1
|
Deng D, Hu S, Lin Z, Geng J, Qian Z, Zhang K, Ning X, Cheng Y, Zhang C, Yin S. High temperature aggravated hypoxia-induced intestine toxicity on juvenile Chinese mitten crab (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101288. [PMID: 39002349 DOI: 10.1016/j.cbd.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
High temperature and hypoxia in water due to global warming threaten the growth and development of aquatic animals. In natural or cultured environments, stress usually does not occur independently, whereas the synergistic effect of high temperature and hypoxia on Chinese mitten crab (Eriocheir sinensis) are rarely reported. In this study, 450 juvenile crabs were equally divided into control group (24 °C ± 0.5 °C, DO 6.8 ± 0.1 mg/L), hypoxia stress group (24 °C ± 0.5 °C, DO 1 ± 0.1 mg/L) and combined stress group (30 °C ± 0.5 °C, DO 1 ± 0.1 mg/L), and the intestinal health status, microbial diversity and metabolite profiles were evaluated for 24 h treatment. The results showed that hypoxia stress induced the expression level of pro-inflammatory related genes were significantly up-regulated in intestine of juvenile E. sinensis, and intestinal peritrophic membrane factor related genes were significantly down-regulated. High temperature further amplified the effects of hypoxia on pro-inflammatory and peritrophic membrane factor-related genes. Interesting, hypoxia stress induced a significant up-regulated of intestinal antioxidant-related genes, whereas high temperature reversed this trend. In addition, single stress or/and combined stress led to changes in intestinal microbiota diversity and abundance, and intestinal metabolite profiles. Compared with hypoxia stress, the synergistic effect of high temperature and hypoxia led to an increase in the abundance of pathogenic bacteria and a decrease in the abundance of probiotic bacteria. Moreover, intestinal metabolic pathways were significantly changed, especially amino acid metabolism and glycerophospholipid metabolism. Therefore, the results indicated that hypoxia stress could induce intestinal inflammatory response and oxidative stress, and lead to abnormal changes in intestinal microbiota and metabolic profiles, whereas high temperature further aggravate the toxic effects of hypoxia on the intestine. This study preliminarily revealed the synergistic toxic effects of high temperature and hypoxia on the intestine of juvenile E. sinensis.
Collapse
Affiliation(s)
- Dunqian Deng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Shengyu Hu
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Ziqi Lin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jiayin Geng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Ziang Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Yongxu Cheng
- Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Key Laboratory of Integrated Rice-Fish Farming Ecosystem, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| |
Collapse
|
2
|
Ling Y, Xu P, Afiqah-Aleng N, Ishak SD, Wang Y, Shu-Chien AC, Sung YY, Rozaimi R, Liew HJ, Fazhan H, Waiho K. Physiological adaptation and gut microbiota changes of orange mud crab Scylla olivacea in response to increased temperature condition. AQUATIC SCIENCES 2024; 86:100. [DOI: 10.1007/s00027-024-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/07/2024] [Indexed: 01/05/2025]
|
3
|
Shokri M, Lezzi L, Basset A. The seasonal response of metabolic rate to projected climate change scenarios in aquatic amphipods. J Therm Biol 2024; 124:103941. [PMID: 39163749 DOI: 10.1016/j.jtherbio.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
The responses of organisms to climate change are mediated primarily by its impact on their metabolic rates, which, in turn, drive various biological and ecological processes. Although there have been numerous seminal studies on the sensitivity of metabolic rate to temperature, little is empirically known about how this rate responds to seasonal temperature ranges and beyond under conservative IPCC climate change scenarios. Here, we measured the SMR of the aquatic amphipod, Gammarus insensibilis, which served as our subject species, with body masses ranging from 0.20 to 7.74 mg ash free weight. We assessed the response of the SMR across nine temperature levels ranging from 12 to 30.2 °C. These temperatures match seasonal temperature norms, with an incremental increase of 0.6-1.2 °C above each seasonal baseline, as projected for the years 2040 and 2100 under the modest climate change scenarios. Overall, our findings showed that the effect of temperature on SMR varies with body mass, as indicated by a negative size-temperature interaction, with larger conspecifics exhibiting less sensitivity to temperature changes than smaller ones. From the cold to warm season, the SMR increased by an average of 14% °C-1, with increases of 18.4% °C-1 in smaller individuals and 11.4% °C-1 in larger ones. The SMR of smaller individuals peaked at a 0.6 °C increase from the current summer baseline (15.08% °C-1, Q10 = 4.2), while in larger ones it peaked with a 1.2 °C increase beyond autumn temperatures (14.9% °C-1, Q10 = 3.9). However, at temperatures reflecting global warming that exceed summer temperatures, the SMR of larger individuals levelled off, while that of smaller ones continued to increase. Overall, our findings suggest that smaller-sized individuals have a broader thermal window for SMR performance, while the SMR of larger-sized ones will become increasingly constrained at summer temperatures as those summer temperatures become hotter.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Ludovico Lezzi
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy; CNR, National Research Council of Italy, Monterotondo Scalo, 00015, Rome, Italy
| |
Collapse
|
4
|
Glazier DS, Gjoni V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220489. [PMID: 38186280 PMCID: PMC10772614 DOI: 10.1098/rstb.2022.0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolism energizes all biological processes, and its tempo may importantly influence the ecological success and evolutionary fitness of organisms. Therefore, understanding the broad variation in metabolic rate that exists across the living world is a fundamental challenge in biology. To further the development of a more reliable and holistic picture of the causes of this variation, we review several examples of how various intrinsic (biological) and extrinsic (environmental) factors (including body size, cell size, activity level, temperature, predation and other diverse genetic, cellular, morphological, physiological, behavioural and ecological influences) can interactively affect metabolic rate in synergistic or antagonistic ways. Most of the interactive effects that have been documented involve body size, temperature or both, but future research may reveal additional 'hub factors'. Our review highlights the complex, intimate inter-relationships between physiology and ecology, knowledge of which can shed light on various problems in both disciplines, including variation in physiological adaptations, life histories, ecological niches and various organism-environment interactions in ecosystems. We also discuss theoretical and practical implications of interactive effects on metabolic rate and provide suggestions for future research, including holistic system analyses at various hierarchical levels of organization that focus on interactive proximate (functional) and ultimate (evolutionary) causal networks. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
| | - Vojsava Gjoni
- Department of Biology, University of South Dakota, Vermillion, SD 57609, USA
| |
Collapse
|
5
|
Medina-Báez OA, Lenard A, Muzychuk RA, da Silva CRB, Diamond SE. Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. CONSERVATION PHYSIOLOGY 2023; 11:coad058. [PMID: 37547363 PMCID: PMC10401068 DOI: 10.1093/conphys/coad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Physiological traits are often used for vulnerability assessments of organismal responses to climate change. Trait values can change dramatically over the life cycle of organisms but are typically assessed at a single developmental stage. Reconciling ontogenetic changes in physiological traits with vulnerability assessments often reveals early life-stage vulnerabilities. The degree to which ontogenetic changes in physiological traits are due to changes in body mass over development versus stage-specific responses determines the degree to which mass can be used as a proxy for vulnerability. Here, we use the painted lady butterfly, Vanessa cardui, to test ontogenetic changes in two physiological traits, the acute thermal sensitivity of routine metabolic rate (RMR Q10) and the critical thermal maximum (CTmax). RMR Q10 generally followed ontogenetic changes in body mass, with stages characterized by smaller body mass exhibiting lower acute thermal sensitivity. However, CTmax was largely decoupled from ontogenetic changes in body mass. In contrast with trends from other studies showing increasing vulnerability among progressively earlier developmental stages, our study revealed highly erratic patterns of vulnerability across ontogeny. Specifically, we found the lowest joint-trait vulnerability (both RMR Q10 and CTmax) in the earliest developmental stage we tested (3rd instar larvae), the highest vulnerabilities in the next two developmental stages (4th and 5th instar larvae), and reduced vulnerability into the pupal and adult stages. Our study supports growing evidence of mechanistic decoupling of physiology across developmental stages and suggests that body mass is not a universal proxy for all physiological trait indicators of climate vulnerability.
Collapse
Affiliation(s)
- Osmary A Medina-Báez
- Corresponding author: Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA. Tel: 1-216-368-0699.
| | - Angie Lenard
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Rut A Muzychuk
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Carmen R B da Silva
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton 3800, Australia
- College of Science and Engineering, Flinders University, Anchor Court, Bedford Park 5042, South Australia, Australia
| | - Sarah E. Diamond
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Shokri M, Cozzoli F, Vignes F, Bertoli M, Pizzul E, Basset A. Metabolic rate and climate change across latitudes: evidence of mass-dependent responses in aquatic amphipods. J Exp Biol 2022; 225:280993. [PMID: 36337048 PMCID: PMC9720750 DOI: 10.1242/jeb.244842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Research Institute on Terrestrial Ecosystems (IRET–URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Marco Bertoli
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
7
|
Hughes DJ, Alexander J, Cobbs G, Kühl M, Cooney C, Pernice M, Varkey D, Voolstra CR, Suggett DJ. Widespread oxyregulation in tropical corals under hypoxia. MARINE POLLUTION BULLETIN 2022; 179:113722. [PMID: 35537305 DOI: 10.1016/j.marpolbul.2022.113722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia (low oxygen stress) is increasingly reported on coral reefs, caused by ocean deoxygenation linked to coastal nutrient pollution and ocean warming. While the ability to regulate respiration is a key driver of hypoxia tolerance in many other aquatic taxa, corals' oxyregulatory capabilities remain virtually unexplored. Here, we examine O2-consumption patterns across 17 coral species under declining O2 partial pressure (pO2). All corals showed ability to oxyregulate, but total positive regulation (Tpos) varied between species, ranging from 0.41 (Pocillopora damicornis) to 2.42 (P. acuta). On average, corals performed maximum regulation effort (Pcmax) at low pO2 (30% air saturation, corresponding to lower O2 levels measured on natural reef systems), and exhibited detectable regulation down to as low as <10% air saturation. Our study shows that corals are not oxyconformers as previously thought, suggesting oxyregulation is likely important for survival in dynamic O2 environments of shallow coral reefs subjected to hypoxic events.
Collapse
Affiliation(s)
- David J Hughes
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia.
| | - James Alexander
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Gary Cobbs
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK 3000 Helsingør, Denmark
| | - Chris Cooney
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia
| | - Mathieu Pernice
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia
| | - Deepa Varkey
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia
| | | | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW 2007, Australia
| |
Collapse
|
8
|
Montero-Taboada R, Sotil G, Dionicio-Acedo J, Rosado-Salazar M, Aguirre-Velarde A. Tolerance of juvenile Peruvian rock seabass (Paralabrax humeralis Valenciennes, 1828) and Peruvian grunt (Anisotremus scapularis Tschudi, 1846) to low-oxygen conditions. JOURNAL OF FISH BIOLOGY 2022; 100:1497-1509. [PMID: 35398900 DOI: 10.1111/jfb.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia is currently one of the greatest threats to coastal ecosystems worldwide, generating massive mortality of marine organisms, loss of benthic ecosystems and a decrease in fishery production. We evaluated and compared the tolerance to hypoxia of two species from different habitats of the Peruvian coast, the Peruvian rock seabass Paralabrax humeralis and the Peruvian grunt Anisotremus scapularis. The effect of hypoxia was measured as a function of the exposure time (progressive and chronic) on the behavioural and physiological responses of the two species, as well as on the enzymatic activity associated with the oxidative stress response of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and alkaline phosphatase (AKP). The ventilatory frequency was measured at two different temperatures (16 and 22°C) under progressive hypoxia conditions to determine the ventilatory critical point (Vcp). A. scapularis showed a higher Vcp than P. humeralis, which was positively affected by temperature. The median lethal time of A. scapularis was 36 min at 60% of oxygen saturation, while P. humeralis showed no mortality after 31 days of exposure at 5% oxygen saturation. Different enzymatic activity (P < 0.05) between species under hypoxia was recorded, in SOD (gill and muscle) and AKP (blood). A general tendency, under hypoxia, to slightly increase LDH activity (except for blood in A. scapularis, P < 0.05) and SOD activity (mainly in muscle of A. scapularis, P < 0.05), and decrease AKP activity (mainly in liver of P. humeralis, P < 0.05) was observed. The response of P. humeralis to hypoxia goes through a reduction in activity and metabolism, so this species can be considered hypoxia-tolerant, allowing it to face hypoxia events during prolonged periods. On the other hand, A. scapularis response to hypoxia prioritizes avoidance mechanisms and, together with other adaptations, makes it especially vulnerable to hypoxia and able to be considered hypoxia-intolerant.
Collapse
Affiliation(s)
- Rebeca Montero-Taboada
- Universidad Científica del Sur, Carretera Panamerica Sur Km 19, Lima, Peru
- Instituto del Mar del Perú, Esquina General Valle y Gamarra S/N, Callao, Peru
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Giovanna Sotil
- Instituto del Mar del Perú, Esquina General Valle y Gamarra S/N, Callao, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela s/n, Ciudad Universitaria, Lima, Peru
| | - Jhon Dionicio-Acedo
- Instituto del Mar del Perú, Esquina General Valle y Gamarra S/N, Callao, Peru
| | | | | |
Collapse
|
9
|
Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 2022; 13:874321. [PMID: 35444563 PMCID: PMC9013945 DOI: 10.3389/fphys.2022.874321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O2] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O2 were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O2 as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O2 and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O2]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O2] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O2. 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O2-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O2-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.
Collapse
|
10
|
Environmental hypoxia: A threat to the gonadal development and reproduction in bony fishes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
12
|
Vorsatz LD, Pattrick P, Porri F. Fine-scale conditions across mangrove microhabitats and larval ontogeny contributes to the thermal physiology of early stage brachyurans (Crustacea: Decapoda). CONSERVATION PHYSIOLOGY 2021; 9:coab010. [PMID: 33927883 PMCID: PMC8059134 DOI: 10.1093/conphys/coab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/13/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Most marine ectotherms require the successful completion of a biphasic larval stage to recruit into adult populations. Recruitment of larvae into benthic habitats largely depends on biological interactions and favourable environmental conditions such as the inescapable diurnal thermal and tidal exposures. Hence, assessing how different taxa metabolically respond to variations in temperature is imperative to understand the community and ecosystem dynamics at both local and global scales. The present study aimed to investigate the effects of acute temperature variation on the physiology of stage-specific brachyuran larvae collected from different microhabitats at two mangrove forests in South Africa. Results indicate that the conditions within microhabitats, which larvae experience, likely influence their physiology, based on respirometry, to short-term acute temperature exposures. Furthermore, the larval thermal optimum shifted ontogenetically to become increasingly eurythermic as individuals developed from stage I zoea through to megalopa. Mangrove crab larvae in their early stages are hence increasingly vulnerable to acute temperature exposures, which could be particularly harmful to the persistence of populations if thermally stressful events increase in magnitude and frequency.
Collapse
Affiliation(s)
- L D Vorsatz
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda 6139, South Africa
- The Swire Institute of Marine Science and the Division of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR
| | - P Pattrick
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda 6139, South Africa
- South African Environmental Observation Network, Elwandle Coastal Node, Port Elizabeth 6070, South Africa
| | - F Porri
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Makhanda 6139, South Africa
| |
Collapse
|
13
|
Collins M, Truebano M, Verberk WCEP, Spicer JI. Do aquatic ectotherms perform better under hypoxia after warm acclimation? J Exp Biol 2021; 224:224/3/jeb232512. [PMID: 33542094 DOI: 10.1242/jeb.232512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aquatic animals increasingly encounter environmental hypoxia due to climate-related warming and/or eutrophication. Although acute warming typically reduces performance under hypoxia, the ability of organisms to modulate hypoxic performance via thermal acclimation is less understood. Here, we review the literature and ask whether hypoxic performance of aquatic ectotherms improves following warm acclimation. Interpretation of thermal acclimation effects is limited by reliance on data from experiments that are not designed to directly test for beneficial or detrimental effects on hypoxic performance. Most studies have tested hypoxic responses exclusively at test temperatures matching organisms' acclimation temperatures, precluding the possibility of distinguishing between acclimation and acute thermal effects. Only a few studies have applied appropriate methodology to identify beneficial thermal acclimation effects on hypoxic performance, i.e. acclimation to different temperatures prior to determining hypoxic responses at standardised test temperatures. These studies reveal that acute warming predominantly impairs hypoxic performance, whereas warm acclimation tends to be either beneficial or have no effect. If this generalises, we predict that warm-acclimated individuals in some species should outperform non-acclimated individuals under hypoxia. However, acclimation seems to only partially offset acute warming effects; therefore, aquatic ectotherms will probably display overall reduced hypoxic performance in the long term. Drawing on the appropriate methodology, future studies can quantify the ability of organisms to modulate hypoxic performance via (reversible) thermal acclimation and unravel the underlying mechanisms. Testing whether developmental acclimation and multigenerational effects allow for a more complete compensation is essential to allow us to predict species' resilience to chronically warmer, hypoxic environments.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, PL4 8AA, UK
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - John I Spicer
- Marine Biology and Ecology Research Centre, Plymouth University, Drake Circus, PL4 8AA, UK
| |
Collapse
|
14
|
Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. Proc Natl Acad Sci U S A 2020; 117:31963-31968. [PMID: 33257544 PMCID: PMC7749359 DOI: 10.1073/pnas.2003292117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organismal responses to climate change are mediated through its effects on physiology and metabolism. In aquatic environments, both water temperature and oxygen availability may modulate these responses by altering the aerobic metabolism fueling physiological performance. However, ecological models aimed at predicting how environmental factors shape aerobic metabolism disregard the role of oxygen supply. Here, we expand on these models by explicitly incorporating oxygen supply. Our results show that warmer water increases oxygen demand relative to supply, and the resulting reduction in aerobic scope appears to be stronger in larger individuals. Smaller aerobic scopes in warming water imply that climate change will reduce energy budgets needed to support the activities of aquatic animals and their physiological performance in the future. Both oxygen and temperature are fundamental factors determining metabolic performance, fitness, ecological niches, and responses of many aquatic organisms to climate change. Despite the importance of physical and physiological constraints on oxygen supply affecting aerobic metabolism of aquatic ectotherms, ecological theories such as the metabolic theory of ecology have focused on the effects of temperature rather than oxygen. This gap currently impedes mechanistic models from accurately predicting metabolic rates (i.e., oxygen consumption rates) of aquatic organisms and restricts predictions to resting metabolism, which is less affected by oxygen limitation. Here, we expand on models of metabolic scaling by accounting for the role of oxygen availability and temperature on both resting and active metabolic rates. Our model predicts that oxygen limitation is more likely to constrain metabolism in larger, warmer, and active fish. Consequently, active metabolic rates are less responsive to temperature than are resting metabolic rates, and metabolism scales to body size with a smaller exponent whenever temperatures or activity levels are higher. Results from a metaanalysis of fish metabolic rates are consistent with our model predictions. The observed interactive effects of temperature, oxygen availability, and body size predict that global warming will limit the aerobic scope of aquatic ectotherms and may place a greater metabolic burden on larger individuals, impairing their physiological performance in the future. Our model reconciles the metabolic theory with empirical observations of oxygen limitation and provides a formal, quantitative framework for predicting both resting and active metabolic rate and hence aerobic scope of aquatic ectotherms.
Collapse
|
15
|
Glazier DS, Gring JP, Holsopple JR, Gjoni V. Temperature effects on metabolic scaling of a keystone freshwater crustacean depend on fish-predation regime. J Exp Biol 2020; 223:jeb232322. [PMID: 33037112 DOI: 10.1242/jeb.232322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
According to the metabolic theory of ecology, metabolic rate, an important indicator of the pace of life, varies with body mass and temperature as a result of internal physical constraints. However, various ecological factors may also affect metabolic rate and its scaling with body mass. Although reports of such effects on metabolic scaling usually focus on single factors, the possibility of significant interactive effects between multiple factors requires further study. In this study, we show that the effect of temperature on the ontogenetic scaling of resting metabolic rate of the freshwater amphipod Gammarus minus depends critically on habitat differences in predation regime. Increasing temperature tends to cause decreases in the metabolic scaling exponent (slope) in population samples from springs with fish predators, but increases in population samples from springs without fish. Accordingly, the temperature sensitivity of metabolic rate is not only size-specific, but also its relationship to body size shifts dramatically in response to fish predators. We hypothesize that the dampened effect of temperature on the metabolic rate of large adults in springs with fish, and of small juveniles in springs without fish are adaptive evolutionary responses to differences in the relative mortality risk of adults and juveniles in springs with versus without fish predators. Our results demonstrate a complex interaction among metabolic rate, body mass, temperature and predation regime. The intraspecific scaling of metabolic rate with body mass and temperature is not merely the result of physical constraints related to internal body design and biochemical kinetics, but rather is ecologically sensitive and evolutionarily malleable.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Jeffrey P Gring
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
- Coastal Resources, Inc., Annapolis, MD 21401, USA
| | - Jacob R Holsopple
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Vojsava Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
16
|
Yamada H, Maiga H, Bimbile-Somda NS, Carvalho DO, Mamai W, Kraupa C, Parker AG, Abrahim A, Weltin G, Wallner T, Schetelig MF, Caceres C, Bouyer J. The role of oxygen depletion and subsequent radioprotective effects during irradiation of mosquito pupae in water. Parasit Vectors 2020; 13:198. [PMID: 32303257 PMCID: PMC7165396 DOI: 10.1186/s13071-020-04069-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation induced sterility is the basis of the Sterile Insect Technique, by which a target insect pest population is suppressed by releasing artificially reared sterile males of the pest species in overflooding numbers over a target site. In order for the sterile males to be of high biological quality, effective standard irradiation protocols are required. Following studies investigating the effects of mosquito pupae irradiation in water versus in air, there is a need to investigate the oxy-regulatory behavior of mosquito pupae in water to better understand the consequences of irradiation in hypoxic versus normoxic conditions. METHODS Pupae of Aedes aegypti, Ae. albopictus, and Anopheles arabiensis were submerged in water inside air-tight 2 ml glass vials at a density of 100 pupae/ml and the dissolved oxygen (DO) levels in the water were measured and plotted over time. In addition, male pupae of Ae. aegypti (aged 40-44 h), Ae. albopictus (aged 40-44 h) and An. arabiensis (aged 20-24 h) were irradiated in a gammacell220 at increasing doses in either hypoxic (water with < 0.5% O2 content) or normoxic (in air) conditions. The males were then mated to virgin females and resulting eggs were checked for induced sterility. RESULTS All three species depleted the water of DO to levels under 0.5% within 30 minutes, with An. arabiensis consuming oxygen the fastest at under 10 minutes. Following irradiation, the protective effect of hypoxia was observed across species and doses (P < 0.0001), increasing at higher doses. This effect was most pronounced in An. arabiensis. CONCLUSIONS The consumption of dissolved oxygen by pupae submerged in water was significantly different between species, indicating that their oxy-regulatory capacity seems to have possibly evolved according to their preferred breeding site characteristics. This needs to be considered when sterilizing male mosquitoes at pupal stage in water. Depending on species, their DO consumption rates and their density, irradiation doses needed to achieve full sterility may vary significantly. Further assessments are required to ascertain optimal conditions in terms of ambient atmosphere during pupal irradiation to produce competitive sterile males, and temperature and density dependent effects are expected.
Collapse
Affiliation(s)
- Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Giessen, Germany
| | - Hamidou Maiga
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Nanwintoum Severin Bimbile-Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Danilo O. Carvalho
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Wadaka Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Carina Kraupa
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Aiman Abrahim
- Food and Environmental Protection Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Georg Weltin
- Soil and Water Management & Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Thomas Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Marc F. Schetelig
- Institute for Insect Biotechnology, Department of Insect Biotechnology in Plant Protection, Justus-Liebig-University Gießen, Winchester Str. 2, 35394 Giessen, Germany
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria
| |
Collapse
|
17
|
Bao J, Li X, Xing Y, Feng C, Jiang H. Respiratory Metabolism and Antioxidant Response in Chinese Mitten Crab Eriocheir sinensis During Air Exposure and Subsequent Reimmersion. Front Physiol 2019; 10:907. [PMID: 31379609 PMCID: PMC6652117 DOI: 10.3389/fphys.2019.00907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/01/2019] [Indexed: 12/04/2022] Open
Abstract
Chinese mitten crab, Eriocheir sinensis, often suffers from severe air exposure stress during transportation and culture; high mortality occurs due to desiccation. In this study, the effects of air exposure stress (0, 2, 4, 8, and 16 h) and reimmersion (2, 6, 12 h) on respiratory metabolism and antioxidant responses in Chinese mitten crabs were studied under laboratory conditions. The results showed that air exposure and reimmersion had a significant impact on the oxygen consumption rate (OCR), ammonia excretion rate (AER), oxygen to nitrogen ratio (O:N), superoxide dismutase (SOD), catalase (CAT), succinate dehydrogenase (SDH), and lactate dehydrogenase (LDH). Significant interaction between air exposure and reimmersion was observed for OCR, AER, O:N, SOD, CAT, SDH, and LDH in Chinese mitten crab. During the air exposure stage, SOD, CAT, and LDH activities in the gills and hepatopancreas first increased and then decreased as air exposure time increased. All of these parameters were significantly higher in the 4-h air exposure group than those in the control group. All the parameters were significantly lower in the 16-h air exposure group than those in the control group, except LDH in the hepatopancreas. However, SDH activity gradually decreased with increased air exposure time, and all the air exposure groups were markedly lower than those in the control group in the gills. During the reimmersion stage, OCR, AER, and O:N restored to normal levels after 12-h reimmersion, except in the 16-h air exposure group, where OCR and O:N were significantly higher than those in the control group and AER was significantly lower than that in the control group. The LDH activity in all groups restored to normal levels after 12-h reimmersion. The SDH, SOD, and CAT activities of the 2- and 4-h air-exposed groups returned to normal levels after 12-h reimmersion; however, these three parameters were still significantly higher in the 16-h air-exposed group than in the control group in the gills and hepatopancreas. Overall, Chinese mitten crabs reduce aerobic respiration and increase anaerobic respiration capacity during desiccation. Under air exposure stress, Chinese mitten crabs change their energy utilization mode to meet their energy demands and adjust their respiratory metabolism and antioxidant enzymes activities to adapt to adverse environments.
Collapse
Affiliation(s)
- Jie Bao
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chengcheng Feng
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hongbo Jiang
- Liaoning Provincial Key Laboratory of Zoonosis, Department of Aquaculture, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|