1
|
Fashe MM, Tiley JB, Lee CR. Mechanisms of altered hepatic drug disposition during pregnancy: small molecules. Expert Opin Drug Metab Toxicol 2025; 21:445-462. [PMID: 39992297 PMCID: PMC11961323 DOI: 10.1080/17425255.2025.2470792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Pregnancy alters the systemic exposure and clearance of many hepatically cleared drugs that are commonly used by obstetric patients. Understanding the molecular mechanisms underlying the changes in factors that affect hepatic drug clearance (blood flow, protein binding, and intrinsic clearance) is essential to more precisely predict systemic drug exposure and dose requirements in obstetric patients. AREAS COVERED This review (1) summarizes the anatomic, physiologic, and biochemical changes in maternal hepatic, cardiovascular, endocrine, and renal systems relevant to hepatic drug clearance and (2) reviews the molecular mechanisms underlying the altered hepatic metabolism and intrinsic clearance of drugs during pregnancy via a comprehensive PubMed search. It also identifies knowledge gaps in the molecular mechanisms and factors that modulate hepatic drug clearance during pregnancy. EXPERT OPINION Pharmacokinetic studies have shown that pregnancy alters systemic exposure, protein binding, and clearance of many drugs during gestation in part due to pregnancy-associated decreases in plasma albumin, increases in organ blood flow, and changes in the activity of drug-metabolizing enzymes (DMEs) and transporters. The changes in the activity of certain DMEs and transporters during pregnancy are likely driven by hormonal-changes that inhibit their activity or alter the expression of these proteins through activation of transcription factors.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | - Jacqueline B. Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| |
Collapse
|
2
|
Stika CS, Avram MJ, George AL, Yang A, Ciolino JD, Jeong H, Venkataramanan R, Caritis SN, Costantine MM, Wisner KL. Changes in S-Citalopram Plasma Concentrations Across Pregnancy and Postpartum. Clin Pharmacol Ther 2025. [PMID: 40099712 DOI: 10.1002/cpt.3642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Major depressive disorder is a common disorder in pregnancy. Although citalopram/escitalopram is the second most frequently prescribed antidepressant for pregnant people, information about its pharmacokinetics in pregnancy is limited. We investigated plasma (S)-citalopram concentration to dose (C/D) ratios across pregnancy and postpartum and the effect of pharmacogenetics on its elimination. This prospective observational cohort study enrolled 30 participants with a singleton pregnancy who chose to continue citalopram/escitalopram during pregnancy for a prior diagnosis of major depression. Monthly blood samples were obtained 24 hours post-dose across pregnancy and twice postpartum for measurement of plasma citalopram, desmethylcitalopram, and didesmethylcitalopram enantiomer concentrations. Compared with the 36-week reference, (S)-citalopram C/D ratios were not significantly different throughout pregnancy. However, the mean (S)-citalopram C/D ratio was elevated by 63% (P < 0.001) 6 to 8 weeks after delivery before it decreased to a mean C/D ratio in the later post-birth period that was marginally different than at 36 weeks (1.20 ± 0.64 vs. 0.92 ± 0.46, respectively; P = 0.06). Analyzing the results by cytochrome P 450 (CYP) 2C19 phenotype, the mean late postpartum (S)-citalopram concentration to dose ratio in intermediate metabolizers was approximately twice that in extensive, rapid, or ultrarapid metabolizers. However, at the 36-week reference point, the mean concentration to dose ratio in pregnant CYP2C19 intermediate metabolizers was 35.7% lower than the distant postpartum ratio, while the ratios in extensive and rapid/ultrarapid metabolizers were 15.4% and 18.5% lower, respectively. Without dose adjustment, people with intermediate or poor CYP2C19 activity may be at risk for subtherapeutic S-citalopram concentrations during pregnancy.
Collapse
Affiliation(s)
- Catherine S Stika
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael J Avram
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy Yang
- AYANALYTICS LLC, Westmont, Illinois, USA
| | - Jody D Ciolino
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steve N Caritis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Katherine L Wisner
- Department of Psychiatry and Behavioral Sciences and Pediatrics, Developing Brain Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Department of Obstetrics and Gynecology, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| |
Collapse
|
3
|
Just KS, Pott LM, Sommer J, Scholl C, Steffens M, Denkinger MD, Rothenbacher D, Dallmeier D, Stingl JC. Association of Polymorphic Cytochrome P450 Enzyme Pathways with Falls in Multimedicated Older Adults. J Am Med Dir Assoc 2024; 25:105235. [PMID: 39236770 DOI: 10.1016/j.jamda.2024.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Dose exposure is considered relevant for drug-associated falls in older adults, pointing to an importance of drug metabolism. Aim was to analyze individual factors altering drug metabolism such as enzyme saturation by drug exposure and pharmacogenetics in the context of drug-associated falls. DESIGN Prospective population-based study (ActiFE-Ulm study). SETTING AND PARTICIPANTS Community-dwelling older adults. METHODS Focus was laid on the metabolism by polymorphic cytochrome P450 (CYP) enzymes CYP2C19, 2C9, and 2D6. Relevant variants of pharmacogenes were analyzed. Logistic binary regression analysis was used to calculate odds ratios (ORs) and 95% CIs for falls observed prospectively over a 1-year period with drug metabolism characteristics. RESULTS In total, 1377 participants were included in the analysis. Although the phenotype predicted by the genotype was not, the use of drugs metabolized by CYP2C19 was associated with falls. Drugs not known as fall risk-increasing drugs (FRIDs; ie, non-FRIDs), but metabolized by CYP2C19, showed an OR of 1.46 (1.11-1.93) in adjusted analysis. Significant effect modification was observed for a reduced CYP2C19 activity phenotype with non-FRIDs metabolized by CYP2C19. CONCLUSIONS AND IMPLICATIONS This study suggests an association between the occurrence of falls in older adults and the metabolic capacity of CYP2C19. Thus, an important step toward prevention of falls might be to personalize dosage and treatment length of the main drug classes known to be CYP2C19 substrates, such as many antidepressants, opioids, and sedatives, but also proton pump inhibitors in particular in poor and intermediate metabolizers.
Collapse
Affiliation(s)
- Katja S Just
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany.
| | - Laura M Pott
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob Sommer
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| | - Catharina Scholl
- Research Department, Federal Institute of Drugs and Medical Devices, Bonn, Germany
| | - Michael Steffens
- Research Department, Federal Institute of Drugs and Medical Devices, Bonn, Germany
| | - Michael D Denkinger
- AGAPLESION Bethesda Clinic, Ulm, Germany; Geriatric Centre Ulm, Ulm, Germany; Institute for Geriatric Research, Ulm University Medical Center, Ulm Germany
| | | | - Dhayana Dallmeier
- AGAPLESION Bethesda Clinic, Ulm, Germany; Geriatric Centre Ulm, Ulm, Germany; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Nguyen AT, Curtis KM, Tepper NK, Kortsmit K, Brittain AW, Snyder EM, Cohen MA, Zapata LB, Whiteman MK. U.S. Medical Eligibility Criteria for Contraceptive Use, 2024. MMWR Recomm Rep 2024; 73:1-126. [PMID: 39106314 PMCID: PMC11315372 DOI: 10.15585/mmwr.rr7304a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
The 2024 U.S. Medical Eligibility Criteria for Contraceptive Use (U.S. MEC) comprises recommendations for the use of specific contraceptive methods by persons who have certain characteristics or medical conditions. These recommendations for health care providers were updated by CDC after review of the scientific evidence and a meeting with national experts in Atlanta, Georgia, during January 25-27, 2023. The information in this report replaces the 2016 U.S. MEC (CDC. U.S. Medical Eligibility Criteria for Contraceptive Use, 2016. MMWR 2016:65[No. RR-3]:1-103). Notable updates include 1) the addition of recommendations for persons with chronic kidney disease; 2) revisions to the recommendations for persons with certain characteristics or medical conditions (i.e., breastfeeding, postpartum, postabortion, obesity, surgery, deep venous thrombosis or pulmonary embolism with or without anticoagulant therapy, thrombophilia, superficial venous thrombosis, valvular heart disease, peripartum cardiomyopathy, systemic lupus erythematosus, high risk for HIV infection, cirrhosis, liver tumor, sickle cell disease, solid organ transplantation, and drug interactions with antiretrovirals used for prevention or treatment of HIV infection); and 3) inclusion of new contraceptive methods, including new doses or formulations of combined oral contraceptives, contraceptive patches, vaginal rings, progestin-only pills, levonorgestrel intrauterine devices, and vaginal pH modulator. The recommendations in this report are intended to serve as a source of evidence-based clinical practice guidance for health care providers. The goals of these recommendations are to remove unnecessary medical barriers to accessing and using contraception and to support the provision of person-centered contraceptive counseling and services in a noncoercive manner. Health care providers should always consider the individual clinical circumstances of each person seeking contraceptive services. This report is not intended to be a substitute for professional medical advice for individual patients; when needed, patients should seek advice from their health care providers about contraceptive use.
Collapse
Affiliation(s)
- Antoinette T. Nguyen
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Kathryn M. Curtis
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Naomi K. Tepper
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Katherine Kortsmit
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Anna W. Brittain
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Emily M. Snyder
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Megan A. Cohen
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Lauren B. Zapata
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| | - Maura K. Whiteman
- Division of Reproductive Health, National Center for
Chronic Disease Prevention and Health Promotion, CDC, Atlanta, Georgia
| |
Collapse
|
5
|
Stika CS, Hebert MF. Design Considerations for Pharmacokinetic Studies During Pregnancy. J Clin Pharmacol 2023; 63 Suppl 1:S126-S136. [PMID: 37317491 PMCID: PMC10350295 DOI: 10.1002/jcph.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 06/16/2023]
Abstract
Most of the interventions performed by obstetric providers involve the administration of drugs. Pregnant patients are pharmacologically and physiologically different from nonpregnant young adults. Therefore, dosages that are effective and safe for the general public may be inadequate or unsafe for the pregnant patient and her fetus. Establishing dosing regimens appropriate for pregnancy requires evidence generated from pharmacokinetic studies performed in pregnant people. However, performing these studies during pregnancy often requires special design considerations, evaluations of both maternal and fetal exposures, and recognition that pregnancy is a dynamic process that changes as gestational age advances. In this article, we address design challenges unique to pregnancy and discuss options for investigators, including timing of drug sampling during pregnancy, appropriate selection of control groups, pros and cons of dedicated and nested pharmacokinetic studies, single-dose and multiple-dose analyses, dose selection strategies, and the importance of integrating pharmacodynamic changes into these protocols. Examples of completed pharmacokinetic studies in pregnancy are provided for illustration.
Collapse
Affiliation(s)
- Catherine S. Stika
- Northwestern University, Department of Obstetrics and Gynecology, Chicago IL
| | - Mary F. Hebert
- University of Washington, Departments of Pharmacy and Obstetrics and Gynecology, Seattle WA
| |
Collapse
|
6
|
Guinn D, Sahin L, Fletcher EP, Choi SY, Johnson T, Dinatale M, Baisden K, Sun W, Pillai VC, Morales JP, Yao L. Pharmacokinetic Evaluation in Pregnancy-Current Status and Future Considerations: Workshop Summary. J Clin Pharmacol 2023; 63 Suppl 1:S7-S17. [PMID: 37317499 DOI: 10.1002/jcph.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 06/16/2023]
Abstract
As pregnant individuals have traditionally been excluded from clinical trials, there is a gap in knowledge at the time of drug approval regarding safety, efficacy, and appropriate dosing for most prescription medications used during pregnancy. Physiologic changes in pregnancy can result in changes in pharmacokinetics that can impact safety or efficacy. This highlights the need to foster further research and collection of pharmacokinetic data in pregnancy to ensure appropriate drug dosing in pregnant individuals. Therefore, the US Food and Drug Administration and the University of Maryland Center of Excellence in Regulatory Science and Innovation hosted a workshop on May 16 and 17, 2022, titled "Pharmacokinetic Evaluation in Pregnancy." This is a summary of the workshop proceedings.
Collapse
Affiliation(s)
- Daphne Guinn
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Leyla Sahin
- Division of Pediatric and Maternal Health, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elimika Pfuma Fletcher
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Su-Young Choi
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tamara Johnson
- Division of Pediatric and Maternal Health, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Miriam Dinatale
- Division of Pediatric and Maternal Health, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kristie Baisden
- Division of Pediatric and Maternal Health, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Wenjie Sun
- Division of Pediatric and Maternal Health, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Venkateswaran C Pillai
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jose Pablo Morales
- Office of Clinical Policy, Office of the Commissioner, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lynne Yao
- Division of Pediatric and Maternal Health, Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
7
|
Eke AC, Gebreyohannes RD, Fernandes MFS, Pillai VC. Physiologic Changes During Pregnancy and Impact on Small-Molecule Drugs, Biologic (Monoclonal Antibody) Disposition, and Response. J Clin Pharmacol 2023; 63 Suppl 1:S34-S50. [PMID: 37317492 PMCID: PMC10365893 DOI: 10.1002/jcph.2227] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/17/2023] [Indexed: 06/16/2023]
Abstract
Pregnancy is a unique physiological state that results in many changes in bodily function, including cellular, metabolic, and hormonal changes. These changes can have a significant impact on the way small-molecule drugs and monoclonal antibodies (biologics) function and are metabolized, including efficacy, safety, potency, and adverse effects. In this article, we review the various physiologic changes that occur during pregnancy and their effects on drug and biologic metabolism, including changes in the coagulation, gastrointestinal, renal, endocrine, hepatic, respiratory, and cardiovascular systems. Additionally, we discuss how these changes can affect the processes of drug and biologic absorption, distribution, metabolism, and elimination (pharmacokinetics), and how drugs and biologics interact with biological systems, including mechanisms of drug action and effect (pharmacodynamics) during pregnancy, as well as the potential for drug-induced toxicity and adverse effects in the mother and developing fetus. The article also examines the implications of these changes for the use of drugs and biologics during pregnancy, including consequences of suboptimal plasma drug concentrations, effect of pregnancy on the pharmacokinetics and pharmacodynamics of biologics, and the need for careful monitoring and individualized drug dosing. Overall, this article aims to provide a comprehensive understanding of the physiologic changes during pregnancy and their effects on drug and biologic metabolism to improve the safe and effective use of drugs.
Collapse
Affiliation(s)
- Ahizechukwu C Eke
- Division of Maternal Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rahel D Gebreyohannes
- Department of Obstetrics and Gynecology, Addis Ababa University College of Medicine, Addis Ababa, Ethiopia
| | | | | |
Collapse
|
8
|
Hudson RE, Metz TD, Ward RM, McKnite AM, Enioutina EY, Sherwin CM, Watt KM, Job KM. Drug exposure during pregnancy: Current understanding and approaches to measure maternal-fetal drug exposure. Front Pharmacol 2023; 14:1111601. [PMID: 37033628 PMCID: PMC10076747 DOI: 10.3389/fphar.2023.1111601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Prescription drug use is prevalent during pregnancy, yet there is limited knowledge about maternal-fetal safety and efficacy of this drug use because pregnant individuals have historically been excluded from clinical trials. Underrepresentation has resulted in a lack of data available to estimate or predict fetal drug exposure. Approaches to study fetal drug pharmacology are limited and must be evaluated for feasibility and accuracy. Anatomic and physiological changes throughout pregnancy fluctuate based on gestational age and can affect drug pharmacokinetics (PK) for both mother and fetus. Drug concentrations have been studied throughout different stages of gestation and at or following delivery in tissue and fluid biospecimens. Sampling amniotic fluid, umbilical cord blood, placental tissue, meconium, umbilical cord tissue, and neonatal hair present surrogate options to quantify and characterize fetal drug exposure. These sampling methods can be applied to all therapeutics including small molecule drugs, large molecule drugs, conjugated nanoparticles, and chemical exposures. Alternative approaches to determine PK have been explored, including physiologically based PK modeling, in vitro methods, and traditional animal models. These alternative approaches along with convenience sampling of tissue or fluid biospecimens can address challenges in studying maternal-fetal pharmacology. In this narrative review, we 1) present an overview of the current understanding of maternal-fetal drug exposure; 2) discuss biospecimen-guided sampling design and methods for measuring fetal drug concentrations throughout gestation; and 3) propose methods for advancing pharmacology research in the maternal-fetal population.
Collapse
Affiliation(s)
- Rachel E. Hudson
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Torri D. Metz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Robert M. Ward
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Autumn M. McKnite
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Utah, Salt Lake City, UT, United States
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Catherine M. Sherwin
- Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kevin M. Watt
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| | - Kathleen M. Job
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
9
|
Stika CS. Principles of Obstetric Pharmacology: Maternal Physiologic and Hepatic Metabolism Changes. Obstet Gynecol Clin North Am 2023; 50:1-15. [PMID: 36822695 DOI: 10.1016/j.ogc.2022.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Since the recognition of pregnancy as a special pharmacokinetic population in the late 1990s, investigations have expanded our understanding of obstetric pharmacology. Many of the basic physiologic changes that occur during pregnancy impact on drug absorption, distribution, or clearance. Activities of hepatic metabolizing enzymes are variably altered by pregnancy, resulting in concentrations sufficiently different for some drugs that efficacy or toxicity may be affected. Understanding these unique pharmacologic changes will better inform our use of medications for our pregnant patients.
Collapse
Affiliation(s)
- Catherine S Stika
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 250 East Superior Street, Suite 03-2303, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Stika CS, Wisner KL, George AL, Avram MJ, Zumpf K, Rasmussen-Torvik LJ, Mesches GA, Caritis SN, Venkataramanan R, Costantine MM, West HA, Clark S, Ciolino JD. Changes in Sertraline Plasma Concentrations Across Pregnancy and Postpartum. Clin Pharmacol Ther 2022; 112:1280-1290. [PMID: 36094046 DOI: 10.1002/cpt.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 01/31/2023]
Abstract
Major depressive disorder (MDD) is a common disorder in pregnancy. Although sertraline is the most frequently prescribed antidepressant for pregnant people in the United States, limited information about its pharmacokinetics in pregnancy is available. Our objectives were to characterize plasma sertraline concentration to dose (C/D) ratios across pregnancy and postpartum and investigate the effect of pharmacogenetic variability on sertraline elimination. We performed a prospective observational cohort study in people with a singleton pregnancy ≤ 18 weeks gestation and a lifetime diagnosis of MDD at the 3 Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)-funded Obstetrical-Fetal Pharmacology Research Center sites. Subjects (N = 47) were receiving maintenance sertraline therapy and chose to continue it during pregnancy. Blood samples were obtained 24-hours postdose every 4 weeks across pregnancy and twice postpartum for measurement of plasma concentrations of sertraline and desmethylsertraline. Overall mean sertraline C/D ratios were decreased at study onset and remained consistently low until after delivery. During the last 4 weeks of pregnancy the mean sertraline C/D ratio (95% confidence interval (CI)), 0.25 (95% CI, 0.19, 0.3) ng/mL/dose (mg/day), was smaller than the mean ratio at ≥ 8 weeks after delivery, 0.32 (95% CI, 0.27, 0.37) ng/mL/dose (mg/day), a 22% difference. Mean sertraline/desmethylsertraline ratios were highest after birth, which confirmed increased sertraline elimination during pregnancy. Sertraline C/D ratios in participants with functional CYP2C19 activity did not change significantly during pregnancy, whereas ratios in participants with poor or intermediate CYP2C19 activity decreased by 51%. Exploratory pharmacogenomic analysis indicated that pregnant people with poor or intermediate CYP2C19 activity are at risk for subtherapeutic sertraline concentrations during pregnancy.
Collapse
Affiliation(s)
- Catherine S Stika
- Department of Obstetrics and Gynecology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA
| | - Katherine L Wisner
- Department of Obstetrics and Gynecology, Northwestern University's Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael J Avram
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Katelyn Zumpf
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gabrielle A Mesches
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steve N Caritis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Magee Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Holly A West
- Department of OB/GYN, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shannon Clark
- Department of OB/GYN, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jody D Ciolino
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
A cross-sectional study of the relationship between CYP2D6 and CYP2C19 variations and depression symptoms, for women taking SSRIs during pregnancy. Arch Womens Ment Health 2022; 25:355-365. [PMID: 34231053 DOI: 10.1007/s00737-021-01149-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/24/2021] [Indexed: 10/20/2022]
Abstract
Depression during pregnancy affects 10-15% of women, and 5% of women take antidepressants during pregnancy. Clinical guidelines provide recommendations for selective serotonin reuptake inhibitor (SSRI) drug choice and dose based on CYP2D6 and CYP2C19 genotype; however, they are based on evidence from non-pregnant cohorts. This study aimed to test the hypothesis that women with function-altering variants (increased, decreased, or no function) in these pharmacogenes, taking SSRIs prenatally, would have more depression symptoms than women whose pharmacogenetic variants are associated with normal SSRI metabolism. Comprehensive CYP2D6 and CYP2C19 genotyping using a range of methods, including gene copy number analysis, was performed as secondary analyses on two longitudinal cohorts of pregnant women (N = 83) taking the SSRIs paroxetine, citalopram, escitalopram, or sertraline. The Kruskal-Wallis test compared mean depression scores across four predicted metabolizer groups: poor (n = 5), intermediate (n = 10), normal (n = 53), and ultrarapid (n = 15). There were no significant differences between mean depression scores across the four metabolizer groups (H(3) = .73, p = .87, eta-squared = .029, epsilon-squared = .0089). This is the first study of the relationship in pregnancy between CYP2C19 pharmacogenetic variations and depression symptoms in the context of SSRI use. Findings from this initial study do not support the clinical use of pharmacogenetic testing for SSRI use during the second or third trimesters of pregnancy, but these findings should be confirmed in larger cohorts. There is an urgent need for further research to clarify the utility of pharmacogenetic testing for pregnant women, especially as companies offering direct-to-consumer genetic testing expand their marketing efforts.
Collapse
|
12
|
Poweleit EA, Cinibulk MA, Novotny SA, Wagner-Schuman M, Ramsey LB, Strawn JR. Selective Serotonin Reuptake Inhibitor Pharmacokinetics During Pregnancy: Clinical and Research Implications. Front Pharmacol 2022; 13:833217. [PMID: 35281909 PMCID: PMC8916222 DOI: 10.3389/fphar.2022.833217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Pregnancy and associated physiologic changes affect the pharmacokinetics of many medications, including selective serotonin reuptake inhibitors—the first-line pharmacologic interventions for depressive and anxiety disorders. During pregnancy, SSRIs exhibit extensive pharmacokinetic variability that may influence their tolerability and efficacy. Specifically, compared to non-pregnant women, the activity of cytochrome P450 (CYP) enzymes that metabolize SSRIs drastically changes (e.g., decreased CYP2C19 activity and increased CYP2D6 activity). This perspective examines the impact of pharmacokinetic genes—related to CYP activity on SSRI pharmacokinetics during pregnancy. Through a simulation-based approach, plasma concentrations for SSRIs metabolized primarily by CYP2C19 (e.g., escitalopram) and CYP2D6 (e.g., fluoxetine) are examined and the implications for dosing and future research are discussed.
Collapse
Affiliation(s)
- Ethan A. Poweleit
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Margaret A. Cinibulk
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sarah A. Novotny
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Mississippi, Jackson, MS, United States
| | - Melissa Wagner-Schuman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Laura B. Ramsey
- Department of Pediatrics, Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Pediatrics, Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jeffrey R. Strawn
- Department of Pediatrics, Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
- Department of Pediatrics, Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- *Correspondence: Jeffrey R. Strawn,
| |
Collapse
|
13
|
Fay EE, Czuba LC, Sager JE, Shum S, Stephenson-Famy A, Isoherranen N. Pregnancy Has No Clinically Significant Effect on the Pharmacokinetics of Bupropion or Its Metabolites. Ther Drug Monit 2021; 43:780-788. [PMID: 33814540 PMCID: PMC8426418 DOI: 10.1097/ftd.0000000000000885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bupropion (BUP) is a chiral antidepressant and smoking cessation aide with benefits and side effects correlated with parent and active metabolite concentrations. BUP is metabolized by CYP2B6, CYP2C19, and CYP3A4 to hydroxy-BUP (OH-BUP) as well as by 11β-hydroxysteroid dehydrogenase-1 and aldo-keto reductases to threohydrobupropion (Threo) and erythrohydrobupropion (Erythro), respectively. As pregnancy alters the activity of drug-metabolizing enzymes, the authors hypothesized that BUP metabolism and BUP metabolite concentrations would be altered during pregnancy, potentially affecting the efficacy and safety of BUP in pregnant women. METHODS Pregnant women (n = 8) taking BUP chronically were enrolled, and steady-state plasma samples and dosing interval urine samples were collected during pregnancy and postpartum. Maternal and umbilical cord venous blood samples were collected at delivery from 3 subjects, and cord blood/maternal plasma concentration ratios were calculated. The concentrations of BUP stereoisomers and their metabolites were measured. Paired t tests were used to compare pharmacokinetic parameters during pregnancy and postpartum. RESULTS No significant changes were observed in the steady-state plasma concentrations, metabolite to parent ratios, formation clearances, or renal clearance of any of the compounds during pregnancy when compared with postpartum. The umbilical cord venous plasma concentrations of BUP and its metabolites were 30%-60% lower than maternal plasma concentrations. CONCLUSIONS This study showed that there are no clinically meaningful differences in the stereoselective disposition of BUP or its metabolites during pregnancy, indicating that dose adjustment during pregnancy may not be necessary. The results also showed that the placenta provides a partial barrier for bupropion and its metabolite distribution to the fetus, with possible placental efflux transport of bupropion and its metabolites.
Collapse
Affiliation(s)
- Emily E. Fay
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Jennifer E Sager
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| |
Collapse
|
14
|
Idda ML, Campesi I, Fiorito G, Vecchietti A, Urru SAM, Solinas MG, Franconi F, Floris M. Sex-Biased Expression of Pharmacogenes across Human Tissues. Biomolecules 2021; 11:1206. [PMID: 34439872 PMCID: PMC8393247 DOI: 10.3390/biom11081206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Individual response to drugs is highly variable and largely influenced by genetic variants and gene-expression profiles. In addition, it has been shown that response to drugs is strongly sex-dependent, both in terms of efficacy and toxicity. To expand current knowledge on sex differences in the expression of genes relevant for drug response, we generated a catalogue of differentially expressed human transcripts encoded by 289 genes in 41 human tissues from 838 adult individuals of the Genotype-Tissue Expression project (GTEx, v8 release) and focused our analysis on relevant transcripts implicated in drug response. We detected significant sex-differentiated expression of 99 transcripts encoded by 59 genes in the tissues most relevant for human pharmacology (liver, lung, kidney, small intestine terminal ileum, skin not sun-exposed, and whole blood). Among them, as expected, we confirmed significant differences in the expression of transcripts encoded by the cytochromes in the liver, CYP2B6, CYP3A7, CYP3A5, and CYP1A1. Our systematic investigation on differences between male and female in the expression of drug response-related genes, reinforce the need to overcome the sex bias of clinical trials.
Collapse
Affiliation(s)
- Maria Laura Idda
- Institute of Genetics and Biomedical research, 07100 Sassari, Italy;
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| | - Giovanni Fiorito
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
- Unit of Environmental Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Andrea Vecchietti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| | - Silvana Anna Maria Urru
- Hospital Pharmacy Unit, Trento General Hospital, Autonomous Province of Trento, 38122 Trento, Italy;
- Department of Chemistry and Pharmacy, School of Hospital Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Maria Giuliana Solinas
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| | - Flavia Franconi
- National Laboratory of Pharmacology and Gender medicine, National Institute of Biostructure and Biosystems, 00136 Rome, Italy;
| | - Matteo Floris
- Institute of Genetics and Biomedical research, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| |
Collapse
|
15
|
Madla CM, Gavins FKH, Merchant HA, Orlu M, Murdan S, Basit AW. Let's talk about sex: Differences in drug therapy in males and females. Adv Drug Deliv Rev 2021; 175:113804. [PMID: 34015416 DOI: 10.1016/j.addr.2021.05.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022]
Abstract
Professor Henry Higgins in My Fair Lady said, 'Why can't a woman be more like a man?' Perhaps unintended, such narration extends to the reality of current drug development. A clear sex-gap exists in pharmaceutical research spanning from preclinical studies, clinical trials to post-marketing surveillance with a bias towards males. Consequently, women experience adverse drug reactions from approved drug products more often than men. Distinct differences in pharmaceutical response across drug classes and the lack of understanding of disease pathophysiology also exists between the sexes, often leading to suboptimal drug therapy in women. This review explores the influence of sex as a biological variable in drug delivery, pharmacokinetic response and overall efficacy in the context of pharmaceutical research and practice in the clinic. Prospective recommendations are provided to guide researchers towards the consideration of sex differences in methodologies and analyses. The promotion of disaggregating data according to sex to strengthen scientific rigour, encouraging innovation through the personalisation of medicines and adopting machine learning algorithms is vital for optimised drug development in the sexes and population health equity.
Collapse
Affiliation(s)
- Christine M Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Francesca K H Gavins
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Hamid A Merchant
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29 - 39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
16
|
Almurjan A, Macfarlane H, Badhan RKS. The application of precision dosing in the use of sertraline throughout pregnancy for poor and ultrarapid metabolizer CYP 2C19 subjects: A virtual clinical trial pharmacokinetics study. Biopharm Drug Dispos 2021; 42:252-262. [PMID: 33851424 DOI: 10.1002/bdd.2278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/07/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Sertraline is known to undergo changes in pharmacokinetics during pregnancy. CYP 2C19 has been implicated in the interindividual variation in clinical effect associated with sertraline activity. However, knowledge of suitable dose titrations during pregnancy and within CYP 2C19 phenotypes is lacking. A pharmacokinetic modeling virtual clinical trials approach was implemented to: (i) assess gestational changes in sertraline trough plasma concentrations for CYP 2C19 phenotypes, and (ii) identify appropriate dose titration strategies to stabilize sertraline levels within a defined therapeutic range throughout gestation. Sertraline trough plasma concentrations decreased throughout gestation, with maternal volume expansion and reduction in plasma albumin being identified as possible causative reasons. All CYP 2C19 phenotypes required a dose increase throughout gestation. For extensive metabolizer (EM) and ultrarapid metabolizer (UM) phenotypes, doses of 100-150 mg daily are required throughout gestation. For poor metabolizers (PM), 50 mg daily during trimester 1 followed by a dose of 100 mg daily in trimesters 2 and 3 are required.
Collapse
Affiliation(s)
- Aminah Almurjan
- Medicines Optimisation Research Group, Aston Pharmacy School, Aston University, Birmingham, UK
| | - Hannah Macfarlane
- Medicines Optimisation Research Group, Aston Pharmacy School, Aston University, Birmingham, UK
| | - Raj K S Badhan
- Medicines Optimisation Research Group, Aston Pharmacy School, Aston University, Birmingham, UK
| |
Collapse
|
17
|
Fukushima Y, Yamamoto Y, Yamazaki E, Imai K, Kagawa Y, Takahashi Y. Change in the pharmacokinetics of lacosamide before, during, and after pregnancy. Seizure 2021; 88:12-14. [PMID: 33774498 DOI: 10.1016/j.seizure.2021.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yutaro Fukushima
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka, 420-8688, Japan
| | - Yoshiaki Yamamoto
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka, 420-8688, Japan; Department of Clinical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| | - Etsuko Yamazaki
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka, 420-8688, Japan
| | - Katsumi Imai
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka, 420-8688, Japan
| | - Yoshiyuki Kagawa
- Department of Clinical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan; Laboratory of Clinical Pharmacokinetics and Drug Safety, Shizuoka General Hospital, 4-27-1 Kita Ando, Shizuoka, 420-8527, Japan
| | - Yukitoshi Takahashi
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, 886 Urushiyama, Shizuoka, 420-8688, Japan; Department of Clinical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| |
Collapse
|
18
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Population Pharmacokinetics of Praziquantel in Pregnant and Lactating Filipino Women Infected with Schistosoma japonicum. Antimicrob Agents Chemother 2020; 64:AAC.00566-20. [PMID: 32631820 PMCID: PMC7449211 DOI: 10.1128/aac.00566-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
An estimated 40 million women of reproductive age are infected with one of three species of the waterborne parasite Schistosoma spp. Treatment with praziquantel (PZQ) via mass drug administration (MDA) campaigns is the mainstay of schistosomiasis control for populations living in areas of endemicity. The World Health Organization recommends that pregnant and lactating women be included in schistosomiasis MDA programs, and several recent studies have evaluated the safety and efficacy of PZQ use during pregnancy. To date, there are no data describing PZQ pharmacokinetics (PK) during pregnancy or among lactating postpartum women. As part of a randomized controlled trial investigating the safety and efficacy of PZQ during human pregnancy, we examined the PK of this therapeutic drug among three distinct cohorts of women infected with S. japonicum in Leyte, Philippines. Specifically, we studied the PK properties of PZQ among early- and late-gestation pregnant women (n = 15 each) and lactating postpartum women (n = 15) with schistosomiasis. We found that women in early pregnancy had increased apparent clearance and lower area-under-the-curve (AUC0-24) values that may be related to physiological changes in drug clearance and/or changes in oral bioavailability. There was no relationship between body weight and apparent clearance. The mean ± standard deviation partition ratio of plasma to breast milk was 0.36. ± 0.13. The estimated median infant PZQ daily dose would be 0.037 mg/kg of body weight ingested from breast milk, which is significantly lower than the dosage required for antischistosomal activity and not known to be harmful to the infant. Our PK data do not support the suggestion to delay breastfeeding 72 h after taking PZQ. Results can help inform future drug efficacy studies in pregnant and lactating women with schistosomiasis.
Collapse
|
20
|
Abduljalil K, Badhan RKS. Drug dosing during pregnancy-opportunities for physiologically based pharmacokinetic models. J Pharmacokinet Pharmacodyn 2020; 47:319-340. [PMID: 32592111 DOI: 10.1007/s10928-020-09698-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 12/15/2022]
Abstract
Drugs can have harmful effects on the embryo or the fetus at any point during pregnancy. Not all the damaging effects of intrauterine exposure to drugs are obvious at birth, some may only manifest later in life. Thus, drugs should be prescribed in pregnancy only if the expected benefit to the mother is thought to be greater than the risk to the fetus. Dosing of drugs during pregnancy is often empirically determined and based upon evidence from studies of non-pregnant subjects, which may lead to suboptimal dosing, particularly during the third trimester. This review collates examples of drugs with known recommendations for dose adjustment during pregnancy, in addition to providing an example of the potential use of PBPK models in dose adjustment recommendation during pregnancy within the context of drug-drug interactions. For many drugs, such as antidepressants and antiretroviral drugs, dose adjustment has been recommended based on pharmacokinetic studies demonstrating a reduction in drug concentrations. However, there is relatively limited (and sometimes inconsistent) information regarding the clinical impact of these pharmacokinetic changes during pregnancy and the effect of subsequent dose adjustments. Examples of using pregnancy PBPK models to predict feto-maternal drug exposures and their applications to facilitate and guide dose assessment throughout gestation are discussed.
Collapse
Affiliation(s)
- Khaled Abduljalil
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
| | | |
Collapse
|
21
|
Abstract
Pharmacologic interventions play a major role in obstetrical care throughout pregnancy, labor and delivery and the postpartum. Traditionally, obstetrical providers have utilized standard dosing regimens developed for non-obstetrical indications based on pharmacokinetic knowledge from studies in men or non-pregnant women. With the recognition of pregnancy as a special pharmacokinetic population in the late 1990s, investigators have begun to study drug disposition in this unique patient dyad. Many of the basic physiologic changes that occur during pregnancy have significant impact on drug absorption, distribution and clearance. Activity of Phase I and Phase II drug metabolizing enzymes are differentially altered by pregnancy, resulting in drug concentrations sufficiently different for some medications that efficacy or toxicity is affected. Placental transporters play a major dynamic role in determining fetal drug exposure. In the past two decades, we have begun to expand our understanding of obstetrical pharmacology; however, to truly optimize pharmacologic care of our pregnant patients and their developing fetus, additional research is critically needed.
Collapse
|
22
|
Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TR, Gesquiere I, Greupink R, Keszthelyi D, Koskinen M, Madla CM, Matthys C, Miljuš G, Mooij MG, Parrott N, Ungell AL, de Wildt SN, Orlu M, Klein S, Müllertz A. Impact of gastrointestinal physiology on drug absorption in special populations––An UNGAP review. Eur J Pharm Sci 2020; 147:105280. [PMID: 32109493 DOI: 10.1016/j.ejps.2020.105280] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
|
23
|
Abstract
Pregnant women frequently take prescription and over the counter medications. The efficacy of medications is affected by the many physiological changes during pregnancy, and these events may be further impacted by genetic factors. Research on pharmacogenomic and pharmacokinetic influences on drug disposition during pregnancy has lagged behind other fields. Clinical investigators have demonstrated altered activity of several drug metabolizing enzymes during pregnancy. Emerging evidence also supports the influence of pharmacogenomic variability in drug response for many important classes of drugs commonly used in pregnancy. Prescribing medications during pregnancy requires an understanding of the substantial dynamic physiologic and metabolic changes that occur during gestation. Pharmacogenomics also contributes to the inter-individual variability in response to many medications, and more research is needed to understand how best to manage drug therapy in pregnant women.
Collapse
Affiliation(s)
- Hannah K Betcher
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 676N St. Clair St. Ste 1000, Chicago IL, USA; Mayo Clinic, Rochester, MN, USA.
| | - Alfred L George
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Searle 8-510, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Hlengwa N, Muller CJF, Basson AK, Bowles S, Louw J, Awortwe C. Herbal supplements interactions with oral oestrogen-based contraceptive metabolism and transport. Phytother Res 2020; 34:1519-1529. [PMID: 32017271 DOI: 10.1002/ptr.6623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 11/06/2022]
Abstract
The increased use of herbal supplements as complementary or alternative medicines has become a clinical conundrum due to the potential for herb-drug interactions. This is exacerbated by an increased supply of new herbal supplements in the market claiming various health advantages. These herbal supplements are available as over-the-counter self-medications. Herbal supplements are generally perceived as efficacious without side effects commonly associated with conventional drugs. However, despite regulations, claims related to their therapeutic effects are mostly unsupported by scientific evidence. These products often lack suitable product quality controls, labelled inadequately and with batch to batch variations, potentially compromising the safety of the consumer. Amongst health practitioners, the greatest concern is related to the lack of chemical characterization of the active compounds of the herbal supplements. The interaction between these different active components and their concomitant effects on other conventional drugs is generally not known. This review will focus on herbal supplements with the potential to effect pharmacokinetic and pharmacodynamic properties of oestrogen-based oral contraceptives. The use of herbal supplements for weight management, depression, and immune boosting benefits were selected as likely herbal supplements to be used concomitantly by women on oral contraceptives.
Collapse
Affiliation(s)
- Nokulunga Hlengwa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Sandra Bowles
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Johan Louw
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Charles Awortwe
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.,Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa.,Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
25
|
Betcher HK, Wisner KL. Psychotropic Treatment During Pregnancy: Research Synthesis and Clinical Care Principles. J Womens Health (Larchmt) 2019; 29:310-318. [PMID: 31800350 DOI: 10.1089/jwh.2019.7781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Psychiatric illnesses are common in women of childbearing age. The perinatal period is a particularly high-risk time for depression, bipolar, and anxiety disorders. Methods: The scope of the public health problem of perinatal mental disorders is discussed followed by an examination of the specific research methods utilized for the study of birth and developmental outcomes associated with maternal mental illness and its treatment. The evidence on exposure to common psychotropics during pregnancy and breastfeeding is reviewed. Results: Selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitor medications are not associated with higher rates of birth defects or long-term changes in mental development after adjustment for confounding factors associated with underlying psychiatric illness. Lithium exposure is associated with an increased risk for fetal cardiac malformations, but this risk is lower than previously thought (absolute risk of Ebstein's anomaly 6/1,000). Antipsychotics, other than risperidone and potentially paliperidone, have not been associated with an increase in birth defects; olanzapine and quetiapine have been linked with an elevated risk of gestational diabetes. Due to the dramatic physiological changes of pregnancy and enhanced hepatic metabolism, drug doses may need to be adjusted during pregnancy to sustain efficacy. Untreated maternal psychiatric illness also carries substantial risks for the mother, fetus, infant, and family. Conclusions: The goal of perinatal mental health treatment is to optimally provide pharmacotherapy to mitigate the somatic and psychosocial burdens of maternal psychiatric disorders. Regular symptom monitoring during pregnancy and postpartum and medication dose adjustments to sustain efficacy constitutes good practice.
Collapse
Affiliation(s)
- Hannah K Betcher
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Katherine L Wisner
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Moyer AM, Matey ET, Miller VM. Individualized medicine: Sex, hormones, genetics, and adverse drug reactions. Pharmacol Res Perspect 2019; 7:e00541. [PMID: 31844524 PMCID: PMC6897337 DOI: 10.1002/prp2.541] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Clinically relevant adverse drug reactions differ between men and women. The underlying physiological and pharmacological processes contributing to these differences are infrequently studied or reported. As gene expression, cellular regulatory pathways, and integrated physiological functions differ between females and males, aggregating data from combined groups of men and women obscures the ability to detect these differences. This paper summarizes how genetic sex, that is, the presence of sex chromosomes XY for male or XX for female, and the influence of sex hormones affect transporters, receptors, and enzymes involved in drug metabolism. Changing levels of sex steroids throughout life, including increases at puberty, changes with pregnancy, and decreases with age, may directly and indirectly affect drug absorption, distribution, metabolism, and elimination. The direct and indirect effects of sex steroids in the form of exogenous hormones such as those used in hormonal contraceptives, menopausal hormone treatments, transgender therapy, and over-the-counter performance enhancing drugs may interfere with metabolism of other pharmaceuticals, and these interactions may vary by dose, formulation, and mode of delivery (oral, injection, or transdermal) of the steroid hormones. Few drugs have sex-specific labeling or dosing recommendations. Furthermore, there is limited literature evaluating how the circulating levels of sex steroids impact drug efficacy or adverse reactions. Such research is needed in order to improve the understanding of the impact of sex hormones on pharmacological therapies, particularly as medicine moves toward individualizing treatments.
Collapse
Affiliation(s)
- Ann M. Moyer
- Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Eric T. Matey
- Medical Therapy Management and Center for Individualized MedicineMayo ClinicRochesterMNUSA
| | - Virginia M. Miller
- Departments of Surgery, and Physiology and Biomedical EngineeringWomen's Health Research CenterMayo ClinicRochesterMNUSA
| |
Collapse
|
27
|
Verstegen RHJ, Ito S. Drugs in lactation. J Obstet Gynaecol Res 2019; 45:522-531. [PMID: 30663176 DOI: 10.1111/jog.13899] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Although most medications can be taken safely during breastfeeding, potential risks of infant toxicity do exist because all medications will be excreted into the breast milk to some extent. The amount of medication excreted in the milk depends mainly on (i) within-drug variation, such as dosing; (ii) between-drug variation including chemical characteristics of the medication; and (iii) host factors, such as maternal pharmacokinetics (PK), including variations of pregnancy-associated changes and their post-partum recovery. Neonatal drug exposure is usually assessed by calculating an expected total infant daily dose through breast milk and comparing it to the normal therapeutic dose. However, clinical PK studies in this population are challenging to conduct. Recently, research methods using population PK analyses and physiologically-based PK modeling and simulation techniques have been recognized as a complementary approach to the conventional PK studies in this field. These efforts are important for rational risk assessment balancing the toxicity risk against the benefits of human milk. Health benefits of lactation for both mother and child are significant and a decision to withhold from this should not be taken lightly. In case limited information is present, additional expertise from pharmacists or clinical pharmacologist with expertise in this area should be sought.
Collapse
Affiliation(s)
- Ruud H J Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shinya Ito
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Zhao H, Li J, Zhou Y, Zhu L, Zheng Y, Xia W, Li Y, Xiang L, Chen W, Xu S, Cai Z. Investigation on Metabolism of Di(2-Ethylhexyl) Phthalate in Different Trimesters of Pregnant Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12851-12858. [PMID: 30257557 DOI: 10.1021/acs.est.8b04519] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer but shows diverse toxicity. To investigate the time- and maternal age-differences in metabolism process of DEHP in pregnant women, three urine samples were collected from each pregnant woman ( n = 847) at the first (T1, mean 13.04 gestational weeks), the second (T2, mean 23.63 gestational weeks) and the third time point (T3, mean 35.91 gestational weeks), respectively. Four metabolites of DEHP were analyzed in 2541 urine samples (847 × 3) by using ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry. The level of urinary mono(2-ethylhexyl) phthalate (MEHP) had a decreasing trend across the pregnancy periods. The geometric mean concentrations of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) were significantly decreased in T2 than T1, and recovered slightly in T3. The transformation rate of MEHP to MEHHP in T3 was significantly higher than those in other two time points. The transformation rate of MEHHP to MEOHP in T2 and T3 was significantly higher than that in T1, indicating the oxidation was more efficient in late pregnancy compared with early and middle pregnancy. The percentages of oxidation products MEHHP and MECPP were higher in the higher-age group compared with the lower-age group in the second trimester samples. It is therefore concluded that DEHP metabolism may be influenced by the pregnancy stage and maternal age. The findings may benefit the risk assessment and toxicity evaluation of DEHP.
Collapse
Affiliation(s)
- Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yuanyuan Zheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Wei Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| |
Collapse
|
29
|
Saito M, Gilder ME, McGready R, Nosten F. Antimalarial drugs for treating and preventing malaria in pregnant and lactating women. Expert Opin Drug Saf 2018; 17:1129-1144. [PMID: 30351243 DOI: 10.1080/14740338.2018.1535593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Malaria in pregnancy and postpartum cause maternal mortality and adverse fetal outcomes. Efficacious and safe antimalarials are needed to treat and prevent such serious consequences. However, because of the lack of evidence on fetal safety, quinine, an old and less efficacious drug has long been recommended for pregnant women. Uncertainty about safety in relation to breastfeeding leads to withholding of efficacious treatments postpartum or cessation of breastfeeding. Areas covered: A search identified literature on humans in three databases (MEDLINE, Embase and Global health) using pregnancy or lactation, and the names of antimalarial drugs as search terms. Adverse reactions to the mother, fetus or breastfed infant were summarized together with efficacies. Expert opinion: Artemisinins are more efficacious and well-tolerated than quinine in pregnancy. Furthermore, the risks of miscarriage, stillbirth or congenital abnormality were not higher in pregnancies exposed to artemisinin derivatives for treatment of malaria than in pregnancies exposed to quinine or in the comparable background population unexposed to any antimalarials, and this was true for treatment in any trimester. Assessment of safety and efficacy of antimalarials including dose optimization for pregnant women is incomplete. Resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum and long unprotected intervals between intermittent treatment doses begs reconsideration of current preventative recommendations in pregnancy. Data remain limited on antimalarials during breastfeeding; while most first-line drugs appear safe, further research is needed.
Collapse
Affiliation(s)
- Makoto Saito
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK.,c WorldWide Antimalarial Resistance Network (WWARN) , Oxford , UK
| | - Mary Ellen Gilder
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand
| | - Rose McGready
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - François Nosten
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
30
|
Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Proguanil Hydrochloride. J Pharm Sci 2018; 107:1761-1772. [DOI: 10.1016/j.xphs.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/20/2018] [Accepted: 03/08/2018] [Indexed: 11/18/2022]
|
31
|
Pregnancy- Associated Changes in Pharmacokinetics and their Clinical Implications. Pharm Res 2018; 35:61. [DOI: 10.1007/s11095-018-2352-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
|
32
|
Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine. J Pers Med 2018; 8:jpm8010008. [PMID: 29385765 PMCID: PMC5872082 DOI: 10.3390/jpm8010008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Variability in response to antiplatelet therapy can be explained in part by pharmacogenomics, particularly of the CYP450 enzyme encoded by CYP2C19. Loss-of-function and gain-of-function variants help explain these interindividual differences. Individuals may carry multiple variants, with linkage disequilibrium noted among some alleles. In the current pharmacogenomics era, genomic variation in CYP2C19 has led to the definition of pharmacokinetic phenotypes for response to antiplatelet therapy, in particular, clopidogrel. Individuals may be classified as poor, intermediate, extensive, or ultrarapid metabolizers, based on whether they carry wild type or polymorphic CYP2C19 alleles. Variant alleles differentially impact platelet reactivity, concentration of plasma clopidogrel metabolites, and clinical outcomes. Interestingly, response to clopidogrel appears to be modulated by additional factors, such as sociodemographic characteristics, risk factors for ischemic heart disease, and drug-drug interactions. Furthermore, systems medicine studies suggest that a broader approach may be required to adequately assess, predict, preempt, and manage variation in antiplatelet response. Transcriptomics, epigenomics, exposomics, miRNAomics, proteomics, metabolomics, microbiomics, and mathematical, computational, and molecular modeling should be integrated with pharmacogenomics for enhanced prediction and individualized care. In this review of pharmacogenomic variation of CYP450, a systems medicine approach is described for tailoring antiplatelet therapy in clinical practice of precision cardiovascular medicine.
Collapse
|
33
|
Manirakiza A, Serdouma E, Ngbalé RN, Moussa S, Gondjé S, Degana RM, Bata GGB, Moyen JM, Delmont J, Grésenguet G, Sepou A. A brief review on features of falciparum malaria during pregnancy. J Public Health Afr 2017; 8:668. [PMID: 29456824 PMCID: PMC5812306 DOI: 10.4081/jphia.2017.668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa.
Collapse
Affiliation(s)
| | | | | | - Sandrine Moussa
- Pasteur Institute of Bangui, Bangui, Central African Republic
| | - Samuel Gondjé
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Rock Mbetid Degana
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | | | - Jean Methode Moyen
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Jean Delmont
- Center for Training and Research in Tropical Medicine and Health, Faculty of Medicine North, Marseille, France
| | | | | |
Collapse
|
34
|
Modak AS. Point-of-care companion diagnostic tests for personalizing psychiatric medications: fulfilling an unmet clinical need. J Breath Res 2017; 12:017101. [PMID: 28920579 DOI: 10.1088/1752-7163/aa8d2e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade stable isotope-labeled substrates have been used as probes for rapid, point-of-care, non-invasive and user-friendly phenotype breath tests to evaluate activity of drug metabolizing enzymes. These diagnostic breath tests can potentially be used as companion diagnostics by physicians to personalize medications, especially psychiatric drugs with narrow therapeutic windows, to monitor the progress of disease severity, medication efficacy and to study in vivo the pharmacokinetics of xenobiotics. Several genotype tests have been approved by the FDA over the last 15 years for both cytochrome P450 2D6 and 2C19 enzymes, however they have not been cleared for use in personalizing medications since they fall woefully short in identifying all non-responders to drugs, especially for the CYP450 enzymes. CYP2D6 and CYP2C19 are among the most extensively studied drug metabolizing enzymes, involved in the metabolism of approximately 30% of FDA-approved drugs in clinical use, associated with large individual differences in medication efficacy or tolerability essentially due to phenoconversion. The development and commercialization via FDA approval of the non-invasive, rapid (<60 min), in vivo, phenotype diagnostic breath tests to evaluate polymorphic CYP2D6 and CYP2C19 enzyme activity by measuring exhaled 13CO2 as a biomarker in breath will effectively resolve the currently unmet clinical need for individualized psychiatric drug therapy. Clinicians could personalize treatment options for patients based on the CYP2D6 and CYP2C19 phenotype by selecting the optimal medication at the right initial and subsequent maintenance dose for the desired clinical outcome (i.e. greatest efficacy and minimal side effects).
Collapse
Affiliation(s)
- Anil S Modak
- Cambridge Isotope Laboratories, Inc., 3 Highwood Drive, Tewksbury, MA 01876, United States of America
| |
Collapse
|
35
|
Modak AS, Klyarytska I, Kriviy V, Tsapyak T, Rabotyagova Y. The effect of proton pump inhibitors on the CYP2C19 enzyme activity evaluated by the pantoprazole-
13
C breath test in GERD patients: clinical relevance for personalized medicine. J Breath Res 2016; 10:046017. [DOI: 10.1088/1752-7163/10/4/046017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Abstract
BACKGROUND Women are commonly prescribed a variety of medications during pregnancy. As most organ systems are affected by the substantial anatomical and physiological changes that occur during pregnancy, it is expected that pharmacokinetics (PK) (absorption, distribution, metabolism, and excretion of drugs) would also be affected in ways that may necessitate changes in dosing schedules. The objective of this study was to systematically identify existing clinically relevant evidence on PK changes during pregnancy. METHODS AND FINDINGS Systematic searches were conducted in MEDLINE (Ovid), Embase (Ovid), Cochrane Central Register of Controlled Trials (Ovid), and Web of Science (Thomson Reuters), from database inception to August 31, 2015. An update of the search from September 1, 2015, to May 20, 2016, was performed, and relevant data were added to the present review. No language or date restrictions were applied. All publications of clinical PK studies involving a group of pregnant women with a comparison to nonpregnant participants or nonpregnant population data were eligible to be included in this review. A total of 198 studies involving 121 different medications fulfilled the inclusion criteria. In these studies, commonly investigated drug classes included antiretrovirals (54 studies), antiepileptic drugs (27 studies), antibiotics (23 studies), antimalarial drugs (22 studies), and cardiovascular drugs (17 studies). Overall, pregnancy-associated changes in PK parameters were often observed as consistent findings among many studies, particularly enhanced drug elimination and decreased exposure to total drugs (bound and unbound to plasma proteins) at a given dose. However, associated alterations in clinical responses and outcomes, or lack thereof, remain largely unknown. CONCLUSION This systematic review of pregnancy-associated PK changes identifies a significant gap between the accumulating knowledge of PK changes in pregnant women and our understanding of their clinical impact for both mother and fetus. It is essential for clinicians to be aware of these unique pregnancy-related changes in PK, and to critically examine their clinical implications.
Collapse
|
37
|
Fokina VM, Xu M, Rytting E, Abdel-Rahman SZ, West H, Oncken C, Clark SM, Ahmed MS, Hankins GDV, Nanovskaya TN. Pharmacokinetics of Bupropion and Its Pharmacologically Active Metabolites in Pregnancy. Drug Metab Dispos 2016; 44:1832-1838. [PMID: 27528039 PMCID: PMC5074472 DOI: 10.1124/dmd.116.071530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022] Open
Abstract
Bupropion sustained release is used to promote smoking cessation in males and nonpregnant females. However, its efficacy as a smoking cessation aid during pregnancy is not reported. The pregnancy-associated changes in maternal physiology may alter the pharmacokinetics and pharmacodynamics of bupropion and consequently its efficacy in pregnant smokers. Therefore, the aims of this study were to determine the steady-state pharmacokinetics of bupropion during pregnancy and the effect of functional genetic variants of CYP2B6 and CYP2C19 on bupropion pharmacokinetics in pregnant women. Plasma and urine concentrations of bupropion and its metabolites hydroxybupropion (OHBUP), threohydrobupropion, and erythrohydrobupropion were determined by liquid chromatography-mass spectrometry. Subjects were genotyped for five nonsynonymous single-nucleotide polymorphisms that result in seven CYP2B6 alleles, namely *2, *3, *4, *5, *6, *7, and *9, and for CYP2C19 variants *2, *3, and *17 The present study reports that the isoform-specific effect of pregnancy on bupropion-metabolizing enzymes along with the increase of renal elimination of the drug could collectively result in a slight decrease in exposure to bupropion in pregnancy. In contrast, pregnancy-induced increase in CYP2B6-catalyzed bupropion hydroxylation did not impact the plasma levels of OHBUP, probably due to a higher rate of OHBUP glucuronidation, and renal elimination associated with pregnancy. Therefore, exposure to OHBUP, a pharmacologically active metabolite of the bupropion, appears to be similar to that of the nonpregnant state. The predicted metabolic phenotypes of CYP2B6*6 and variant alleles of CYP2C19 in pregnancy are similar to those in the nonpregnant state.
Collapse
Affiliation(s)
- Valentina M Fokina
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Meixiang Xu
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Erik Rytting
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Sherif Z Abdel-Rahman
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Holly West
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Cheryl Oncken
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Shannon M Clark
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Mahmoud S Ahmed
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Gary D V Hankins
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| | - Tatiana N Nanovskaya
- Department of Pharmacology and Toxicology (V.M.F.), Maternal-Fetal Pharmacology and Biodevelopment Laboratories, Department of Obstetrics and Gynecology (M.X., E.R., S.Z.A.-R., M.S.A., T.N.N.), and Department of Obstetrics and Gynecology (H.W., S.M.C., G.D.V.H.), University of Texas Medical Branch, Galveston, Texas; and University of Connecticut Health Center, Farmington, Connecticut (C.O.)
| |
Collapse
|
38
|
Tasnif Y, Morado J, Hebert MF. Pregnancy-related pharmacokinetic changes. Clin Pharmacol Ther 2016; 100:53-62. [PMID: 27082931 DOI: 10.1002/cpt.382] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/12/2016] [Indexed: 01/10/2023]
Abstract
The pharmacokinetics of many drugs are altered by pregnancy. Drug distribution and protein binding are changed by pregnancy. While some drug metabolizing enzymes have an apparent increase in activity, others have an apparent decrease in activity. Not only is drug metabolism affected by pregnancy, but renal filtration is also increased. In addition, pregnancy alters the apparent activities of multiple drug transporters resulting in changes in the net renal secretion of drugs.
Collapse
Affiliation(s)
- Y Tasnif
- Cooperative Pharmacy Program, University of Texas, Rio Grande Valley TX and Renaissance Transplant Institute, Doctors Hospital at Renaissance, Edinburg, Texas, USA
| | - J Morado
- College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - M F Hebert
- Departments of Pharmacy and Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Burger RJ, Visser BJ, Grobusch MP, van Vugt M. The influence of pregnancy on the pharmacokinetic properties of artemisinin combination therapy (ACT): a systematic review. Malar J 2016; 15:99. [PMID: 26891915 PMCID: PMC4757991 DOI: 10.1186/s12936-016-1160-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Pregnancy has been reported to alter the pharmacokinetic properties of anti-malarial drugs, including the different components of artemisinin-based combination therapy (ACT). However, small sample sizes make it difficult to draw strong conclusions based on individual pharmacokinetic studies. The aim of this review is to summarize the evidence of the influence of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. Methods A PROSPERO-registered systematic review to identify clinical trials that investigated the influence of pregnancy on the pharmacokinetic properties of different forms of ACT was conducted, following PRISMA guidelines. Without language restrictions, Medline/PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, LILACS, Biosis Previews and the African Index Medicus were searched for studies published up to November 2015. The following components of ACT that are currently recommend by the World Health Organization as first-line treatment of malaria in pregnancy were reviewed: artemisinin, artesunate, dihydroartemisinin, lumefantrine, amodiaquine, mefloquine, sulfadoxine, pyrimethamine, piperaquine, atovaquone and proguanil. Results The literature search identified 121 reports, 27 original studies were included. 829 pregnant women were included in the analysis. Comparison of the available studies showed lower maximum concentrations (Cmax) and exposure (AUC) of dihydroartemisinin, the active metabolite of all artemisinin derivatives, after oral administration of artemether, artesunate and dihydroartemisinin in pregnant women. Low day 7 concentrations were commonly seen in lumefantrine studies, indicating a low exposure and possibly reduced efficacy. The influence of pregnancy on amodiaquine and piperaquine seemed not to be clinically relevant. Sulfadoxine plasma concentration was significantly reduced and clearance rates were higher in pregnancy, while pyrimethamine and mefloquine need more research as no general conclusion can be drawn based on the available evidence. For atovaquone, the available data showed a lower maximum concentration and exposure. Finally, the maximum concentration of cycloguanil, the active metabolite of proguanil, was significantly lower, possibly compromising the efficacy. Conclusion These findings suggest that reassessment of the dose of the artemisinin derivate and some components of ACT are necessary to ensure the highest possible efficacy of malaria treatment in pregnant women. However, for most components of ACT, data were insufficient and extensive research with larger sample sizes will be necessary to identify the exact influences of pregnancy on the pharmacokinetic properties of different artemisinin-based combinations. In addition, different clinical studies used diverse study designs with various reported relevant outcomes. Future pharmacokinetic studies could benefit from more uniform designs, in order to increase quality, robustness and effectiveness. Study registration: CRD42015023756 (PROSPERO) Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1160-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renée J Burger
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| | - Benjamin J Visser
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Centre de Recherches de Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon.
| | - Martin P Grobusch
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands. .,Centre de Recherches de Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, Lambaréné, Gabon.
| | - Michèle van Vugt
- Division of Internal Medicine, Department of Infectious Diseases, Academic Medical Center, Center of Tropical Medicine and Travel Medicine, University of Amsterdam, Meibergdreef 9, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Abstract
Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications.
Collapse
Affiliation(s)
- Maisa Feghali
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Magee Womens Hospital of UPMC, University of Pittsburgh, 300 Halket St, Pittsburgh, PA 15213.
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Magee Womens Hospital of UPMC, University of Pittsburgh, 300 Halket St, Pittsburgh, PA 15213
| |
Collapse
|
41
|
Klieber M, Oberacher H, Hofstaetter S, Beer B, Neururer M, Amann A, Alber H, Modak A. CYP2C19 Phenoconversion by Routinely Prescribed Proton Pump Inhibitors Omeprazole and Esomeprazole: Clinical Implications for Personalized Medicine. J Pharmacol Exp Ther 2015; 354:426-30. [PMID: 26159874 DOI: 10.1124/jpet.115.225680] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022] Open
Abstract
The phenotype pantoprazole-(13)C breath test (Ptz-BT) was used to evaluate the extent of phenoconversion of CYP2C19 enzyme activity caused by commonly prescribed proton pump inhibitors (PPI) omeprazole and esomprazole. The Ptz-BT was administered to 26 healthy volunteers and 8 stable cardiovascular patients twice at baseline and after 28 days of PPI therapy to evaluate reproducibility of the Ptz-BT and changes in CYP2C19 enzyme activity (phenoconversion) after PPI therapy. The average intrapatient interday variability in CYP2C19 phenotype (n = 31) determined by Ptz-BT was considerably low (coefficient of variation, 17%). Phenotype conversion resulted in 25 of 26 (96%) nonpoor metabolizer (non-PM) volunteers/patients as measured by the Ptz-BT at baseline and after PPI therapy. The incidence of PM status by phenotype following administration of omeprazole/esomeprazole (known inhibitors of CYP2C19) was 10-fold higher than those who are genetically PMs in the general population, which could have critical clinical implications for personalizing medications primarily metabolized by CYP2C19, such as clopidogrel, PPI, cyclophosphamide, thalidomide, citalopram, clonazepam, diazepam, phenytoin, etc. The Ptz-BT can rapidly (30 minutes) evaluate CYP2C19 phenotype and, more importantly, can identify patients with phenoconversion in CYP2C19 enzyme activity caused by nongenetic factors such as concomitant drugs.
Collapse
Affiliation(s)
- Martin Klieber
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| | - Herbert Oberacher
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| | - Silvia Hofstaetter
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| | - Beate Beer
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| | - Martin Neururer
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| | - Anton Amann
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| | - Hannes Alber
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| | - Anil Modak
- Breath Research Institute of University of Innsbruck, Dornbirn, Austria (M.K., M.N., A.A.); Department of Anesthesiology and Critical Care Medicine (M.K., M.N., A.A.), Institute of Legal Medicine and Core Facility Metabolomics (H.O., S.H., B.B.), and University Clinic for Internal Medicine III (Cardiology) (H.A.), Innsbruck Medical University, Innsbruck, Austria; Department of Cardiology, Rehabilitation Centre Münster in Tyrol, Münster, Austria (H.A.); and Cambridge Isotopes Laboratories, Tewksbury, Massachusetts (A.M.)
| |
Collapse
|
42
|
Prenatal Exposure to Di(2-ethylhexyl) phthalate and Subsequent Infant and Child Health Effects. Food Saf (Tokyo) 2015. [DOI: 10.14252/foodsafetyfscj.2015011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol 2014; 77:554-70. [PMID: 23834474 DOI: 10.1111/bcp.12207] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 06/20/2013] [Indexed: 12/28/2022] Open
Abstract
AIM Conducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. METHODS We expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. RESULTS Predicted mean post-partum to second trimester (PP : T2 ) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3 ) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. CONCLUSIONS Our PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes.
Collapse
Affiliation(s)
- Alice Ban Ke
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA; Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | | |
Collapse
|
44
|
Pharmacotherapy for mood disorders in pregnancy: a review of pharmacokinetic changes and clinical recommendations for therapeutic drug monitoring. J Clin Psychopharmacol 2014; 34:244-55. [PMID: 24525634 PMCID: PMC4105343 DOI: 10.1097/jcp.0000000000000087] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Pharmacotherapy for mood disorders during pregnancy is often complicated by pregnancy-related pharmacokinetic changes and the need for dose adjustments. The objectives of this review are to summarize the evidence for change in perinatal pharmacokinetics of commonly used pharmacotherapies for mood disorders, discuss the implications for clinical and therapeutic drug monitoring (TDM), and make clinical recommendations. METHODS The English-language literature indexed on MEDLINE/PubMed was searched for original observational studies (controlled and uncontrolled, prospective and retrospective), case reports, and case series that evaluated or described pharmacokinetic changes or TDM during pregnancy or the postpartum period. RESULTS Pregnancy-associated changes in absorption, distribution, metabolism, and elimination may result in lowered psychotropic drug levels and possible treatment effects, particularly in late pregnancy. Mechanisms include changes in both phase 1 hepatic cytochrome P450 and phase 2 uridine diphosphate glucuronosyltransferase enzyme activities, changes in hepatic and renal blood flow, and glomerular filtration rate. Therapeutic drug monitoring, in combination with clinical monitoring, is indicated for tricyclic antidepressants and mood stabilizers during the perinatal period. CONCLUSIONS Substantial pharmacokinetic changes can occur during pregnancy in a number of commonly used antidepressants and mood stabilizers. Dose increases may be indicated for antidepressants including citalopram, clomipramine, imipramine, fluoxetine, fluvoxamine, nortriptyline, paroxetine, and sertraline, especially late in pregnancy. Antenatal dose increases may also be needed for lithium, lamotrigine, and valproic acid because of perinatal changes in metabolism. Close clinical monitoring of perinatal mood disorders and TDM of tricyclic antidepressants and mood stabilizers are recommended.
Collapse
|
45
|
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in other individuals. A major source of this variability in drug response is drug metabolism, where differences in pre-systemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, C max, and/or C min) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is well recognized that both intrinsic (such as genetics, age, sex, and disease states) and extrinsic (such as diet, chemical exposures from the environment, and even sunlight) factors play a significant role. For the family of cytochrome P450 enzymes, the most critical of the drug metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, up- and down-regulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less reliably predictable and time-dependent manner. Understanding the mechanistic basis for drug disposition and response variability is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that brings with it true improvements in health outcomes in the therapeutic treatment of disease.
Collapse
Affiliation(s)
- Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
46
|
Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS JOURNAL 2013; 15:1012-24. [PMID: 23835676 DOI: 10.1208/s12248-013-9505-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/12/2013] [Indexed: 02/02/2023]
Abstract
During pregnancy, a drug's pharmacokinetics may be altered and hence anticipation of potential systemic exposure changes is highly desirable. Physiologically based pharmacokinetics (PBPK) models have recently been used to influence clinical trial design or to facilitate regulatory interactions. Ideally, whole-body PBPK models can be used to predict a drug's systemic exposure in pregnant women based on major physiological changes which can impact drug clearance (i.e., in the kidney and liver) and distribution (i.e., adipose and fetoplacental unit). We described a simple and readily implementable multitissue/organ whole-body PBPK model with key pregnancy-related physiological parameters to characterize the PK of reference drugs (metformin, digoxin, midazolam, and emtricitabine) in pregnant women compared with the PK in nonpregnant or postpartum (PP) women. Physiological data related to changes in maternal body weight, tissue volume, cardiac output, renal function, blood flows, and cytochrome P450 activity were collected from the literature and incorporated into the structural PBPK model that describes HV or PP women PK data. Subsequently, the changes in exposure (area under the curve (AUC) and maximum concentration (C max)) in pregnant women were simulated. Model-simulated PK profiles were overall in agreement with observed data. The prediction fold error for C max and AUC ratio (pregnant vs. nonpregnant) was less than 1.3-fold, indicating that the pregnant PBPK model is useful. The utilization of this simplified model in drug development may aid in designing clinical studies to identify potential exposure changes in pregnant women a priori for compounds which are mainly eliminated renally or metabolized by CYP3A4.
Collapse
Affiliation(s)
- Binfeng Xia
- Novartis Institutes for Biomedical Research, DMPK-Translational Sciences, One Health Plaza 436/3253, East Hanover, New Jersey, 07470, USA
| | | | | | | | | |
Collapse
|
47
|
van Hasselt JGC, Andrew MA, Hebert MF, Tarning J, Vicini P, Mattison DR. The status of pharmacometrics in pregnancy: highlights from the 3(rd) American conference on pharmacometrics. Br J Clin Pharmacol 2013; 74:932-9. [PMID: 22452385 PMCID: PMC3522806 DOI: 10.1111/j.1365-2125.2012.04280.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Physiological changes during pregnancy may alter drug pharmacokinetics. Therefore, mechanistic understanding of these changes and, ultimately, clinical studies in pregnant women are necessary to determine if and how dosing regimens should be adjusted. Because of the typically limited number of patients who can be recruited in this patient group, efficient design and analysis of these studies is of special relevance. This paper is a summary of a conference session organized at the American Conference of Pharmacometrics in April 2011, around the topic of applying pharmacometric methodology to this important problem. The discussion included both design and analysis of clinical studies during pregnancy and in silico predictions. An overview of different pharmacometric methods relevant to this subject was given. The impact of pharmacometrics was illustrated using a range of case examples of studies around pregnancy.
Collapse
Affiliation(s)
- J G Coen van Hasselt
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Olagunju A, Owen A, Cressey TR. Potential effect of pharmacogenetics on maternal, fetal and infant antiretroviral drug exposure during pregnancy and breastfeeding. Pharmacogenomics 2013; 13:1501-22. [PMID: 23057550 DOI: 10.2217/pgs.12.138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mother-to-child-transmission rates of HIV in the absence of any intervention range between 20 and 45%. However, the provision of antiretroviral drugs (ARVs) during pregnancy, delivery and breastfeeding can reduce HIV transmission to less than 2%. Physiological changes during pregnancy can influence ARV disposition. Associations between SNPs in genes coding for metabolizing enzymes, and/or transporters, and ARVs disposition are well described; however, relatively little is known about the influence of these SNPs on ARV pharmacokinetics during pregnancy and lactation as well as their effect on distribution into the fetal compartment and breast milk excretion. Differences in maternal, fetal and infant ARV exposure due to SNPs may affect the efficacy and safety of ARVs used to prevent mother-to-child-transmission. The aim of this review is to provide an update on the effect of pregnancy-induced changes on the pharmacokinetics of ARVs and highlight the potential role of pharmacogenetics.
Collapse
|
49
|
Isoherranen N, Thummel KE. Drug metabolism and transport during pregnancy: how does drug disposition change during pregnancy and what are the mechanisms that cause such changes? Drug Metab Dispos 2013; 41:256-62. [PMID: 23328895 PMCID: PMC3558867 DOI: 10.1124/dmd.112.050245] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that pregnancy alters the function of drug-metabolizing enzymes and drug transporters in a gestational-stage and tissue-specific manner. In vivo probe studies have shown that the activity of several hepatic cytochrome P450 enzymes, such as CYP2D6 and CYP3A4, is increased during pregnancy, whereas the activity of others, such as CYP1A2, is decreased. The activity of some renal transporters, including organic cation transporter and P-glycoprotein, also appears to be increased during pregnancy. Although much has been learned, significant gaps still exist in our understanding of the spectrum of drug metabolism and transport genes affected, gestational age-dependent changes in the activity of encoded drug metabolizing and transporting processes, and the mechanisms of pregnancy-induced alterations. In this issue of Drug Metabolism and Disposition, a series of articles is presented that address the predictability, mechanisms, and magnitude of changes in drug metabolism and transport processes during pregnancy. The articles highlight state-of-the-art approaches to studying mechanisms of changes in drug disposition during pregnancy, and illustrate the use and integration of data from in vitro models, animal studies, and human clinical studies. The findings presented show the complex inter-relationships between multiple regulators of drug metabolism and transport genes, such as estrogens, progesterone, and growth hormone, and their effects on enzyme and transporter expression in different tissues. The studies provide the impetus for a mechanism- and evidence-based approach to optimally managing drug therapies during pregnancy and improving treatment outcomes.
Collapse
|
50
|
Helsby NA, Burns KE. Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19. Front Genet 2012; 3:206. [PMID: 23087703 PMCID: PMC3467616 DOI: 10.3389/fgene.2012.00206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022] Open
Abstract
Inherited variation in the function of the drug metabolizing enzyme CYP2C19 was first observed 40 years ago. The SNP variants which underpin loss of CYP2C19 function have been elucidated and extensively studied in healthy populations. However, there has been relatively meagre translation of this information into the clinic. The presence of genotype-phenotype discordance in certain patients suggests that changes in the regulation of this gene, as well as loss of function SNPs, could play a role in deficient activity of this enzyme. Knowledge of the molecular mechanisms which control transcription of this gene, reviewed in this article, may aid the challenge of delivering CYP2C19 pharmacogenetics into clinical use.
Collapse
Affiliation(s)
- Nuala Ann Helsby
- Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | | |
Collapse
|