.T.), James J. Peters VA Medical Center, Bronx, New York 10468; Center for Orthopaedic Research (T.G., C.Y., F.Y.L.), College of Dental Medicine (D.S.O.), and Department of Molecular Medicine (L.T.), Columbia University, and Departments of Medicine (C.P.C., W.A.B., H.A.T.), Rehabilitation Medicine (C.P.C., W.A.B.), and Pharmacology and Systems Therapeutics (C.P.C.), The Icahn School of Medicine at Mount Sinai, New York, New York 10029; and Sacred Heart Hospital/Temple University (H.A.), Allentown, Pennsylvania 16102
| |
Collapse
|
9
|
Macciotta N, Gaspa G, Bomba L, Vicario D, Dimauro C, Cellesi M, Ajmone-Marsan P. Genome-wide association analysis in Italian Simmental cows for lactation curve traits using a low-density (7K) SNP panel. J Dairy Sci 2015; 98:8175-85. [DOI: 10.3168/jds.2015-9500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/22/2015] [Indexed: 01/15/2023]
|
10
|
Besio R, Maruelli S, Gioia R, Villa I, Grabowski P, Gallagher O, Bishop NJ, Foster S, De Lorenzi E, Colombo R, Diaz JLD, Moore-Barton H, Deshpande C, Aydin HI, Tokatli A, Kwiek B, Kasapkara CS, Adisen EO, Gurer MA, Di Rocco M, Phang JM, Gunn TM, Tenni R, Rossi A, Forlino A. Lack of prolidase causes a bone phenotype both in human and in mouse. Bone 2015; 72:53-64. [PMID: 25460580 DOI: 10.1016/j.bone.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/29/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and μCT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1 month being the most parameters normalized by 2 months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia Maruelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberta Gioia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Isabella Villa
- Bone Metabolic Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | - Josè Luis Dapena Diaz
- Pediatric Hematology and Oncology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Haether Moore-Barton
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Charu Deshpande
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Aysegul Tokatli
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | | | | | | | - Mehmet Ali Gurer
- Gazi University Hospital, Pediatric Metabolic Unit, Ankara, Turkey
| | - Maja Di Rocco
- Unit of Rare Diseases, Department of Pediatrics, Gaslini Institute, Genoa, Italy
| | - James M Phang
- Basic Research Laboratory, Center for Cancer Research, NCI at Frederick, Frederick, MD, USA
| | | | - Ruggero Tenni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Antonio Rossi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Cheng S, Xing W, Pourteymoor S, Mohan S. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development. J Bone Miner Res 2014; 29:2276-86. [PMID: 24753072 DOI: 10.1002/jbmr.2258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 01/04/2023]
Abstract
We have previously shown that the increase in osterix (Osx) expression during osteoblast maturation is dependent on the activity of the prolyl hydroxylase domain-containing protein 2 (Phd2), a key regulator of protein levels of the hypoxia-inducible factor family proteins in many tissues. In this study, we generated conditional Phd2 knockout mice (cKO) in osteoblast lineage cells by crossing floxed Phd2 mice with a Col1α2-iCre line to investigate the function of Phd2 in vivo. The cKO mice developed short stature and premature death at 12 to 14 weeks of age. Bone mineral content, bone area, and bone mineral density were decreased in femurs and tibias, but not vertebrae of the cKO mice compared to WT mice. The total volume (TV), bone volume (BV), and bone volume fraction (BV/TV) in the femoral trabecular bones of cKO mice were significantly decreased. Cross-sectional area of the femoral mid-diaphysis was also reduced in the cKO mice. The reduced bone size and trabecular bone volume in the cKO mice were a result of impaired bone formation but not bone resorption as revealed by dynamic histomorphometric analyses. Bone marrow stromal cells derived from cKO mice formed fewer and smaller nodules when cultured with mineralization medium. Quantitative RT-PCR and immunohistochemistry detected reduced expression of Osx, osteocalcin, and bone sialoprotein in cKO bone cells. These data indicate that Phd2 plays an important role in regulating bone formation in part by modulating expression of Osx and bone formation marker genes.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA, USA
| | | | | | | |
Collapse
|