1
|
Bevers MSAM, Moharir S, Heyer FL, Wyers CE, van den Bergh JP, van Rietbergen B. A 2D-registration algorithm for the correction of motion-induced misalignments of consecutive image stacks in multi-stack high-resolution peripheral quantitative CT scans. Bone 2025; 197:117490. [PMID: 40252819 DOI: 10.1016/j.bone.2025.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/28/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Multi-stack imaging using high-resolution peripheral quantitative CT (HR-pQCT) can involve misalignments of consecutive image stacks ('stack shift') due to subject movement during scan acquisition. We developed a simple, 2D-registration algorithm for the correction of stack shifts in multi-stack HR-pQCT scans and investigated 1) the differences in standard HR-pQCT parameters and repeatability between before and after stack-shift correction; and 2) the correlation between the transformation needed for the stack-shift correction and corresponding difference in HR-pQCT parameters. The algorithm generates an artificial stack overlap of two slices, then rigidly registers the overlapping region (only in-plane translation allowed), and subsequently applies the resulting translation to the proximal stack. The algorithm was applied to data of 23 men and women with three same-day repeated scans (69 radius and 63 tibia scans, Dataset 1) and of 48 postmenopausal women with 78 radius scans taken at two time points with 12-week interval (Dataset 2). In both datasets, median differences in HR-pQCT parameters between before and after stack-shift correction were mostly significant yet small (≤0.53 %). The differences could vary considerably between subjects and ranged between -12.1 % and +35.8 % for cortical porosity, stiffness, and failure load. For the other HR-pQCT parameters, the differences ranged between ±0.8 % (Dataset 1) and between -4.5 % and +0.9 % (Dataset 2) among subjects. Spearman correlations between the magnitude of the translation and corresponding difference in HR-pQCT parameters were significant for most parameters in both datasets and strongest for stiffness and failure load (ρ = 0.687-0.947; p < 0.01). Based on Dataset 1, coefficients of variation differed between ±0.3 percentage points after stack-shift correction as compared to before. To conclude, correction of stack misalignments in two-stack HR-pQCT scans using our algorithm resulted in significant but negligible median differences in HR-pQCT parameters and precision, but differences could exceed least-significant differences and thereby be clinically relevant in individual subjects. The translation needed for the stack-shift correction correlated significantly with the difference in most HR-pQCT parameters, thereby potentially serving as objective measure for stack-shift severity. The algorithm can be applied directly after scan reconstruction, at low computational cost and without negative effects from image interpolation.
Collapse
Affiliation(s)
- M S A M Bevers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - S Moharir
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - F L Heyer
- NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Surgery, VieCuri Medical Center, Venlo, the Netherlands
| | - C E Wyers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, the Netherlands; NUTRIM Institute of Nutrition and Translational Research In Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - B van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Watanabe K, Chiba K, Shiraishi K, Iida T, Iwamoto N, Yonekura A, Kawakami A, Osaki M. Microarchitectural analysis of the metacarpophalangeal joint using HR-pQCT in patients with rheumatoid arthritis: A comparison with healthy controls. Bone 2024; 189:117250. [PMID: 39237048 DOI: 10.1016/j.bone.2024.117250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE To investigate which joint microarchitectural parameters measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) serve as imaging markers for rheumatoid arthritis (RA). METHODS The second and third metacarpophalangeal (MCP) joints of 50 patients with RA and 50 healthy controls (HCs) (aged 50-79 years, all females) were scanned using a HR-pQCT. Joint space, trabecular bone microarchitecture, and erosion were measured and compared between RA patients and HCs. RESULTS There were no differences in joint space parameters between RA patients and HCs. For bone microarchitecture, RA patients had lower trabecular bone mineral density (127 vs. 167 mg/cm3), thinner trabecular thickness (0.20 vs. 0.21 mm), fewer trabecular number (1.49 vs. 1.55 /mm), more rod-like structure (1.68 vs. 1.23), and poorer trabecular connectivity (4.51 vs. 5.72 /mm3) than HCs. Regarding erosion, RA patients had a higher number of erosions per joint (36/100 vs. 18/100), larger volume (4.62 vs. 1.89 mm3), and longer width (2.40 vs. 1.82 mm) and longer length (2.34 vs. 1.64 mm) than HCs. Most of the erosions in HCs were <5 mm3 in volume (95 %) and located on the radial side (85 %). When erosions <5 mm3 were compared between RA patients and HCs, there were no differences in their location or morphology. CONCLUSIONS Deterioration of bone microarchitecture and existences of erosions >5 mm3 in the MCP joints are sensitive imaging markers of RA. Erosions <5 mm3 in RA patients may include not only early pathological erosion but also physiological erosion because even HCs can have erosions <5 mm3.
Collapse
Affiliation(s)
- Kounosuke Watanabe
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kazuteru Shiraishi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Iida
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
Iwamoto N, Chiba K, Sato S, Tashiro S, Shiraishi K, Watanabe K, Ohki N, Okada A, Koga T, Kawashiri SY, Tamai M, Osaki M, Kawakami A. Preferable effect of CTLA4-Ig on both bone erosion and bone microarchitecture in rheumatoid arthritis revealed by HR-pQCT. Sci Rep 2024; 14:27673. [PMID: 39532911 PMCID: PMC11557861 DOI: 10.1038/s41598-024-77392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
This exploratory study aimed to examine the impact of abatacept treatment on bone structure in patients with rheumatoid arthritis (RA) using high-resolution peripheral quantitative computed tomography (HR-pQCT). RA patients initiating either abatacept or newly introduced csDMARDs were enrolled in this prospective, non-randomized, two-group study. Bone structure in the 2nd and 3rd metacarpal heads was assessed using HR-pQCT at 0, 6, and 12 months after enrollment. Synovitis was evaluated using musculoskeletal ultrasound and MRI. The adjusted mean between-group differences (abatacept-csDMARDs group) were estimated using a mixed-effect model. Thirty-five patients (abatacept group: n = 15; csDMARDs group: n = 20) were analyzed. Changes in erosion volume, depth and width were numerically smaller in the abatacept group compared to the csDMARDs group (adjusted mean between-group differences: - 1.86 mm3, - 0.02 mm, and - 0.09 mm, respectively). Over a 12-month period, 5 erosions emerged in the csDMARDs group, while only 1 erosion appeared in the abatacept group. Compared to csDMARDs, abatacept better preserved bone microarchitecture; several components of bone microarchitecture were significantly worsened at 6 months in the csDMARDs group, but were not deteriorated at 6 months in the abatacept group. Changes in synovitis scores were similar between the two treatment groups. Our results indicate that abatacept prevented the progression of bone erosion including new occurrence, and also prevented worsening of bone strength independently with synovitis compared to csDMARDs including MTX. Thus, abatacept treatment may provide benefits not only in inhibiting the progress of bone erosion but also in preventing bone microarchitectural deterioration.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeki Tashiro
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuteru Shiraishi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kounosuke Watanabe
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Nozomi Ohki
- Department of Radiological Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Akitomo Okada
- Department of Rheumatology, National Hospital Organization Nagasaki Medical Center, Kubara 2-1001-1, Omura, Nagasaki, 856-8562, Japan
| | - Tomohiro Koga
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shin-Ya Kawashiri
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Center for Collaborative Medical Education and Development, Nagasaki University Institute of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Mami Tamai
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
4
|
Gazzotti S, Aparisi Gómez MP, Schileo E, Taddei F, Sangiorgi L, Fusaro M, Miceli M, Guglielmi G, Bazzocchi A. High-resolution peripheral quantitative computed tomography: research or clinical practice? Br J Radiol 2023; 96:20221016. [PMID: 37195008 PMCID: PMC10546468 DOI: 10.1259/bjr.20221016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/18/2023] Open
Abstract
High-resolution peripheral quantitative CT (HR-pQCT) is a low-dose three-dimensional imaging technique, originally developed for in vivo assessment of bone microarchitecture at the distal radius and tibia in osteoporosis. HR-pQCT has the ability to discriminate trabecular and cortical bone compartments, providing densitometric and structural parameters. At present, HR-pQCT is mostly used in research settings, despite evidence showing that it may be a valuable tool in osteoporosis and other diseases. This review summarizes the main applications of HR-pQCT and addresses the limitations that currently prevent its integration into routine clinical practice. In particular, the focus is on the use of HR-pQCT in primary and secondary osteoporosis, chronic kidney disease (CKD), endocrine disorders affecting bone, and rare diseases. A section on novel potential applications of HR-pQCT is also present, including assessment of rheumatic diseases, knee osteoarthritis, distal radius/scaphoid fractures, vascular calcifications, effect of medications, and skeletal muscle. The reviewed literature seems to suggest that a more widespread implementation of HR-pQCT in clinical practice would offer notable opportunities. For instance, HR-pQCT can improve the prediction of incident fractures beyond areal bone mineral density provided by dual-energy X-ray absorptiometry. In addition, HR-pQCT may be used for the monitoring of anti-osteoporotic therapy or for the assessment of mineral and bone disorder associated with CKD. Nevertheless, several obstacles currently prevent a broader use of HR-pQCT and would need to be targeted, such as the small number of installed machines worldwide, the uncertain cost-effectiveness, the need for improved reproducibility, and the limited availability of reference normative data sets.
Collapse
Affiliation(s)
- Silvia Gazzotti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Sangiorgi
- Department of Medical Genetics and Rare Orthopaedic Diseases, and CLIBI Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Marco Miceli
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
5
|
Minopoulou I, Kleyer A, Yalcin-Mutlu M, Fagni F, Kemenes S, Schmidkonz C, Atzinger A, Pachowsky M, Engel K, Folle L, Roemer F, Waldner M, D'Agostino MA, Schett G, Simon D. Imaging in inflammatory arthritis: progress towards precision medicine. Nat Rev Rheumatol 2023; 19:650-665. [PMID: 37684361 DOI: 10.1038/s41584-023-01016-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Imaging techniques such as ultrasonography and MRI have gained ground in the diagnosis and management of inflammatory arthritis, as these imaging modalities allow a sensitive assessment of musculoskeletal inflammation and damage. However, these techniques cannot discriminate between disease subsets and are currently unable to deliver an accurate prediction of disease progression and therapeutic response in individual patients. This major shortcoming of today's technology hinders a targeted and personalized patient management approach. Technological advances in the areas of high-resolution imaging (for example, high-resolution peripheral quantitative computed tomography and ultra-high field MRI), functional and molecular-based imaging (such as chemical exchange saturation transfer MRI, positron emission tomography, fluorescence optical imaging, optoacoustic imaging and contrast-enhanced ultrasonography) and artificial intelligence-based data analysis could help to tackle these challenges. These new imaging approaches offer detailed anatomical delineation and an in vivo and non-invasive evaluation of the immunometabolic status of inflammatory reactions, thereby facilitating an in-depth characterization of inflammation. By means of these developments, the aim of earlier diagnosis, enhanced monitoring and, ultimately, a personalized treatment strategy looms closer.
Collapse
Affiliation(s)
- Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin-Mutlu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Kemenes
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Institute for Medical Engineering, University of Applied Sciences Amberg-Weiden, Weiden, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Milena Pachowsky
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Lukas Folle
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maximilian Waldner
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria-Antonietta D'Agostino
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation, Laboratory of Excellence Inflamex, Montigny-Le-Bretonneux, France
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
6
|
Shiraishi K, Chiba K, Watanabe K, Oki N, Iwamoto N, Amano S, Yonekura A, Tomita M, Uetani M, Kawakami A, Osaki M. Analysis of bone erosions in rheumatoid arthritis using HR-pQCT: Development of a measurement algorithm and assessment of longitudinal changes. PLoS One 2022; 17:e0265833. [PMID: 35472146 PMCID: PMC9041818 DOI: 10.1371/journal.pone.0265833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022] Open
Abstract
Purpose
The purpose of this study was to establish an algorithm for measuring bone erosions at metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT), to investigate the precision of measurements, and to assess longitudinal changes in bone erosions among patients with rheumatoid arthritis (RA).
Methods
The 2nd and 3rd MCP joints were scanned at a voxel size of 60.7 μm using second-generation HR-pQCT. Bone erosions on MCP joints were identified using a semi-automated algorithm we developed, and each erosion parameter was measured. Measurement reproducibility was evaluated in 19 healthy subjects using intraclass correlation coefficients (ICCs) and root mean square percent coefficient of variance (RMS%CV). Finally, longitudinal changes in bone erosions over a period of 12 months were assessed in 26 patients with RA based on the calculated least significant change (LSC).
Results
Reproducibilities for measurement parameters regarding bone erosions with our algorithm were good (all ICCs ≥ 0.98; all RMS%CVs < 5%). No erosion parameters showed significant changes after 12 months of treatment in terms of median values in all erosions, while both progression and repair of erosions were observed individually (e.g., erosion volume: progression, 26% (+0.62 mm3); repair, 34% (-0.85 mm3); no change, 40%).
Conclusions
The measurement algorithm developed for bone erosions at MCP joints showed good reproducibility. Both progression and repair of bone erosions were observed in patients with RA even after 12 months of appropriate treatment. Our algorithm may be useful to investigate the etiology of RA and assess drug efficacy.
Collapse
Affiliation(s)
- Kazuteru Shiraishi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| | - Kounosuke Watanabe
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nozomi Oki
- Department of Radiological Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoken Amano
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masato Tomita
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masataka Uetani
- Department of Radiological Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R. The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 2021; 32:1465-1485. [PMID: 34023944 PMCID: PMC8376700 DOI: 10.1007/s00198-021-05999-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
High-resolution peripheral computed tomography (HR-pQCT) was developed to image bone microarchitecture in vivo at peripheral skeletal sites. Since the introduction of HR-pQCT in 2005, clinical research to gain insight into pathophysiology of skeletal fragility and to improve prediction of fractures has grown. Meanwhile, the second-generation HR-pQCT device has been introduced, allowing novel applications such as hand joint imaging, assessment of subchondral bone and cartilage thickness in the knee, and distal radius fracture healing. This article provides an overview of the current clinical applications and guidance on interpretation of results, as well as future directions. Specifically, we provide an overview of (1) the differences and reference data for HR-pQCT variables by age, sex, and race/ethnicity; (2) fracture risk prediction using HR-pQCT; (3) the ability to monitor response of anti-osteoporosis therapy with HR-pQCT; (4) the use of HR-pQCT in patients with metabolic bone disorders and diseases leading to secondary osteoporosis; and (5) novel applications of HR-pQCT imaging. Finally, we summarize the status of the application of HR-pQCT in clinical practice and discuss future directions. From the clinical perspective, there are both challenges and opportunities for more widespread use of HR-pQCT. Assessment of bone microarchitecture by HR-pQCT improves fracture prediction in mostly normal or osteopenic elderly subjects beyond DXA of the hip, but the added value is marginal. The prospects of HR-pQCT in clinical practice need further study with respect to medication effects, metabolic bone disorders, rare bone diseases, and other applications such as hand joint imaging and fracture healing. The mostly unexplored potential may be the differentiation of patients with only moderately low BMD but severe microstructural deterioration, which would have important implications for the decision on therapeutical interventions.
Collapse
Affiliation(s)
- J P van den Bergh
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Medicine, Hasselt University, Hasselt, Belgium.
| | - P Szulc
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| | - A M Cheung
- Department of Medicine and Joint Department of Medical Imaging, University Health Network; and Department of Medicine and Centre of Excellence in Skeletal Health Assessment, University of Toronto, Toronto, Ontario, Canada
| | - M Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - K Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 cedex 03, Lyon, France
| |
Collapse
|
8
|
Folle L, Meinderink T, Simon D, Liphardt AM, Krönke G, Schett G, Kleyer A, Maier A. Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density. Sci Rep 2021; 11:9697. [PMID: 33958664 PMCID: PMC8102473 DOI: 10.1038/s41598-021-89111-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/21/2021] [Indexed: 12/29/2022] Open
Abstract
Arthritis patients develop hand bone loss, which leads to destruction and functional impairment of the affected joints. High resolution peripheral quantitative computed tomography (HR-pQCT) allows the quantification of volumetric bone mineral density (vBMD) and bone microstructure in vivo with an isotropic voxel size of 82 micrometres. However, image-processing to obtain bone characteristics is a time-consuming process as it requires semi-automatic segmentation of the bone. In this work, a fully automatic vBMD measurement pipeline for the metacarpal (MC) bone using deep learning methods is introduced. Based on a dataset of HR-pQCT volumes with MC measurements for 541 patients with arthritis, a segmentation network is trained. The best network achieves an intersection over union as high as 0.94 and a Dice similarity coefficient of 0.97 while taking only 33 s to process a whole patient yielding a speedup between 2.5 and 4.0 for the whole workflow. Strong correlation between the vBMD measurements of the expert and of the automatic pipeline are achieved for the average bone density with 0.999 (Pearson) and 0.996 (Spearman's rank) with [Formula: see text] for all correlations. A qualitative assessment of the network predictions and the manual annotations yields a 65.9% probability that the expert favors the network predictions. Further, the steps to integrate the pipeline into the clinical workflow are shown. In order to make these workflow improvements available to others, we openly share the code of this work.
Collapse
Affiliation(s)
- Lukas Folle
- Pattern Recognition Lab-Computer Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Timo Meinderink
- Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab-Computer Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Jin S, Li M, Wang Q, Zeng X, Xia W, Yu W, Guan W, Hsieh E. Bone mineral density and microarchitecture among Chinese patients with rheumatoid arthritis: a cross-sectional study with HRpQCT. Arthritis Res Ther 2021; 23:127. [PMID: 33894786 PMCID: PMC8067377 DOI: 10.1186/s13075-021-02503-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Patients with rheumatoid arthritis (RA) are at increased risk of fractures. Although their decline in bone mineral density (BMD) is well-established, data regarding the alterations in bone microarchitecture are limited. In this study, we aimed to evaluate bone microarchitecture, geometry, and volumetric BMD among patients with RA in mainland China using high-resolution peripheral quantitative computed tomography (HRpQCT). METHODS In this cross-sectional study, patients with RA were recruited from the Peking Union Medical College Hospital site of the Chinese Registry of rhEumatoiD arthrITis (CREDIT). Each participant underwent HRpQCT scanning (Scanco XtremeCT II), thoracolumbar X-ray and dual-energy X-ray absorptiometry. The primary outcomes were HRpQCT-related measures at distal radius and tibia. Data regarding demographic features, RA-related characteristics, and history of fragility fractures were collected. Correlation between HRpQCT parameters and potentially related factors were analyzed using linear regression analysis. A group of age- and sex-matched healthy controls was included for comparison. RESULTS A total of 81 patients with RA [69 women, aged 57.9 ± 8.7 years, disease duration 5.7 (IQR 1.4-11.2) years] and 81 matched healthy controls were included. Compared with controls, patients with RA had significantly larger bone area and lower total and trabecular vBMD at both the distal radius and tibia. Lower cortical bone thickness was also shown at the distal tibia. Among patients with RA, advanced age, low BMI, female sex, disease duration, and activity were associated with decreased vBMD and impaired bone microstructure. Female reproductive factors including menopause, late menarche, breast feeding, and early childbirth also showed negative correlation with these parameters. Compared to patients with RA without fractures, patients with fragility fractures (n = 11) showed lower trabecular and cortical vBMD, thinner cortical bone, impaired trabecular microstructure, and a trend of declined bone strength. Current glucocorticoid intake was related to decreased vBMD, trabecular number, increased trabecular separation, and inhomogeneity. CONCLUSIONS In this study, we observed alterations in bone mineral density, geometry, and microarchitecture among patients with RA compared to healthy individuals, which may impair bone strength and lead to increased risk of fractures. Both traditional risk factors for osteoporosis and RA-associated factors need to be considered in the assessment of the bone quality.
Collapse
Affiliation(s)
- Shangyi Jin
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenmin Guan
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Evelyn Hsieh
- Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, 300 Cedar Street, TAC S-525, P.O. Box 208031, New Haven, CT, 06520-8031, USA.
| |
Collapse
|
10
|
Ding M, Overgaard S. 3-D microarchitectural properties and rod- and plate-like trabecular morphometric properties of femur head cancellous bones in patients with rheumatoid arthritis, osteoarthritis, and osteoporosis. J Orthop Translat 2021; 28:159-168. [PMID: 33996461 PMCID: PMC8089789 DOI: 10.1016/j.jot.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives We quantify 3-D microarchitectural properties of femoral head cancellous bones from patients with rheumatoid arthritis (RA, n = 12), osteoarthritis (OA, n = 15), osteoporosis (OP, n = 24), or donor controls (CNT, n = 8); and investigate their rod- and plate-like trabecular morphometric properties of trabecular bone tissues and compare these properties between them. Methods Femoral heads were harvested during total hip replacement surgeries or collected from donors. Four cubic cancellous bone samples produced from each femoral head were micro-CT scanned to quantify their microarchitectural and rod- and plate-like trabecular properties. The samples were then tested in compression to determine mechanical properties. Results The microarchitectural properties of femoral head cancellous bone revealed significant differences among the 4 groups, but not between RA and OA. Bone volume fraction was significantly greater in the RA and the OA than in the OP and the CNT. Structure model index was significantly lower in the RA and the OA than in the OP. Number of rods in the RA was significantly greater than in the other 3 groups. Number of plates and plate volume density in the RA and the OA were significantly greater than in the OP and the CNT. Mechanical properties were significantly greater in the RA and the OA than in the OP. The single best determinant for mechanical properties was bone volume fraction. Conclusions This study demonstrates significant differences in 3-D microarchitectural properties and rod- and plate-like trabecular morphometric properties among patients with RA, OA, or OP. The RA and OA cancellous bones displayed similar patterns of microarchitectural degeneration and pronounced different microarchitectures from the OP. The OP group revealed the weakest cancellous bone strength, while the RA and OA groups exhibited a compensatory effect that maintains bone tissues, and hence mechanical properties. The translational potential of this article The study enhances the understanding of microarchitectural degeneration of diseased cancellous bone. The OP group had the weakest cancellous bone strength, while the RA and OA groups exhibited a compensatory effect that maintains bone tissues, and hence mechanical properties. These results are particularly important for design and survival of joint prosthesis.
Collapse
Affiliation(s)
- Ming Ding
- Orthopedic Research Laboratory, Department of Orthopedic Surgery & Traumatology, Odense University Hospital, And Department of Clinical Research, University of Southern Denmark, 5000, Odense, C, Denmark
| | - Søren Overgaard
- Orthopedic Research Laboratory, Department of Orthopedic Surgery & Traumatology, Odense University Hospital, And Department of Clinical Research, University of Southern Denmark, 5000, Odense, C, Denmark.,Department of Orthopaedic Surgery & Traumatology, Copenhagen University Hospital, Bispebjerg, And Department of Clinical Medicine, University of Copenhagen, 2400, Copenhagen, NV, Denmark
| |
Collapse
|
11
|
Brunet SC, Tse JJ, Kuczynski MT, Engelke K, Boyd SK, Barnabe C, Manske SL. Heterogenous bone response to biologic DMARD therapies in rheumatoid arthritis patients and their relationship to functional indices. Scand J Rheumatol 2021; 50:417-426. [PMID: 33775211 DOI: 10.1080/03009742.2020.1869303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objectives: Previous studies of high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging of hand joints in patients with rheumatoid arthritis (RA) have suggested that erosion healing may occur. Our objective was to examine changes in erosion volume, joint space width (JSW), bone mineral density (BMD), and bone remodelling, and their association with clinical outcomes and measures of patient hand function.Method: We examined 48 patients who achieved a good response to a newly initiated biologic therapy. HR-pQCT images of the dominant hands' second and third metacarpophalangeal joints were obtained 3 and 12 months after therapy initiation. Bone erosion volume, JSW, BMD, and bone remodelling were quantified from HR-pQCT images, with improvement, no change (unchanged), or progression in these measures determined by least significant change. Disease activity and hand function measures were collected.Results: There were no significant group changes in HR-pQCT outcomes over the 9 month period. Twenty-two patients had total erosion volumes that remained unchanged, nine showed improvement, and two progressed. The majority of JSW and BMD measures remained unchanged. There was a significant association between the baseline Health Assessment Questionnaire score and the change in minimum JSW, but no other significant associations between HR-pQCT outcomes and function were observed.Conclusions: The vast majority of patients maintained unchanged JSW and BMD over the course of follow-up. Significant improvements in total erosion volume occurred in 27% of patients, suggesting that biologic therapies may lead to erosion healing in some patients, although this did not have an impact on self-reported and demonstrated hand function.
Collapse
Affiliation(s)
- S C Brunet
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Biomedical Engineering Graduate Program, Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - J J Tse
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - M T Kuczynski
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Biomedical Engineering Graduate Program, Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - K Engelke
- Department of Medicine, FAU University Erlangen-Nürnberg and University Clinic Erlangen, Erlangen, Germany
| | - S K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Biomedical Engineering Graduate Program, Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - C Barnabe
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - S L Manske
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Biomedical Engineering Graduate Program, Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
12
|
Gandikota G, Fakuda T, Finzel S. Computed tomography in rheumatology - From DECT to high-resolution peripheral quantitative CT. Best Pract Res Clin Rheumatol 2020; 34:101641. [PMID: 33281053 DOI: 10.1016/j.berh.2020.101641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this chapter, we discuss current updates and applications of Dual Energy Computed Tomography (DECT), iodine-DECT mapping, and high-resolution peripheral quantitative CT (HR-pQCT) in rheumatology. DECT provides a noninvasive diagnosis of gout and can help to differentiate gout from CPPD. Accuracy of DECT varies in various stages of gout. DECT needs specialized hardware, software, and skilled post-processing and interpretation. Sensitivity reduces significantly with deeper tissues such as hip and shoulder. Iodine map enables to delineate inflammatory lesions such as capsulitis and tenosynovitis by improving iodine contrast. Iodine quantification with an iodine map is a promising objective method to evaluate therapeutic effect of inflammatory arthritis. HR-pQCT allows for highly sensitive and specific measures of bone erosions and osteophytes in inflammatory joint diseases, documenting change over time, e.g. in cohorts undergoing immunosuppressive treatments. However, assessing the images requires trained readers, and (semi)-automated scripts to detect bone damage are still undergoing validation and further development.
Collapse
Affiliation(s)
- Girish Gandikota
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| | - Takeshi Fakuda
- Department of Radiology, The Jikei University School of Medicine, Japan
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Tse JJ, Brunet SC, Salat P, Hazlewood GS, Barnabe C, Manske SL. Multi-Modal Imaging to Assess the Interaction Between Inflammation and Bone Damage Progression in Inflammatory Arthritis. Front Med (Lausanne) 2020; 7:545097. [PMID: 33102498 PMCID: PMC7544988 DOI: 10.3389/fmed.2020.545097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Combining results from multiple imaging techniques (i.e., multi-modal imaging) through image registration can result in the better characterization of joint tissue characteristics. In the context of inflammatory arthritis conditions, high-resolution peripheral quantitative computed tomography (HR-pQCT) provides excellent bone contrast while magnetic resonance imaging (MRI) provides superior contrast and resolution of soft tissue and inflammatory characteristics. Superimposing these imaging results upon each other provides a robust characterization of the joint. In a preliminary study of nine rheumatoid arthritis (RA) participants in clinical remission, we acquired HR-pQCT and MR images of their 2nd and 3rd metacarpophalangeal (MCP) joints at two timepoints 6 months apart. We present the benefits of a multi-modal imaging approach, in which we demonstrate the ability to localize regions of inflammation with subtle changes in bone erosion volume. Using HR-pQCT and MRI to visualize bone damage and inflammation, respectively, will improve our understanding of the impact that subclinical inflammation has on bone damage progression, and demonstrating if bone repair occurs where inflammation is resolved. The presented multi-modal imaging technique has the potential to study the progression of bone damage in relation to inflammation that otherwise would not be possible with either imaging technique alone. The multi-modal image registration technique will be helpful to understanding the development and pathogenesis of RA-associated bone erosions. Additionally, multi-modal imaging may provide a technique to probe the tissue-level changes that occur as a result of treatment regimes.
Collapse
Affiliation(s)
- Justin J. Tse
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Scott C. Brunet
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Peter Salat
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Glen S. Hazlewood
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheryl Barnabe
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah L. Manske
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Klose-Jensen R, Tse JJ, Keller KK, Barnabe C, Burghardt AJ, Finzel S, Tam LS, Hauge EM, Stok KS, Manske SL. High-Resolution Peripheral Quantitative Computed Tomography for Bone Evaluation in Inflammatory Rheumatic Disease. Front Med (Lausanne) 2020; 7:337. [PMID: 32766262 PMCID: PMC7381125 DOI: 10.3389/fmed.2020.00337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
High resolution peripheral quantitative computed tomography (HR-pQCT) is a 3-dimensional imaging modality with superior sensitivity for bone changes and abnormalities. Recent advances have led to increased use of HR-pQCT in inflammatory arthritis to report quantitative volumetric measures of bone density, microstructure, local anabolic (e.g., osteophytes, enthesiophytes) and catabolic (e.g., erosions) bone changes and joint space width. These features may be useful for monitoring disease progression, response to therapy, and are responsive to differentiating between those with inflammatory arthritis conditions and healthy controls. We reviewed 69 publications utilizing HR-pQCT imaging of the metacarpophalangeal (MCP) and/or wrist joints to investigate arthritis conditions. Erosions are a marker of early inflammatory arthritis progression, and recent work has focused on improvement and application of techniques to sensitively identify erosions, as well as quantifying erosion volume changes longitudinally using manual, semi-automated and automated methods. As a research tool, HR-pQCT may be used to detect treatment effects through changes in erosion volume in as little as 3 months. Studies with 1-year follow-up have demonstrated progression or repair of erosions depending on the treatment strategy applied. HR-pQCT presents several advantages. Combined with advances in image processing and image registration, individual changes can be monitored with high sensitivity and reliability. Thus, a major strength of HR-pQCT is its applicability in instances where subtle changes are anticipated, such as early erosive progression in the presence of subclinical inflammation. HR-pQCT imaging results could ultimately impact decision making to uptake aggressive treatment strategies and prevent progression of joint damage. There are several potential areas where HR-pQCT evaluation of inflammatory arthritis still requires development. As a highly sensitive imaging technique, one of the major challenges has been motion artifacts; motion compensation algorithms should be implemented for HR-pQCT. New research developments will improve the current disadvantages including, wider availability of scanners, the field of view, as well as the versatility for measuring tissues other than only bone. The challenge remains to disseminate these analysis approaches for broader clinical use and in research.
Collapse
Affiliation(s)
- Rasmus Klose-Jensen
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Justin J Tse
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Cheryl Barnabe
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Medical Centre - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lai-Shan Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ellen-Margrethe Hauge
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah L Manske
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Raterman HG, Bultink IE, Lems WF. Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention. Expert Opin Pharmacother 2020; 21:1725-1737. [PMID: 32605401 DOI: 10.1080/14656566.2020.1787381] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic disabling disease characterized by a symmetrical articular involvement due to ongoing joint inflammation, if left insufficiently treated. Local and generalized bone loss is one of the main extra-articular complications of RA and leads to an increased risk for fragility fractures, which further impair functional ability, quality of life, and life expectancy. Therefore, there is an urgent need for good fracture risk management in the vulnerable RA patient. AREAS COVERED The authors review: the epidemiology and pathophysiology (i.e. risk factors) of osteoporosis (OP), fracture, and vertebral fracture risk assessment, the effects of anti-rheumatic drugs on bone loss, pharmacological treatment of OP in RA including both bisphosphonates (BP) and newer drugs including anti-resorptives and osteoanabolic treatment options. EXPERT OPINION Patients with active RA have elevated bone resorption and local bone loss. Moreover, these patients are at increased risk for generalized bone loss, vertebral and non-vertebral fractures. Since general risk factors (such as low BMI, fall risk) and RA-related factors play a role, optimal fracture prevention in RA patients is based on optimal diagnostics based on both of these factors, and on the use of adequate non-medical and medical treatment options.
Collapse
Affiliation(s)
- Hennie G Raterman
- Department of Rheumatology, North West Clinics , Alkmaar, The Netherlands
| | - Irene Em Bultink
- Department of Rheumatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Rheumatology and Immunology Center , Amsterdam, The Netherlands
| | - Willem F Lems
- Department of Rheumatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Rheumatology and Immunology Center , Amsterdam, The Netherlands.,Department of Rheumatology, Amsterdam Rheumatology and Immunology Center , Amsterdam, The Netherlands
| |
Collapse
|
16
|
Brunet SC, Kuczynski MT, Bhatla JL, Lemay S, Pauchard Y, Salat P, Barnabe C, Manske SL. The utility of multi-stack alignment and 3D longitudinal image registration to assess bone remodeling in rheumatoid arthritis patients from second generation HR-pQCT scans. BMC Med Imaging 2020; 20:36. [PMID: 32264872 PMCID: PMC7140503 DOI: 10.1186/s12880-020-00437-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Medical imaging plays an important role in determining the progression of joint damage in rheumatoid arthritis (RA). High resolution peripheral quantitative computed tomography (HR-pQCT) is a sensitive tool capable of evaluating bone microarchitecture and erosions, and 3D rigid image registration can be used to visualize and quantify bone remodeling over time. However, patient motion during image acquisition can cause a "stack shift" artifact resulting in loss of information and reducing the number of erosions that can be analyzed using HR-pQCT. The purpose of this study was to use image registration to improve the number of useable HR-pQCT scans and to apply image-based bone remodeling assessment to the metacarpophalangeal (MCP) joints of RA patients. METHODS Ten participants with RA completed HR-pQCT scans of the 2nd and 3rd MCP joints at enrolment to the study and at a 6-month follow-up interval. At 6-months, an additional repeat scan was acquired to evaluate reliability. HR-pQCT images were acquired in three individual 1 cm acquisitions (stacks) with a 25% overlap. We completed analysis first using standard evaluation methods, and second with multi-stack registration. We assessed whether additional erosions could be evaluated after multi-stack registration. Bone remodeling analysis was completed using registration and transformation of baseline and follow-up images. We calculated the bone formation and resorption volume fractions with 6-month follow-up, and same-day repositioning as a negative control. RESULTS 13/57 (23%) of erosions could not be analyzed from raw images due to a stack shift artifact. All erosions could be volumetrically assessed after multi-stack registration. We observed that there was a median bone formation fraction of 2.1% and resorption fraction of 3.8% in RA patients over the course of 6 months. In contrast to the same-day rescan negative control, we observed median bone formation and resorption fractions of 0%. CONCLUSIONS Multi-stack image registration is a useful tool to improve the number of useable scans when analyzing erosions using HR-pQCT. Further, image registration can be used to longitudinally assess bone remodeling. These methods could be implemented in future studies to provide important pathophysiological information on the progression of bone damage.
Collapse
Affiliation(s)
- Scott C Brunet
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael T Kuczynski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer L Bhatla
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sophie Lemay
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yves Pauchard
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter Salat
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cheryl Barnabe
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Rheumatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah L Manske
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary AB3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada. .,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada. .,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|