1
|
Norazman SI, Mohd Zaffarin AS, Shuid AN, Hassan H, Soleiman IN, Kuan WS, Alias E. A Review of Animal Models for Studying Bone Health in Type-2 Diabetes Mellitus (T2DM) and Obesity. Int J Mol Sci 2024; 25:9399. [PMID: 39273348 PMCID: PMC11394783 DOI: 10.3390/ijms25179399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Preclinical research on diabetes and obesity has been carried out in various animal models over the years. These animal models are developed from genetic manipulation that affects their body metabolism, chemical-induced procedures, diet alteration/modifications, or combinations of the aforementioned approaches. The diabetic and obesity animal models have allowed researchers to not only study the pathological aspect of the diseases but also enable them to screen and explore potential therapeutic compounds. Besides several widely known complications such as macrovascular diseases, diabetic neuropathy, nephropathy and retinopathy, type 2 diabetes mellitus is also known to affect bone health. There is also evidence to suggest obesity affects bone health. Therefore, continuous research needs to be conducted to find a remedy or solution to this matter. Previous literature reported evidence of bone loss in animal models of diabetes and obesity. These findings, as highlighted in this review, further augment the suggestion of an inter-relationship between diabetes, obesity and bone loss.
Collapse
Affiliation(s)
- Saiful Iqbal Norazman
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Anis Syauqina Mohd Zaffarin
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh 47000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ima Nirwana Soleiman
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Wong Sok Kuan
- The Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ekram Alias
- The Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Sugimoto T, Uchitomi R, Onishi T, Kamei Y. A combination of exercise and calorie restriction improves the development of obesity-related type 2 diabetes mellitus in KKAy mice. Biosci Biotechnol Biochem 2022; 87:108-113. [PMID: 36307382 DOI: 10.1093/bbb/zbac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
We observed that exercise and calorie restriction reduced the body weight and blood glucose levels, concurrently improving insulin resistance and glucose tolerance in obese/diabetic model KKAy mice. Analysis of gene expression in the skeletal muscle showed enhanced mRNA levels of GLUT4 (glucose uptake), ATGL (lipolytic enzyme), and slow-twitch myosin heavy chain, which may contribute to the antiobesity and antidiabetic effects.
Collapse
Affiliation(s)
- Takumi Sugimoto
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Ran Uchitomi
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Takumi Onishi
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
3
|
Zhang M, Li Y, Liu L, Huang M, Wang M, Zou J. The effects on type 2 diabetes mellitus mouse femoral bone achieved by anti-osteoporosis exercise interventions. Front Endocrinol (Lausanne) 2022; 13:914872. [PMID: 36465647 PMCID: PMC9715737 DOI: 10.3389/fendo.2022.914872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose Exercise therapy and key regulators of bone quality exert anti-hyperglycemic effects on type 2 diabetes mellitus (T2DM) mice. A number of programs have been reported to have an effect on bone disease in T2DM. Major unanswered questions concern the potential correlation of exercise with the improvement of bone quality in T2DM mice and how the nonlinear optical properties of bone are correlated with changes to its crystal structure. Methods Subjects were randomly divided into six groups: 1) control (C) group, which was fed a normal diet (n = 8); 2) T2DM quiet group, which was given a high-fat diet and quiet (n = 8); 3) T2DM plus swimming (T2DM+S) group, which received T2DM and swim training (n = 8); 4) T2DM plus resistance exercise (T2DM+RE) group, which was given T2DM and resistance exercise (n = 8); 5) T2DM plus aerobic exercise (T2DM+AE) group, with T2DM and medium-intensity treadmill exercise (n = 8); and 6) T2DM plus high-intensity interval training (T2DM+HIIT), with T2DM and high-intensity variable-speed intervention (n = 8). The levels of runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase (ALP), as well as the bone microstructure and morphometry, were measured at the end of the 8-week exercise intervention. Results Compared with the C group, the bone microstructure indexes [bone mineral density (BMD), bone volume/tissue volume (BV/TV), cortical thickness (Ct.Th), and connectivity density (Conn.D)], the bone biomechanical properties (maximum load, fracture load, yield stress, and elastic modulus), and the osteogenic differentiation factors (RUNX2, OSX, and BMP2) of the T2DM group were significantly decreased (all p < 0.05). Compared with the T2DM group, there were obvious improvements in the osteogenic differentiation factor (OSX) and Th.N, while the separation of trabecular bone (Tb.Sp) decreased in the T2DM+AE and T2DM+HIIT groups (all p < 0.05). In addition, the bone microstructure indicators BV/TV, tissue mineral density (TMD), Conn.D, and degree of anisotropy (DA) also increased in the T2DM+HIIT group, but the yield stress and Ct.Th deteriorated compared with the T2DM group (all p < 0.05). Compared with the T2DM+S and T2DM+RE groups, the BV/TV, trabecular number (Tb.N), Tb.Sp, and Conn.D in the T2DM+AE and T2DM+HIIT groups were significantly improved, but no significant changes in the above indicators were found between the T2DM+S and T2DM+RE groups (all p < 0.05). In addition, the BMD and the expression of ALP in the T2DM+AE group were significantly higher than those in the T2DM+HIIT group (all p < 0.05). Conclusion There was a significant deterioration in femur bone mass, trabecular bone microarchitecture, cortical bone geometry, and bone mechanical strength in diabetic mice. However, such deterioration was obviously attenuated in diabetic mice given aerobic and high-intensity interval training, which would be induced mainly by suppressing the development of T2DM. Regular physical exercise may be an effective strategy for the prevention of not only the development of diabetes but also the deterioration of bone properties in patients with chronic T2DM.
Collapse
Affiliation(s)
- Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuexuan Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Lee S, Shin YA, Cho J, Park DH, Kim C. Moderate-Intensity Exercise Preserves Bone Mineral Density and Improves Femoral Trabecular Bone Microarchitecture in Middle-Aged Mice. J Bone Metab 2022; 29:103-111. [PMID: 35718927 PMCID: PMC9208899 DOI: 10.11005/jbm.2022.29.2.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Aging leads to significant bone loss and elevated osteoporosis risk. Exercise slows age-related bone loss; however, the effects of various moderate-intensity exercise training volumes on bone metabolism remain unclear. This study aimed to determine the degree to which different volumes of moderate-intensity aerobic exercise training influence bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone microarchitecture, and cortical bone in middle-aged mice. Methods Twenty middle-aged male C57BL/6 mice were randomly assigned 8 weeks of either (1) non-exercise (CON); (2) moderate-intensity with high-volume exercise (EX_MHV); or (3) moderate-intensity with low-volume exercise (EX_MLV) (N=6–7, respectively). Femoral BMD and BMC were evaluated using dual energy X-ray absorptiometry, and trabecular and cortical bone were measured using micro-computed tomography. Results Femoral BMD in EX_MHV but not EX_MLV was significantly higher (P<0.05) than in CON. The distal femoral fractional trabecular bone volume/tissue volume (BV/TV, %) was significantly higher (P<0.05) in both EX_MHV and EX_MLV than in CON mice. Increased BV/TV was induced by significantly increased trabecular thickness (mm) and tended to be higher (P<0.10) in BV (mm3) and lower in trabecular separation (mm) in EX_MHV and EX_MLV than in CON. The femoral mid-diaphysis cortical bone was stronger in EX_MLV than EX_MHV. Conclusions Long-term moderate-intensity aerobic exercise with low to high volumes can be thought to have a positive effect on hindlimb BMD and attenuate age-associated trabecular bone loss in the femur. Moderate-intensity aerobic exercise may be an effective and applicable exercise regimen to prevent age-related loss of BMD and BV.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University Arizona College of Osteopathic Medicine, Glendale, AZ, USA
| | - Yun-A Shin
- Department of Prescription and Rehabilitation of Exercise, College of Sport Science, Dankook University, Cheonan, Korea
| | - Jinkyung Cho
- Department of Sport Science, Korea Institute of Sport Science, Seoul, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Changsun Kim
- Department of Physical Education, Dongduk Women’s University, Seoul, Korea
| |
Collapse
|
5
|
Paiva LA, Silva IS, de Oliveira SA, de Souza AS, Jacques COB. Analysis of high-intensity interval training on bone mineral density in an experimental model of type 2 diabetes. Acta Cir Bras 2022; 37:e370207. [PMID: 35507971 PMCID: PMC9064184 DOI: 10.1590/acb370207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To analyze the effect of high-intensity interval training (HIIT) on bone mineral density (BMD) in a model of type 2 diabetes mellitus. METHODS Thirty-two male, adult, 12-week-old rats (Rattus norvegicus), of the Wistar lineage, were used. The animals induced to the experimental model received a high fat diet for 10 days and, after that period, intraperitoneal injection of streptozotocin (40 mg·kg-1), dissolved in 20 mmol·L-1 sodium citrate solution (pH = 4.5). The experimental group of diabetes was formed by the animals that, 48 h after the injection of streptozotocin, had fasting blood glucose > 250 mg·dL-1). The animals were randomly divided into four groups with eight animals each: HIIT experimental diabetes; HIIT control; sedentary experimental diabetes and sedentary control. The animals in the HIIT group performed an aerobic exercise protocol on a treadmill inclined at an angle of 15° to the horizontal, with interspersed intensity. Five weekly sessions, lasting 49 min each, were held for 6 weeks. The analysis of cortical bone density (CBD) and BMD were performed by X-ray images using the In-Vivo Xtreme II/Bruker system. RESULTS For CBD and BMD, when comparing diabetes and control groups, a significant difference was seen between groups in relation to HIIT (p = 0.007). Animals submitted and not submitted to HIIT in the same group showed a significant difference between groups in relation to diabetes (p < 0.001). CONCLUSIONS The HIIT experimental diabetes group had increased CBD and BMD in comparison with the sedentary experimental diabetes group.
Collapse
Affiliation(s)
- Letícia Alves Paiva
- Master. Universidade Federal do Mato Grosso do Sul – Faculty of Medicine – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Iandara Schettert Silva
- PhD. Universidade Federal do Mato Grosso do Sul – Faculty of Medicine – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Silvio Assis de Oliveira
- PhD. Universidade Federal do Mato Grosso do Sul – Integrated Institute of Health – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Albert Schiaveto de Souza
- PhD. Universidade Federal do Mato Grosso do Sul – Biosciences Institute – Postgraduate Program in Health and Development – Campo Grande (MS), Brazil
| | - Claudio Osório Brito Jacques
- Nutritionist. Universidade Federal do Mato Grosso do Sul – Faculty of Pharmaceutical Sciences – Research and Production Laboratory– Campo Grande (MS), Brazil
| |
Collapse
|
6
|
Lee S, Shin YA, Cho J, Park DH, Kim C. Trabecular Bone Microarchitecture Improvement Is Associated With Skeletal Nerve Increase Following Aerobic Exercise Training in Middle-Aged Mice. Front Physiol 2022; 12:800301. [PMID: 35273515 PMCID: PMC8902445 DOI: 10.3389/fphys.2021.800301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
Advancing age is associated with bone loss and an increased risk of osteoporosis. Exercise training improves bone metabolism and peripheral nerve regeneration, and may play a critical role in osteogenesis and increase in skeletal nerve fiber density. In this study, the potential positive role of aerobic exercise training in bone metabolism and skeletal nerve regeneration was comprehensively evaluated in 14-month-old male C57BL/6 mice. The mice were divided into two groups: no exercise (non-exercise group) and 8-weeks of aerobic exercise training (exercise group), with six mice in each group. Dual-energy X-ray absorptiometry and micro-computed tomography showed that femoral and tibial bone parameters improved after aerobic exercise training. Greater skeletal nerve fiber density was also observed in the distal femoral and proximal tibial periostea, measured and analyzed by immunofluorescence staining and confocal microscopy. Pearson correlation analysis revealed a significant association between skeletal nerve densities and trabecular bone volume/total volume ratios (distal femur; R 2 = 0.82, p < 0.05, proximal tibia; R 2 = 0.59, p = 0.07) in the exercise group; while in the non-exercise group no significant correlation was found (distal femur; R 2 = 0.10, p = 0.54, proximal tibia; R 2 = 0.12, p = 0.51). Analysis of archival microarray database confirmed that aerobic exercise training changed the microRNA profiles in the mice femora. The differentially expressed microRNAs reinforce the role of aerobic exercise training in the osteogenic and neurogenic potential of femora and tibiae. In conclusion, 8-weeks of aerobic exercise training positively regulate bone metabolism, an effect that paralleled a significant increase in skeletal nerve fiber density. These findings suggest that aerobic exercise training may have dual utility, both as a direct stimulator of bone remodeling and a positive regulator of skeletal nerve regeneration.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Yun-A Shin
- Department of Exercise Prescription and Rehabilitation, College of Sports Science, Dankook University, Cheonan, South Korea
| | - Jinkyung Cho
- Department of Sport Science, Korea Institute of Sport Science, Seoul, South Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, South Korea.,Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Changsun Kim
- Department of Physical Education, Dongduk Women's University, Seoul, South Korea
| |
Collapse
|
7
|
Polisel EEC, Beck WR, Scariot PPM, Pejon TMM, Gobatto CA, Manchado-Gobatto FB. Effects of high-intensity interval training in more or less active mice on biomechanical, biophysical and biochemical bone parameters. Sci Rep 2021; 11:6414. [PMID: 33742012 PMCID: PMC7979708 DOI: 10.1038/s41598-021-85585-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
High-intensity interval training (HIIT) is of scientific interest due its role in improving physical fitness, but the effects of HIIT on bone health need be carefully explored. Further, it is necessary to know whether HIIT effects on bone health are dependent on the physical activity levels. This may be experimentally tested since we have built a large cage (LC) that allows animals to move freely, promoting an increase of spontaneous physical activity (SPA) in comparison to a small cage (SC). Thus, we examined the effects of HIIT on biophysical, biomechanical and biochemical parameters of bone tissue of C57BL/6J mice living in cages of two different sizes: small (SC) or large (LC) cages with 1320 cm2 and 4800 cm2 floor space, respectively. Male mice were subdivided into two groups within each housing type: Control (C) and Trained (T). At the end of the interventions, all mice were euthanized to extract the femur bone for biophysical, biomechanical and biochemical analyses. Based a significant interaction from two-way ANOVA, trained mice kept in large cage (but not for trained mice housed in SC) exhibited a reduction of tenacity and displacement at failure in bone. This suggests that long-term HIIT program, in addition with a more active lifestyle correlates with exerts negative effects on the bone of healthy mice. A caution must also be raised about the excessive adoption of physical training, at least regarding bone tissue. On the other hand, increased calcium was found in femur of mice housed in LC. In line with this, LC-C mice were more active (i.e. SPA) than other groups. This implies that an active lifestyle without long-term high intensity physical training seems to play a role in promoting benefits to bone tissue. Our data provides new insights for treatment of osteo-health related disorders.
Collapse
Affiliation(s)
- Emanuel E. C. Polisel
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| | - Wladimir R. Beck
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP Brazil
| | - Pedro P. M. Scariot
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| | - Taciane M. M. Pejon
- grid.411247.50000 0001 2163 588XLaboratory of Endocrine Physiology and Physical Exercise, Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP Brazil
| | - Claudio A. Gobatto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| | - Fúlvia B. Manchado-Gobatto
- grid.411087.b0000 0001 0723 2494Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Pedro Zaccaria Street, 1.300, Jardim Santa Luíza, Limeira, SP 13484-350 Brazil
| |
Collapse
|
8
|
Tanaka H, Yamashita T, Yoneda M, Takagi S, Miura T. Characteristics of bone strength and metabolism in type 2 diabetic model Tsumura, Suzuki, Obese Diabetes mice. Bone Rep 2018; 9:74-83. [PMID: 30094297 PMCID: PMC6073051 DOI: 10.1016/j.bonr.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia, hyperinsulinemia, and complications such as obesity and osteoporosis. The Tsumura, Suzuki, Obese Diabetes (TSOD) mouse is an animal model of spontaneous obese T2DM. However, bone metabolism in TSOD mice is yet to be investigated. The objective of the present study was to investigate the effects of T2DM on bone mass, metabolism, microstructure, and strength in TSOD mice. METHODS We determined the following parameters in TSOD mice and Tsumura, Suzuki, Non-obesity (TSNO) mice (as controls): serum glucose levels; serum insulin levels; bone mass; bone microstructure; bone metabolic markers; and bone strength. We also performed the oral glucose tolerance test and examined histological sections of the femur. We compared these data between both groups at pre-diabetic (10 weeks) and established (20 weeks) diabetic conditions. RESULTS Bone strength, such as extrinsic mechanical properties, increased with age in the TSOD mice and intrinsic material properties decreased at both 10 weeks and 20 weeks. Bone resorption marker levels in TSOD mice were significantly higher than those in the control mice at both ages, but there was no significant difference in bone formation markers between the groups. Bone mass in TSOD mice was lower than that in controls at both ages. The trabecular bone volume at the femoral greater trochanter increased with age in the TSOD mice. The femoral mid-diaphysis in TSOD mice was more slender and thicker than that in TSNO mice at both ages. CONCLUSIONS Bone mass of the femur was lower in TSOD mice than in TSNO mice because hyperinsulinemia during pre-diabetic and established diabetic conditions enhanced bone resorption due to high bone turnover. In addition, our data suggest that the bone mass of the femur was significantly reduced as a result of chronic hyperglycemia during established diabetic conditions in TSOD mice. We suggest that bone strength in the femur deteriorated due to the reduction of bone mass and because the femoral mid-diaphysis was more slender in TSOD mice.
Collapse
Key Words
- BMC, bone mineral content
- BMD, bone mineral density
- Bone mass
- Bone metabolism
- Bone microstructure
- Bone strength
- CSMI, cross-sectional moment inertia
- OCN, osteocalcin
- OGTT, oral glucose tolerance test
- PBS, phosphate-buffered saline
- T1DM, type 1 diabetes mellitus
- T2DM, type 2 diabetes mellitus
- TRAcP5b, tartrate-resistant acid phosphatase 5b
- TSNO, Tsumura, Suzuki, non-obesity
- TSOD, Tsumura, Suzuki, Obese Diabetes
- Tsumura, Suzuki, Obese Diabetes mice
- Type 2 diabetes mellitus
- micro-CT, micro-computed tomography
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Graduate School of Health Science Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| | - Takenori Yamashita
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| | - Satoshi Takagi
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1230 Miyakoda, Kitaku, Hamamatsu, Shizuoka, 431-2102, Japan
| | - Toshihiro Miura
- Graduate School of Health Science Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan
| |
Collapse
|
9
|
Akagawa M, Miyakoshi N, Kasukawa Y, Ono Y, Yuasa Y, Nagahata I, Sato C, Tsuchie H, Nagasawa H, Hongo M, Shimada Y. Effects of activated vitamin D, alfacalcidol, and low-intensity aerobic exercise on osteopenia and muscle atrophy in type 2 diabetes mellitus model rats. PLoS One 2018; 13:e0204857. [PMID: 30332436 PMCID: PMC6192580 DOI: 10.1371/journal.pone.0204857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus causes secondary osteoporosis and muscle atrophy. The ability of alfacalcidol (ALF) and exercise (Exe) to inhibit osteoporosis and muscle atrophy in type 2 diabetes mellitus (T2DM) model rats was examined. Twenty-week-old Otsuka Long-Evans Tokushima Fatty rats were randomized to ALF (orally 0.1 μg/kg/day), Exe (treadmill exercise at 10 m/min, 60 min/day, 5 days/week), Comb (ALF and Exe), and Cont (T2DM control treated with vehicle and no exercise) groups (n = 8–10 per group). Sedentary Long-Evans Tokushima Otsuka rats were used as a non-hyperphagic control. After treatment for 2 or 6 weeks, blood glucose (BG) levels, cross-sectional area (CSA) of tibialis anterior muscle fibers, femoral bone mineral density (BMD), and relative quantities of muscle anabolic markers (Pax7, MyoD, and myogenin) and catabolic markers (Atrogin-1, MuRF1, and REDD1) of the soleus muscle assessed by real-time polymerase chain reaction assays were measured. Exe and Comb treatments for 6 weeks decreased BG levels compared with those of the Cont group. ALF, Exe, and Comb treatments for 2 and 6 weeks recovered the CSA compared with that of the Cont group. ALF and Comb treatments for 6 weeks increased femoral BMDs compared with those of the Cont group. After 2 weeks of treatment, Comb treatment increased MyoD expression and decreased MuRF1 expression. ALF or Exe monotherapy significantly decreased Atrogin-1 or MuRF1 expression after 2 weeks of treatment, respectively. After 6 weeks of treatment, ALF and Comb treatments decreased Atrogin-1 and REDD1. These results demonstrate that a combination of ALF and Exe improved CSA from the early phase of treatment by stimulating skeletal muscle differentiation and suppressing muscle catabolic genes. Improvements in BG, BMD, and CSA were observed as long-term effects of the combination therapy. Continued suppression of muscle catabolic genes was observed as a background to these effects.
Collapse
MESH Headings
- Animals
- Biomarkers/analysis
- Blood Glucose/analysis
- Bone Density/drug effects
- Bone Density Conservation Agents/administration & dosage
- Bone Density Conservation Agents/pharmacology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/prevention & control
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Gene Regulatory Networks/drug effects
- Hydroxycholecalciferols/administration & dosage
- Hydroxycholecalciferols/pharmacology
- Male
- Muscle, Skeletal/metabolism
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/prevention & control
- Physical Conditioning, Animal/physiology
- Physical Therapy Modalities
- Random Allocation
- Rats
Collapse
Affiliation(s)
- Manabu Akagawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
- * E-mail:
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Yuichi Ono
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Yusuke Yuasa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Itsuki Nagahata
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Chiaki Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Hiroyuki Tsuchie
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Hiroyuki Nagasawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Michio Hongo
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita City, Akita, Japan
| |
Collapse
|