1
|
Walker LE, Stewart A, Pirmohamed SM, Meschia JF, Kinne FB. Stroke Pharmacogenetics. STROKE GENETICS 2024:423-508. [DOI: 10.1007/978-3-031-41777-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Fayed MS, Saleh MA, Sabri NA, Elkholy AA. β1-adrenergic receptor polymorphisms: a possible genetic predictor of bisoprolol response in acute coronary syndrome. Future Sci OA 2023; 9:FSO895. [PMID: 37753361 PMCID: PMC10518825 DOI: 10.2144/fsoa-2023-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Aim To investigate the association between beta1-adrenergic receptor (ADRB1) polymorphisms and response to bisoprolol treatment in beta-blocker naive patients with acute coronary syndrome (ACS). Patients & methods Seventy-seven patients received bisoprolol for four weeks. Blood pressure and heart rate were measured at baseline and during treatment. TaqMan allelic discrimination method was utilized for ADRB1 Ser49Gly and Arg389Gly genotyping. Results Arg389Arg carriers showed greater reductions in systolic and diastolic blood pressure (-8.5% ± 7.8% vs -0.76% ± 8.7%, p = 0.000218), and (-9.5% ± 9.7% vs -0.80% ± 11.5%, p = 0.000149), respectively, compared with Gly389 carriers. No statistical difference was found for study's outcomes based on codon 49. Conclusion Arg389Gly polymorphism is a promising bisoprolol response predictor in ACS patients.
Collapse
Affiliation(s)
- Mohamed S Fayed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohamed Ayman Saleh
- Department of Cardiology, Faculty of Medicine, Ain Shams University, Cairo, 1181, Egypt
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Amal A Elkholy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Ma Q, Li M, Gong H, Zhang Y, Cui Y. Enantioseparation of β-receptor blockers and the enantioselective degradation of carvedilol in soil. J Pharm Biomed Anal 2022; 217:114859. [DOI: 10.1016/j.jpba.2022.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
|
4
|
Achieving a Maximally Tolerated β-Blocker Dose in Heart Failure Patients: Is There Room for Improvement? J Am Coll Cardiol 2017; 69:2542-2550. [PMID: 28521892 DOI: 10.1016/j.jacc.2017.03.563] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Heart failure (HF) is associated with significant morbidity and mortality. Although initially thought to be harmful in HF, beta-adrenergic blockers (β-blockers) have consistently been shown to reduce mortality and HF hospitalization in chronic HF with reduced ejection fraction. Proposed mechanisms include neurohormonal blockade and heart rate reduction. A new therapeutic agent now exists to target further heart rate lowering in patients who have been stable on a "maximally tolerated β-blocker dose," but this definition and how to achieve it are incompletely understood. In this review, the authors summarize published reports on the mechanisms by which β-blockers improve clinical outcomes. The authors describe differences in doses achieved in landmark clinical trials and those observed in routine clinical practice. They further discuss reasons for intolerance and the evidence behind using β-blocker dose and heart rate as therapeutic targets. Finally, the authors offer recommendations for clinicians actively initiating and up-titrating β-blockers that may aid in achieving maximally tolerated doses.
Collapse
|
5
|
Walker LE, Stewart A, Pirmohamed SM. Stroke Pharmacogenetics. STROKE GENETICS 2017:327-410. [DOI: 10.1007/978-3-319-56210-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Impact of the canine double-deletion β1 adrenoreceptor polymorphisms on protein structure and heart rate response to atenolol, a β1-selective β-blocker. Pharmacogenet Genomics 2016; 25:427-31. [PMID: 26065525 DOI: 10.1097/fpc.0000000000000152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE β-Adrenergic receptor antagonists are widely utilized for the management of cardiac diseases in dogs. We have recently identified two deletion polymorphisms in the canine adrenoreceptor 1 (ADRB1) gene.We hypothesized that canine ADRB1 deletions would alter the structure of the protein, as well as the heart rate response to the β-adrenergic receptor antagonist, atenolol. The objectives of this study were to predict the impact of these deletions on the predicted structure of the protein and on the heart rate response to atenolol in a population of healthy adult dogs. METHODS Eighteen apparently healthy, mature dogs with (11) and without (seven) ADRB1 deletions were evaluated. The heart rate of the dogs was evaluated with a baseline ambulatory ECG before and 14-21 days after atenolol therapy (1 mg/kg orally q12 h). Minimum, average, and maximum heart rates were compared between groups of dogs (deletions, controls) using an unpaired t-test and within each group of dogs using a paired t-test. The protein structure of ADRB1 was predicted by computer modeling. RESULTS Deletions were predicted to alter the structure of the ADRB1 protein. The heart rates of the dogs with deletions were lower than those of the control dogs (the average heart rates were significantly lower). CONCLUSION ADRB1 deletions appear to have structural and functional consequences. Individual genome-based treatment recommendations could impact the management of dogs with heart disease.
Collapse
|
7
|
Lee HY, Chung WJ, Jeon HK, Seo HS, Choi DJ, Jeon ES, Kim JJ, Shin JH, Kang SM, Lim SC, Baek SH. Impact of the β-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in Korean heart failure patients: association between β adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study. Korean J Intern Med 2016; 31:277-87. [PMID: 26879662 PMCID: PMC4773723 DOI: 10.3904/kjim.2015.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/17/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS We evaluated the association between coding region variants of adrenergic receptor genes and therapeutic effect in patients with congestive heart failure (CHF). METHODS One hundred patients with stable CHF (left ventricular ejection fraction [LVEF] < 45%) were enrolled. Enrolled patients started 1.25 mg bisoprolol treatment once daily, then up-titrated to the maximally tolerable dose, at which they were treated for 1 year. RESULTS Genotypic analysis was carried out, but the results were blinded to the investigators throughout the study period. At position 389 of the β-1 adrenergic receptor gene (ADRB1), the observed minor Gly allele frequency (Gly389Arg + Gly389Gly) was 0.21, and no deviation from Hardy-Weinberg equilibrium was observed in the genotypic distribution of Arg389Gly (p = 0.75). Heart rate was reduced from 80.8 ± 14.3 to 70.0 ± 15.0 beats per minute (p < 0.0001). There was no significant difference in final heart rate across genotypes. However, the Arg389Arg genotype group required significantly more bisoprolol compared to the Gly389X (Gly389Arg + Gly389Gly) group (5.26 ± 2.62 mg vs. 3.96 ± 2.05 mg, p = 0.022). There were no significant differences in LVEF changes or remodeling between two groups. Also, changes in exercise capacity and brain natriuretic peptide level were not significant. However, interestingly, there was a two-fold higher rate of readmission (21.2% vs. 10.0%, p = 0.162) and one CHF-related death in the Arg389Arg group. CONCLUSIONS The ADRB1 Gly389X genotype showed greater response to bisoprolol than the Arg389Arg genotype, suggesting the potential of individually tailoring β-blocker therapy according to genotype.
Collapse
Affiliation(s)
- Hae-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Wook-Jin Chung
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Hui-Kyung Jeon
- Department of Internal Medicine, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Hong-Seog Seo
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dong-Ju Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun-Seok Jeon
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Joong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joon Han Shin
- Department of Internal Medicine, Ajou University Hospital, Suwon, Korea
| | - Seok-Min Kang
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Cil Lim
- Department of Clinical Pharmacy, College of Pharmacy, The Catholic University of Korea, Seoul, Korea
| | - Sang-Hong Baek
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sang Hong Baek, M.D.Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6030 Fax: +82-2-591-1506 E-mail:
| |
Collapse
|
8
|
Abstract
Beta-blockers are the cornerstone treatment for congestive heart failure (HF). Current HF guidelines commonly recommend β-blockers for the treatment of HF with reduced left ventricular ejection fraction (LVEF). The effect of β-blockers, however, is less clear for HF patients with preserved LVEF, unstable severe acute HF, or right ventricular failure. This review summarizes the effect of β-blockers in various clinical situations and suggests a strategy for optimal use. (Circ J 2016; 80: 565-571).
Collapse
Affiliation(s)
- Hae-Young Lee
- Internal Medicine, Seoul National University Hospital
| | | |
Collapse
|
9
|
Femminella GD, Barrese V, Ferrara N, Rengo G. Tailoring therapy for heart failure: the pharmacogenomics of adrenergic receptor signaling. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:267-73. [PMID: 25276090 PMCID: PMC4175026 DOI: 10.2147/pgpm.s49799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure is one of the leading causes of mortality in Western countries, and β-blockers are a cornerstone of its treatment. However, the response to these drugs is variable among individuals, which might be explained, at least in part, by genetic differences. Pharmacogenomics is the study of genetic contributions to drug response variability in order to provide evidence for a tailored therapy in an individual patient. Several studies have investigated the pharmacogenomics of the adrenergic receptor system and its role in the context of the use of β-blockers in treating heart failure. In this review, we will focus on the most significant polymorphisms described in the literature involving adrenergic receptors and adrenergic receptor-related proteins, as well as genetic variations influencing β-blocker metabolism.
Collapse
Affiliation(s)
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy ; Division of Biomedical Sciences, St George's University of London, London, UK
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University, Naples, Italy ; "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| | - Giuseppe Rengo
- "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| |
Collapse
|
10
|
Shihmanter R, Nulman I, Goland S, Caspi A, Bar-Haim A, Harary I, Berkovitch M, Arcavi L. Variation in the CYP2D6
genotype is not associated with carvedilol dose changes in patients with heart failure. J Clin Pharm Ther 2014; 39:432-8. [DOI: 10.1111/jcpt.12154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 02/20/2014] [Indexed: 11/27/2022]
Affiliation(s)
- R. Shihmanter
- Clinical Pharmacology Unit; Kaplan Medical Center; Hebrew University and Hadassah Medical School; Rehovot Jerusalem Israel
| | - I. Nulman
- Division of Clinical Pharmacology and Toxicology; The Hospital for Sick Children; University of Toronto; Toronto ON Canada
| | - S. Goland
- Department of Cardiology; Kaplan Medical Center; Hebrew University and Hadassah Medical School; Rehovot Jerusalem Israel
| | - A. Caspi
- Department of Cardiology; Kaplan Medical Center; Hebrew University and Hadassah Medical School; Rehovot Jerusalem Israel
| | - A. Bar-Haim
- Biochemistry and Pharmacogenetics Laboratory; Assaf Harofeh Medical Center; Zerifin Israel
| | - I. Harary
- Biochemistry and Pharmacogenetics Laboratory; Assaf Harofeh Medical Center; Zerifin Israel
| | - M. Berkovitch
- Clinical Pharmacology Unit; Assaf Harofeh Medical Center; Zerifin Israel
| | - L. Arcavi
- Clinical Pharmacology Unit; Kaplan Medical Center; Hebrew University and Hadassah Medical School; Rehovot Jerusalem Israel
| |
Collapse
|
11
|
Effect of specific ADRB1/ADRB2/AGT genotype combinations on the association between survival and carvedilol treatment in chronic heart failure: a substudy of the ECHOS trial. Pharmacogenet Genomics 2013; 22:709-15. [PMID: 22760495 DOI: 10.1097/fpc.0b013e3283540286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of the present study was to determine whether carvedilol-treated chronic heart failure patients have a different prognosis when stratified for a specific combination of a gain-of-function genotype of the adrenergic β-1 receptor gene (ADRB1) (Arg389-homozygous), two gain-of-function genotypes of the angiotensinogen gene (AGT) (Thr174-homozygous and Thr235-homozygous), and a downregulated genotype of the adrenergic β-2 receptor gene (ADRB2) (Gln27-carrier). METHODS Genotyping of 618 patients was carried out using the Sequenoms MassARRAY genotyping system. Outcome was all-cause mortality and statistics were calculated using a multivariable Cox proportional hazards model. Internal validation was performed using the bootstrap procedure. RESULTS Eighty-seven of the 618 patients included in the study were treated with carvedilol. There was a significant interaction between the outcome of carvedilol treatment and the combination of the gain-of-function ADRB1 genotype (Arg389-homozygous) and the gain-of-function AGT genotype (Thr174-homozygous) (P(interaction)=0.003; hazard ratio 2.19, 95% confidence interval 1.26-3.78, P=0.005). There was also a significant interaction when the downregulated ADRB2 genotype (Gln27-carrier) was added to the ADRB1/AGT combination (P(interaction)=0.0005; hazard ratio 2.67, 95% confidence interval 1.51-4.72, P=0.0007). Two hundred and four patients were treated with metoprolol. There was no interaction between metoprolol treatment and the specific genotype combinations as there was no difference in the overall survival. The validity of the results was supported by the bootstrap procedure. CONCLUSION We found a doubling of the hazard of mortality in carvedilol-treated patients with the combination of the gain-of-function ADRB1 genotype (Arg389-homozygous), the gain-of-function AGT genotype (Thr174-homozygous), and the downregulated ADRB2 genotype (Gln27-carrier). This might be valuable when stratifying chronic heart failure patients to the right β-blocker therapy.
Collapse
|
12
|
Abstract
There is great variation in drug-response phenotypes, and a “one size fits all” paradigm for drug delivery is flawed. Pharmacogenomics is the study of how human genetic information impacts drug response, and it aims to improve efficacy and reduced side effects. In this article, we provide an overview of pharmacogenetics, including pharmacokinetics (PK), pharmacodynamics (PD), gene and pathway interactions, and off-target effects. We describe methods for discovering genetic factors in drug response, including genome-wide association studies (GWAS), expression analysis, and other methods such as chemoinformatics and natural language processing (NLP). We cover the practical applications of pharmacogenomics both in the pharmaceutical industry and in a clinical setting. In drug discovery, pharmacogenomics can be used to aid lead identification, anticipate adverse events, and assist in drug repurposing efforts. Moreover, pharmacogenomic discoveries show promise as important elements of physician decision support. Finally, we consider the ethical, regulatory, and reimbursement challenges that remain for the clinical implementation of pharmacogenomics.
Collapse
|
13
|
Simultaneous determination of metoprolol and α-hydroxymetoprolol in human plasma using excitation–emission matrix fluorescence coupled with second-order calibration methods. Bioanalysis 2012; 4:2781-93. [DOI: 10.4155/bio.12.265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Metoprolol (MET) is a β1-adrenoceptor antagonist, which is widely used in the treatment of cardiovascular diseases, and α-hydroxymetoprolol (α-OHM) is its hydroxylated metabolite. Owing to their similar structures, optimization of the condition for the chromatography approach, which is in common use for determination, is both time consuming and laborious. Results: A new and effective strategy that combines the excitation–emission matrix fluorescence with second-order calibration methods was developed for simultaneous determination of MET and α-OHM in human plasma. Conclusion: Although the fluorescence spectra of MET and α-OHM overlapped and a large number of unknown and uncalibrated fluorescent components coexisted, the developed method enables accurate concentrations together with reasonable resolution of excitation and emission profiles for the analytes of interest. An additional advantage of the proposed method is that there is no need for separation and sample pretreatment, in addition to lower cost than traditional methods.
Collapse
|
14
|
WYLIE SJ, WONG GTC, CHAN YC, IRWIN MG. Endovascular aneurysm repair: a perioperative perspective. Acta Anaesthesiol Scand 2012; 56:941-9. [PMID: 22621365 DOI: 10.1111/j.1399-6576.2012.02681.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 11/28/2022]
Abstract
Endovascular aneurysm repair (EVAR), has surpassed open repair as the technique of choice in many centres in response to several large studies which showed significantly improved 30-day mortality. While several multicentre EVAR trials looked at surgical outcomes, very few have specifically investigated the effect of anaesthetic techniques or perioperative care of these patients. The purpose of this review to is to present some of the current evidence for the different aspects of perioperative management of patients undergoing EVAR. This includes surgical considerations, pre-operative assessment, and choice of anaesthetic technique as well as pharmacological protective strategies.
Collapse
Affiliation(s)
- S. J. WYLIE
- Barts and the Royal London NHS Trust; London
| | - G. T. C. WONG
- Department of Anaesthesiology; University of Hong Kong; Hong Kong
| | - Y. C. CHAN
- Department of Surgery; University of Hong Kong; Hong Kong
| | - M. G. IRWIN
- Department of Anaesthesiology; University of Hong Kong; Hong Kong
| |
Collapse
|
15
|
Howington L, Riddlesperger K, Cheek DJ. Essential nursing competencies for genetics and genomics: implications for critical care. Crit Care Nurse 2012; 31:e1-7. [PMID: 21965389 DOI: 10.4037/ccn2011867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The implications of genetics and genomics for critical care nurses are becoming more evident, not only in the care provided but also in the numerous medications administered. Genetic causes are being discovered for an increasing number of chronic illnesses and diseases, such as Huntington disease. Because of the scientific and pharmacological advances, leading nursing organizations, such as the American Nurses Association, have established competencies in genetic knowledge for nurses. Such competencies help ensure quality care. Recent advances in the pharmacogenomics of therapy for human immunodeficiency virus disease, cancer, cardiovascular disease, and malignant hyperthermia have indicated a genetic linkage; therefore treatments are targeted toward the genetic aspect of the abnormality. Critical care nurses need knowledge of these genetic conditions and of medications affected by genetic factors.
Collapse
|
16
|
Landau R, Bollag LA, Kraft JC. Pharmacogenetics and anaesthesia: the value of genetic profiling. Anaesthesia 2012; 67:165-79. [DOI: 10.1111/j.1365-2044.2011.06918.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Ogimoto A, Okayama H, Nagai T, Suzuki J, Inoue K, Nishimura K, Shigematsu Y, Tabara Y, Miki T, Higaki J. Impact of Synergistic Polymorphisms in Adrenergic Receptor-Related Genes and Cardiovascular Events in Patients With Dilated Cardiomyopathy. Circ J 2012; 76:2003-8. [DOI: 10.1253/circj.cj-11-1014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akiyoshi Ogimoto
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| | - Hideki Okayama
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| | - Takayuki Nagai
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| | - Jun Suzuki
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| | - Katsuji Inoue
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| | - Kazuhisa Nishimura
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| | - Yuji Shigematsu
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| | - Yasuharu Tabara
- Department of Geriatric Medicine, Ehime University Graduate School of Medicine
- Department of Geriatric Medicine, Ehime University Graduate School of Medicine
| | - Tetsuro Miki
- Department of Geriatric Medicine, Ehime University Graduate School of Medicine
- Department of Geriatric Medicine, Ehime University Graduate School of Medicine
| | - Jitsuo Higaki
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
- Department of Integrated Medicine and Informatics, Ehime University Graduate School of Medicine
| |
Collapse
|
18
|
Myburgh R, Hochfeld WE, Dodgen TM, Ker J, Pepper MS. Cardiovascular pharmacogenetics. Pharmacol Ther 2011; 133:280-90. [PMID: 22123178 DOI: 10.1016/j.pharmthera.2011.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 12/25/2022]
Abstract
Human genetic variation in the form of single nucleotide polymorphisms as well as more complex structural variations such as insertions, deletions and copy number variants, is partially responsible for the clinical variation seen in response to pharmacotherapeutic drugs. This affects the likelihood of experiencing adverse drug reactions and also of achieving therapeutic success. In this paper, we review key studies in cardiovascular pharmacogenetics that reveal genetic variations underlying the outcomes of drug treatment in cardiovascular disease. Examples of genetic associations with drug efficacy and toxicity are described, including the roles of genetic variability in pharmacokinetics (e.g. drug metabolizing enzymes) and pharmacodynamics (e.g. drug targets). These findings have functional implications that could lead to the development of genetic tests aimed at minimizing drug toxicity and optimizing drug efficacy in cardiovascular medicine.
Collapse
Affiliation(s)
- Renier Myburgh
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | | | | | | | | |
Collapse
|
19
|
von Homeyer P, Schwinn DA. Pharmacogenomics of β-adrenergic receptor physiology and response to β-blockade. Anesth Analg 2011; 113:1305-18. [PMID: 21965354 DOI: 10.1213/ane.0b013e31822b887e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial β-adrenergic receptors (βARs) are important in altering heart rate, inotropic state, and myocardial relaxation (lusitropy). The β1AR and β2AR stimulation increases cyclic adenosine monophosphate concentration with the net result of myocyte contraction, whereas β3AR stimulation results in decreased inotropy. Downregulation of β1ARs in heart failure, as well as an increased β3AR activity and density, lead to decreased cyclic adenosine monophosphate production and reduced inotropy. The βAR antagonists are commonly used in patients with coronary artery disease and heart failure; however, perioperative use of βAR antagonists is controversial. Individual patient's response to beta-blocker therapy is an area of intensive research, and apart from pharmacokinetics, pharmacodynamics, and ethnic differences, genetic alterations have become more important in the last 20 years. The most common genetic variants in humans are single nucleotide polymorphisms (SNPs). There are 2 clinically relevant SNPs for the β1AR (Ser49Gly, Arg389Gly), 3 for the β2AR (Arg16Gly, Gln27Glu, Thr164Ile), and 1 for the β3AR (Trp64Arg). Although results are somewhat controversial, generally large datasets have the potential to show a relationship between βAR SNPs and outcomes such as development and progression of heart failure, coronary artery disease, vascular reactivity, hypertension, asthma, obesity, and diabetes. Although βAR SNPs may not directly cause disease, they appear to be risk factors for, and modifiers of, disease and the response to stress and drugs. In the perioperative setting, this has specifically been demonstrated for the Arg389Gly β1AR polymorphism with which patients with the Gly variant had a higher incidence of adverse perioperative events. Knowing that genetic variants play an important role, perioperative medicine will likely change from simple therapeutic intervention to a more personalized way of adrenergic receptor modulation.
Collapse
Affiliation(s)
- Peter von Homeyer
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195-6540, USA.
| | | |
Collapse
|
20
|
Kimura A. Contribution of genetic factors to the pathogenesis of dilated cardiomyopathy: the cause of dilated cardiomyopathy: genetic or acquired? (genetic-side). Circ J 2011; 75:1756-65; discussion 1765. [PMID: 21617319 DOI: 10.1253/circj.cj-11-0368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dilated cardiomyopathy (DCM) is characterized by dilated ventricles and systolic dysfunction. Its etiology is not fully unraveled, but both extrinsic and intrinsic factors are considered to be involved. The intrinsic factors include genetic variations in the genes (ie, disease-causing mutations and disease-associated polymorphisms), which play key roles in controlling the susceptibility to the disease by affecting the performance, regulation, and/or maintenance of cardiac function. DCM can be classified into 2 types: hereditary and non-hereditary. The genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM can be found in various genes, especially those for sarcolemma elements, contractile elements, Z-disc elements, sarcoplasmic elements, and nuclear lamina elements of cardiomyocytes. On the other hand, disease-associated polymorphisms, which control the susceptibility to non-hereditary DCM, may be found in genes expressing not only in cardiomyocytes but also other non-cardiac cells involved in the immune system. Because functional alterations caused by these genetic variations can be classified into several categories, it is necessary to understand the pathogenesis and hence to develop diagnostic and therapeutic strategies for both hereditary and non-hereditary DCM from the viewpoint of genetic factors.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, and Laboratory of Genome Diversity, Graduate School of Biomedical Science, Tokyo Medical and Dental University
| |
Collapse
|
21
|
Matera MG, Martuscelli E, Cazzola M. Pharmacological modulation of β-adrenoceptor function in patients with coexisting chronic obstructive pulmonary disease and chronic heart failure. Pulm Pharmacol Ther 2010; 23:1-8. [DOI: 10.1016/j.pupt.2009.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 02/01/2023]
|
22
|
Patel AR, Shaddy RE. Role of β-blocker therapy in pediatric heart failure. ACTA ACUST UNITED AC 2010; 4:45-58. [PMID: 21799703 DOI: 10.2217/phe.09.65] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart failure is becoming an increasingly common and significant problem in the field of pediatric cardiology. The numerous types of cardiomyopathies, and more recently, long-term survival of patients with congenital heart disease, have added to a growing patient population. Over the last several decades, our knowledge base regarding mechanisms of disease and therapeutic intervention in adult patients with heart failure has drastically changed. The most recent and important breakthrough in the pharmacologic treatment of heart failure has been the particular role of β-blocker therapy. This medication has led to significant improvements in survival and symptoms in adults, with less convincing findings in limited studies in pediatrics. The ability to study the benefits of this therapy in patients has been challenging owing to the heterogeneity of the patient population and lack of large sample sizes. However, as we investigate the mechanisms behind the disease process, the differences that exist between disease conditions and ages, and the significant alterations that may exist at the molecular and genetic level, our understanding of β-blocker therapy in pediatric heart failure will improve, and ultimately may lead to patient-specific therapy.
Collapse
Affiliation(s)
- Akash R Patel
- The Children's Hospital of Philadelphia, Department of Cardiology, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA Tel.: +1 215 590 3548
| | | |
Collapse
|
23
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 536] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
24
|
Xiong J, Xue F, Xu Y, Yang Q, Liao X, Wang W. Cholinergic agonists may produce preservation of myocardial ischaemia/reperfusion injury. Med Hypotheses 2009; 73:312-4. [DOI: 10.1016/j.mehy.2009.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/03/2009] [Accepted: 03/07/2009] [Indexed: 11/24/2022]
|
25
|
Frazier L, Wung SF, Sparks E, Eastwood C. Cardiovascular nursing on human genomics: what do cardiovascular nurses need to know about congestive heart failure? PROGRESS IN CARDIOVASCULAR NURSING 2009; 24:80-85. [PMID: 19737164 PMCID: PMC2749227 DOI: 10.1111/j.1751-7117.2009.00039.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper presents the main causes of heart failure (HF) and an update on the genetics studies on each cause. The review includes a delineation of the etiology and fundamental pathophysiology of HF and provides rational for treatment for the patient and family. Various cardiomyopathies are discussed, including primary cardiomyopathies, mixed cardiomyopathies, cardiomyopathies that involve altered cardiac muscle along with generalized multiorgan disorders, and various cardiovascular conditions, such as coronary artery disease (ischemic cardiomyopathy) and hypertension (hypertensive cardiomyopathy). A brief review of pharmacogenetics and HF is presented. The application of the genetic components of cardiomyopathy and pharmacogenetics is included to enhance cardiovascular nursing care.
Collapse
Affiliation(s)
- Lorraine Frazier
- The University of Texas Health Science Center School of Nursing at Houston, 6901 Bertner, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|