1
|
Li C, Yang Y. Advancements in the study of inward rectifying potassium channels on vascular cells. Channels (Austin) 2023; 17:2237303. [PMID: 37463317 PMCID: PMC10355679 DOI: 10.1080/19336950.2023.2237303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Inward rectifier potassium channels (Kir channels) exist in a variety of cells and are involved in maintaining resting membrane potential and signal transduction in most cells, as well as connecting metabolism and membrane excitability of body cells. It is closely related to normal physiological functions of body and the occurrence and development of some diseases. Although the functional expression of Kir channels and their role in disease have been studied, they have not been fully elucidated. In this paper, the functional expression of Kir channels in vascular endothelial cells and smooth muscle cells and their changes in disease states were reviewed, especially the recent research progress of Kir channels in stem cells was introduced, in order to have a deeper understanding of Kir channels in vascular tissues and provide new ideas and directions for the treatment of related ion channel diseases.
Collapse
Affiliation(s)
- Chunshu Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Moreno-Manuel AI, Gutiérrez LK, Vera-Pedrosa ML, Cruz FM, Bermúdez-Jiménez FJ, Martínez-Carrascoso I, Sánchez-Pérez P, Macías Á, Jalife J. Molecular stratification of arrhythmogenic mechanisms in the Andersen Tawil syndrome. Cardiovasc Res 2023; 119:919-932. [PMID: 35892314 PMCID: PMC10153646 DOI: 10.1093/cvr/cvac118] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/12/2022] Open
Abstract
Andersen-Tawil syndrome (ATS) is a rare inheritable disease associated with loss-of-function mutations in KCNJ2, the gene coding the strong inward rectifier potassium channel Kir2.1, which forms an essential membrane protein controlling cardiac excitability. ATS is usually marked by a triad of periodic paralysis, life-threatening cardiac arrhythmias and dysmorphic features, but its expression is variable and not all patients with a phenotype linked to ATS have a known genetic alteration. The mechanisms underlying this arrhythmogenic syndrome are poorly understood. Knowing such mechanisms would be essential to distinguish ATS from other channelopathies with overlapping phenotypes and to develop individualized therapies. For example, the recently suggested role of Kir2.1 as a countercurrent to sarcoplasmic calcium reuptake might explain the arrhythmogenic mechanisms of ATS and its overlap with catecholaminergic polymorphic ventricular tachycardia. Here we summarize current knowledge on the mechanisms of arrhythmias leading to sudden cardiac death in ATS. We first provide an overview of the syndrome and its pathophysiology, from the patient's bedside to the protein and discuss the role of essential regulators and interactors that could play a role in cases of ATS. The review highlights novel ideas related to some post-translational channel interactions with partner proteins that might help define the molecular bases of the arrhythmia phenotype. We then propose a new all-embracing classification of the currently known ATS loss-of-function mutations according to their position in the Kir2.1 channel structure and their functional implications. We also discuss specific ATS pathogenic variants, their clinical manifestations, and treatment stratification. The goal is to provide a deeper mechanistic understanding of the syndrome toward the development of novel targets and personalized treatment strategies.
Collapse
Affiliation(s)
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | | | - Francisco Miguel Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Francisco José Bermúdez-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
- Departamento de Cardiología, Hospital Virgen de las Nieves, GranadaSpain
| | | | - Patricia Sánchez-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Fan X, Lu Y, Du G, Liu J. Advances in the Understanding of Two-Pore Domain TASK Potassium Channels and Their Potential as Therapeutic Targets. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238296. [PMID: 36500386 PMCID: PMC9736439 DOI: 10.3390/molecules27238296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
TWIK-related acid-sensitive K+ (TASK) channels, including TASK-1, TASK-3, and TASK-5, are important members of the two-pore domain potassium (K2P) channel family. TASK-5 is not functionally expressed in the recombinant system. TASK channels are very sensitive to changes in extracellular pH and are active during all membrane potential periods. They are similar to other K2P channels in that they can create and use background-leaked potassium currents to stabilize resting membrane conductance and repolarize the action potential of excitable cells. TASK channels are expressed in both the nervous system and peripheral tissues, including excitable and non-excitable cells, and are widely engaged in pathophysiological phenomena, such as respiratory stimulation, pulmonary hypertension, arrhythmia, aldosterone secretion, cancers, anesthesia, neurological disorders, glucose homeostasis, and visual sensitivity. Therefore, they are important targets for innovative drug development. In this review, we emphasized the recent advances in our understanding of the biophysical properties, gating profiles, and biological roles of TASK channels. Given the different localization ranges and biologically relevant functions of TASK-1 and TASK-3 channels, the development of compounds that selectively target TASK-1 and TASK-3 channels is also summarized based on data reported in the literature.
Collapse
Affiliation(s)
- Xueming Fan
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang 550002, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510700, China
| | - Guizhi Du
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (G.D.); (J.L.)
| |
Collapse
|
4
|
Cao N, Aikeremu N, Shi WY, Tang XC, Gao RJ, Kong LJY, Zhang JR, Qin WJ, Zhang AM, Ma KT, Li L, Si JQ. Inhibition of KIR2.1 decreases pulmonary artery smooth muscle cell proliferation and migration. Int J Mol Med 2022; 50:119. [PMID: 35856410 PMCID: PMC9354699 DOI: 10.3892/ijmm.2022.5175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
The investigation of effective therapeutic drugs for pulmonary hypertension (PH) is critical. KIR2.1 plays crucial roles in regulating cell proliferation and migration, and vascular remodeling. However, researchers have not yet clearly determined whether KIR2.1 participates in the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and its role in pulmonary vascular remodeling (PVR) also remains elusive. The present study aimed to examine whether KIR2.1 alters PASMC proliferation and migration, and participates in PVR, as well as to explore its mechanisms of action. For the in vivo experiment, a PH model was established by intraperitoneally injecting Sprague-Dawley rats monocrotaline (MCT). Hematoxylin and eosin staining revealed evidence of PVR in the rats with PH. Immunofluorescence staining and western blot analysis revealed increased levels of the KIR2.1, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) proteins in pulmonary blood vessels and lung tissues following exposure to MCT, and the TGF-β1/SMAD2/3 signaling pathway was activated. For the in vitro experiments, the KIR2.1 inhibitor, ML133, or the TGF-β1/SMAD2/3 signaling pathway blocker, SB431542, were used to pre-treat human PASMCs (HPASMCs) for 24 h, and the cells were then treated with platelet-derived growth factor (PDGF)-BB for 24 h. Scratch and Transwell assays revealed that PDGF-BB promoted cell proliferation and migration. Immunofluorescence staining and western blot analysis demonstrated that PDGF-BB upregulated OPN and PCNA expression, and activated the TGF-β1/SMAD2/3 signaling pathway. ML133 reversed the proliferation and migration induced by PDGF-BB, inhibited the expression of OPN and PCNA, inhibited the TGF-β1/SMAD2/3 signaling pathway, and reduced the proliferation and migration of HPASMCs. SB431542 pre-treatment also reduced cell proliferation and migration; however, it did not affect KIR2.1 expression. On the whole, the results of the present study demonstrate that KIR2.1 regulates the TGF-β1/SMAD2/3 signaling pathway and the expression of OPN and PCNA proteins, thereby regulating the proliferation and migration of PASMCs and participating in PVR.
Collapse
Affiliation(s)
- Nan Cao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Nigala Aikeremu
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Yan Shi
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Xue-Chun Tang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Rui-Juan Gao
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Liang-Jing-Yuan Kong
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Jing-Rong Zhang
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Wen-Juan Qin
- Department of Ultrasound, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ai-Mei Zhang
- Department of Cardiology, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Jiaxing University Medical College, Jiaxing, Zhejiang 314001, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
5
|
Nagaraj C, Li Y, Tang B, Bordag N, Guntur D, Enyedi P, Olschewski H, Olschewski A. Potassium Channels in the Transition from Fetal to the Neonatal Pulmonary Circulation. Int J Mol Sci 2022; 23:ijms23094681. [PMID: 35563072 PMCID: PMC9106051 DOI: 10.3390/ijms23094681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
The transition from the fetal to the neonatal circulation includes dilatation of the pulmonary arteries (PA) and closure of the Ductus Arteriosus Botalli (DAB). The resting membrane potential and various potassium channel activities in smooth muscle cells (SMC) from fetal and neonatal PA and DAB obtained from the same species has not been systematically analyzed. The key issue addressed in this paper is how the resting membrane potential and the whole-cell potassium current (IK) change when PASMC or DABSMC are transitioned from hypoxia, reflecting the fetal state, to normoxia, reflecting the post-partal state. Patch-clamp measurements were employed to characterize whole-cell K+ channel activity in fetal and post-partal (newborn) PASMC and DABSMC. The main finding of this paper is that the SMC from both tissues use a similar set of K+ channels (voltage-dependent (Kv), calcium-sensitive (KCa), TASK-1 and probably also TASK-2 channels); however, their activity level depends on the cell type and the oxygen level. Furthermore, we provide the first evidence for pH-sensitive non-inactivating K+ current in newborn DABSMC and PASMC, suggesting physiologically relevant TASK-1 and TASK-2 channel activity, the latter particularly in the Ductus Arteriosus Botalli.
Collapse
Affiliation(s)
- Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (C.N.); (N.B.)
| | - Yingji Li
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (Y.L.); (B.T.); (D.G.)
| | - Bi Tang
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (Y.L.); (B.T.); (D.G.)
| | - Natalie Bordag
- Ludwig Boltzmann Institute for Lung Vascular Research, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (C.N.); (N.B.)
- Department of Dermatology and Venereology, Medical University of Graz, Auenbruggerplatz 8, 8036 Graz, Austria
| | - Divya Guntur
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (Y.L.); (B.T.); (D.G.)
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, 1094 Budapest, Hungary;
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria;
| | - Andrea Olschewski
- Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria; (Y.L.); (B.T.); (D.G.)
- Correspondence:
| |
Collapse
|
6
|
Zhou W, Zhou R, Li N, Chen Y, Pei Y, Han L, Ren J. Vasorelaxation effect of oxysophoridine on isolated thoracicc aorta rings of rats. CHINESE J PHYSIOL 2021; 64:274-280. [DOI: 10.4103/cjp.cjp_60_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
7
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
8
|
Prostanoids contribute to regulation of inwardly rectifying K + channels in intrarenal arterial smooth muscle cells. Life Sci 2020; 250:117586. [PMID: 32222464 DOI: 10.1016/j.lfs.2020.117586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 11/23/2022]
Abstract
AIM The inward rectifier K+ (Kir) channels and prostanoids are important factors in regulating vascular tone, but the relationship between them has not been well studied. We aimed to study the involvement of prostanoids in regulating Kir activity in the rat intrarenal arteries (RIRAs). MAIN METHODS The vascular tone of isolated RIRAs was recorded with a wire myograph. The intracellular Ca2+ concentrations ([Ca2+]i) and Kir currents were measured with a Ca2+-sensitive fluorescence probe and patch clamp, respectively, in the arterial smooth muscle cell (ASMC) freshly isolated from RIRAs. Kir2.1 expression in RIRAs was assayed by Western blotting. KEY FINDINGS At 0.03-1.0 mM, BaCl2 (a specific Kir blocker) concentration-dependently contracted RIRAs and elevated [Ca2+]i levels. Mild stimulations with various vasoconstrictors at low concentrations significantly potentiated RIRA contraction induced by Kir closure with BaCl2. In both the quiescent and the stimulated RIRAs, cyclooxygenase inhibition and thromboxane-prostanoid receptor (TPR) antagonism depressed BaCl2-induced RIRA contraction, while nitric oxide (NO) synthetase inhibition and endothelium-denudation enhanced the contraction. Kir2.1 expression was significantly more abundant in smaller RIRAs. Ba2+-sensitive Kir currents were depressed by TPR agonist U46619 while increased by NO donor sodium nitroprusside. SIGNIFICANCE The present results reveal that vasoconstrictor stimulation augments RIRA contraction induced by Kir closure with Ba+ and indicate that prostanoid synthesis followed by TPR activation is involved in the modulation of the myocyte Kir activity. This study suggests that prostanoid synthesis and TPR may be potential targets for dysfunctions in renal blood circulation.
Collapse
|
9
|
Sancho M, Welsh DG. K IR channels in the microvasculature: Regulatory properties and the lipid-hemodynamic environment. CURRENT TOPICS IN MEMBRANES 2020; 85:227-259. [PMID: 32402641 DOI: 10.1016/bs.ctm.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Basal tone and perfusion control is set in cerebral arteries by the sensing of pressure and flow, key hemodynamic stimuli. These forces establish a contractile foundation within arterial networks upon which local neurovascular stimuli operate. This fundamental process is intimately tied to arterial VM and the rise in cytosolic [Ca2+] by the graded opening of voltage-operated Ca2+ channels. Arterial VM is in turn controlled by a dynamic interaction among several resident ion channels, KIR being one of particular significance. As the name suggests, KIR displays strong inward rectification, retains a small outward component, potentiated by extracellular K+ and blocked by micromolar Ba2+. Cerebrovascular KIR is unique from other K+ currents as it is present in both smooth muscle and endothelium yet lacking in classical regulatory modulation. Such observations have fostered the view that KIR is nothing more than a background conductance, activated by extracellular K+ and which passively facilitates dilation. Recent work in cell model systems has; however, identified two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, that interact with KIR2.x, to stabilize the channel in the preferred open or silent state, respectively. Translating this unique form of regulation, recent studies have demonstrated that specific lipid-protein interactions enable unique KIR populations to sense distinct hemodynamic stimuli and set basal tone. This review summarizes the current knowledge of vascular KIR channels and how the lipid and hemodynamic impact their activity.
Collapse
Affiliation(s)
- Maria Sancho
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Donald G Welsh
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
10
|
Luteolin-induced coronary arterial relaxation involves activation of the myocyte voltage-gated K+ channels and inward rectifier K+ channels. Life Sci 2019; 221:233-240. [PMID: 30771310 DOI: 10.1016/j.lfs.2019.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
|
11
|
Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R. Negative feedback regulation of vasocontraction by potassium channels in 10- to 15-day-old rats: Dominating role of K v 7 channels. Acta Physiol (Oxf) 2019; 225:e13176. [PMID: 30136434 DOI: 10.1111/apha.13176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
AIM Potassium channels are key regulators of smooth muscle membrane potential and arterial tone. However, the roles of potassium channels in vascular tone regulation in the systemic circulation during early postnatal development are poorly understood. Therefore, this study tested the hypothesis that the negative feedback regulation of vasocontraction by potassium channels changes during maturation. METHODS Experiments were performed on endothelium-denuded saphenous arteries from 10- to 15-day-old and 2- to 3-month-old male rats. Isometric force and membrane potential were recorded using wire myography and the sharp microelectrode technique respectively; mRNA and protein contents were determined by qPCR and Western blotting. RESULTS The effects of Kv 1, Kir and Kv 7 channel blockers (DPO-1, BaCl2 , XE991) on methoxamine-induced contraction were larger in arteries of 10- to 15-day-old compared to 2- to 3-month-old animals. In contrast, the BKC a channel blocker iberiotoxin had a stronger influence in 2- to 3- month-old rats. The effects of KATP and Kv 2 channel blockers (glibenclamide, stromatoxin) were not pronounced at both ages. The larger influence of Kv 7 and Kir channel blockade on arterial contraction in 10- to 15-day-old rats was associated with more prominent smooth muscle depolarization. The developmental alterations in potassium channel functioning were generally consistent with their mRNA and protein expression levels in arterial smooth muscle. CONCLUSION The negative feedback regulation of vasocontraction by potassium channels varies during maturation depending on the channel type. A dominating contribution of Kv 7 channels to the regulation of basal tone and agonist-induced contraction was observed in arteries of 10- to 15-day-old animals.
Collapse
Affiliation(s)
- Anastasia A. Shvetsova
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Heidelberg Germany
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - Dina K. Gaynullina
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
- Department of Physiology; Russian National Research Medical University; Moscow Russia
| | - Olga S. Tarasova
- Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow Russia
- State Research Center of the Russian Federation - Institute for Biomedical Problems; Russian Academy of Sciences; Moscow Russia
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM); European Center of Angioscience (ECAS); Research Division Cardiovascular Physiology; Medical Faculty Mannheim; Heidelberg University; Heidelberg Germany
| |
Collapse
|
12
|
Bohnen MS, Roman-Campos D, Terrenoire C, Jnani J, Sampson KJ, Chung WK, Kass RS. The Impact of Heterozygous KCNK3 Mutations Associated With Pulmonary Arterial Hypertension on Channel Function and Pharmacological Recovery. J Am Heart Assoc 2017; 6:JAHA.117.006465. [PMID: 28889099 PMCID: PMC5634293 DOI: 10.1161/jaha.117.006465] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heterozygous loss of function mutations in the KCNK3 gene cause hereditary pulmonary arterial hypertension (PAH). KCNK3 encodes an acid-sensitive potassium channel, which contributes to the resting potential of human pulmonary artery smooth muscle cells. KCNK3 is widely expressed in the body, and dimerizes with other KCNK3 subunits, or the closely related, acid-sensitive KCNK9 channel. METHODS AND RESULTS We engineered homomeric and heterodimeric mutant and nonmutant KCNK3 channels associated with PAH. Using whole-cell patch-clamp electrophysiology in human pulmonary artery smooth muscle and COS7 cell lines, we determined that homomeric and heterodimeric mutant channels in heterozygous KCNK3 conditions lead to mutation-specific severity of channel dysfunction. Both wildtype and mutant KCNK3 channels were activated by ONO-RS-082 (10 μmol/L), causing cell hyperpolarization. We observed robust gene expression of KCNK3 in healthy and familial PAH patient lungs, but no quantifiable expression of KCNK9, and demonstrated in functional studies that KCNK9 minimizes the impact of select KCNK3 mutations when the 2 channel subunits co-assemble. CONCLUSIONS Heterozygous KCNK3 mutations in PAH lead to variable loss of channel function via distinct mechanisms. Homomeric and heterodimeric mutant KCNK3 channels represent novel therapeutic substrates in PAH. Pharmacological and pH-dependent activation of wildtype and mutant KCNK3 channels in pulmonary artery smooth muscle cells leads to membrane hyperpolarization. Co-assembly of KCNK3 with KCNK9 subunits may provide protection against KCNK3 loss of function in tissues where both KCNK9 and KCNK3 are expressed, contributing to the lung-specific phenotype observed clinically in patients with PAH because of KCNK3 mutations.
Collapse
Affiliation(s)
- Michael S Bohnen
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Cecile Terrenoire
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jack Jnani
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Wendy K Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
13
|
Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies. PLoS Comput Biol 2017; 13:e1005342. [PMID: 28107358 PMCID: PMC5291544 DOI: 10.1371/journal.pcbi.1005342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 02/03/2017] [Accepted: 12/31/2016] [Indexed: 12/17/2022] Open
Abstract
To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to understand the electrical dynamics of cells in the context of their environment. Multicellular monolayer cultures have proven useful for investigating arrhythmias and other conduction anomalies, and because of their relatively simple structure, these constructs lend themselves to paired computational studies that often help elucidate mechanisms of the observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require the use of neonatal cells with ionic properties that change rapidly during development and have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac demonstrated the ability to create biosynthetic excitable tissues from genetically engineered and immortalized HEK293 cells with well-characterized electrical properties and the ability to propagate action potentials. In this study, we developed and validated a computational model of these excitable HEK293 cells (called “Ex293” cells) using existing electrophysiological data and a genetic search algorithm. In order to reproduce not only the mean but also the variability of experimental observations, we examined what sources of variation were required in the computational model. Random cell-to-cell and inter-monolayer variation in both ionic conductances and tissue conductivity was necessary to explain the experimentally observed variability in action potential shape and macroscopic conduction, and the spatial organization of cell-to-cell conductance variation was found to not impact macroscopic behavior; the resulting model accurately reproduces both normal and drug-modified conduction behavior. The development of a computational Ex293 cell and tissue model provides a novel framework to perform paired computational-experimental studies to study normal and abnormal conduction in multidimensional excitable tissue, and the methodology of modeling variation can be applied to models of any excitable cell. One of the major challenges in trying to understand how arrhythmias can form in cardiac tissue is studying how the electrical activity of cardiac cells is affected by their surroundings. Current approaches have focused on studying cardiac cells in vitro and using computational models to elucidate the mechanisms behind experimental findings. However, tissue culture techniques are limited to working with neonatal, rather than adult, cells, and computational modeling of these cells has proven challenging. In this work, we have a developed a new approach for conducting paired experimental and computational studies by using a cell line engineered with the minimum machinery for excitability, and a computational model derived and validated directly from this cell line. In order to create a model that reproduces the diversity, rather than simply the average behavior, of experimental studies, we have incorporated a simple yet novel method of inherent variability, and explored what types of experimental variation must be incorporated into the model to recapitulate experimental findings. Using this new platform for paired experimental-computational studies with inherent variability, we will be able to study and better understand how changes in cardiac structure such as fibrosis and heterogeneity lead to conduction slowing, conduction failure, and arrhythmogenesis.
Collapse
|
14
|
Hassinen M, Haverinen J, Hardy ME, Shiels HA, Vornanen M. Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart. Pflugers Arch 2015; 467:2437-46. [PMID: 25991088 DOI: 10.1007/s00424-015-1710-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 11/24/2022]
Abstract
Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (-6.7 ± 1.2 pA pF(-1) at -120 mV) strongly rectifying and Ba(2+)-sensitive (IC50 = 3.8 μM) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9 ± 1.5 and 6.3 ± 1.5%) and the atrium (28.9 ± 2.9 and 64.7 ± 3.0%). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba(2+) block, drKir2.4 was the most sensitive (IC50 = 1.8 μM) and drKir2.1a the least sensitive channel (IC50 = 132 μM). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba(2+)-sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances.
Collapse
Affiliation(s)
- Minna Hassinen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland.
| | - Jaakko Haverinen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| | - Matt E Hardy
- Faculty of Life Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Holly A Shiels
- Faculty of Life Sciences, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Matti Vornanen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland
| |
Collapse
|
15
|
Yang Y, Chen F, Karasawa T, Ma KT, Guan BC, Shi XR, Li H, Steyger PS, Nuttall AL, Jiang ZG. Diverse Kir expression contributes to distinct bimodal distribution of resting potentials and vasotone responses of arterioles. PLoS One 2015; 10:e0125266. [PMID: 25938437 PMCID: PMC4418701 DOI: 10.1371/journal.pone.0125266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/23/2015] [Indexed: 11/18/2022] Open
Abstract
The resting membrane potential (RP) of vascular smooth muscle cells (VSMCs) is a major determinant of cytosolic calcium concentration and vascular tone. The heterogeneity of RPs and its underlying mechanism among different vascular beds remain poorly understood. We compared the RPs and vasomotion properties between the guinea pig spiral modiolar artery (SMA), brain arterioles (BA) and mesenteric arteries (MA). We found: 1) RPs showed a robust bimodal distribution peaked at -76 and -40 mV evenly in the SMA, unevenly at -77 and -51 mV in the BA and ~-71 and -52 mV in the MA. Ba(2+) 0.1 mM eliminated their high RP peaks ~-75 mV. 2) Cells with low RP (~-45 mV) hyperpolarized in response to 10 mM extracellular K(+), while cells with a high RP depolarized, and cells with intermediate RP (~-58 mV) displayed an initial hyperpolarization followed by prolonged depolarization. Moderate high K(+) typically induced dilation, constriction and a dilation followed by constriction in the SMA, MA and BA, respectively. 3) Boltzmann-fit analysis of the Ba(2+)-sensitive inward rectifier K(+) (Kir) whole-cell current showed that the maximum Kir conductance density significantly differed among the vessels, and the half-activation voltage was significantly more negative in the MA. 4) Corresponding to the whole-cell data, computational modeling simulated the three RP distribution patterns and the dynamics of RP changes obtained experimentally, including the regenerative swift shifts between the two RP levels after reaching a threshold. 5) Molecular works revealed strong Kir2.1 and Kir2.2 transcripts and Kir2.1 immunolabeling in all 3 vessels, while Kir2.3 and Kir2.4 transcript levels varied. We conclude that a dense expression of functional Kir2.X channels underlies the more negative RPs in endothelial cells and a subset of VSMC in these arterioles, and the heterogeneous Kir function is primarily responsible for the distinct bimodal RPs among these arterioles. The fast Kir-based regenerative shifts between two RP states could form a critical mechanism for conduction/spread of vasomotion along the arteriole axis.
Collapse
Affiliation(s)
- Yuqin Yang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Fangyi Chen
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- Department of Biology, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Ke-Tao Ma
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- Department of Physiology, Shihezi University Medical College, Shihezi, China
| | - Bing-Cai Guan
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Rui Shi
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Alfred L. Nuttall
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
| | - Zhi-Gen Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, 97239, United States of America
- * E-mail:
| |
Collapse
|
16
|
Olschewski A, Papp R, Nagaraj C, Olschewski H. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Ther 2014; 144:349-68. [PMID: 25108211 DOI: 10.1016/j.pharmthera.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Pulmonary circulation is a low pressure, low resistance, high flow system. The low resting vascular tone is maintained by the concerted action of ion channels, exchangers and pumps. Under physiological as well as pathophysiological conditions, they are targets of locally secreted or circulating vasodilators and/or vasoconstrictors, leading to changes in expression or to posttranslational modifications. Both structural changes in the pulmonary arteries and a sustained increase in pulmonary vascular tone result in pulmonary vascular remodeling contributing to morbidity and mortality in pediatric and adult patients. There is increasing evidence demonstrating the pivotal role of ion channels such as K(+) and Cl(-) or transient receptor potential channels in different cell types which are thought to play a key role in vasoconstrictive remodeling. This review focuses on ion channels, exchangers and pumps in the pulmonary circulation and summarizes their putative pathophysiological as well as therapeutic role in pulmonary vascular remodeling. A better understanding of the mechanisms of their actions may allow for the development of new options for attenuating acute and chronic pulmonary vasoconstriction and remodeling treating the devastating disease pulmonary hypertension.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Austria.
| | - Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Austria
| |
Collapse
|
17
|
Kamikawa A, Ishikawa T. Functional expression of a Kir2.1-like inwardly rectifying potassium channel in mouse mammary secretory cells. Am J Physiol Cell Physiol 2013; 306:C230-40. [PMID: 24259419 DOI: 10.1152/ajpcell.00219.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K(+) channels in mammary secretory (MS) cells are believed to play a role in transcellular electrolyte transport and thus determining ionic composition of the aqueous phase of milk. However, direct evidence for specific K(+) channel activity in native MS cells is lacking at the single-cell level. Here, we show for the first time that an inwardly rectifying K(+) (Kir) channel is functionally expressed in fully differentiated MS cells that were freshly isolated from the mammary gland of lactating mice. Using the standard whole cell patch-clamp technique, we found that mouse MS cells consistently displayed a K(+) current, whose electrophysiological properties are similar to those previously reported for Kir2.x channels, particularly Kir2.1: 1) current-voltage relationship with strong inward rectification, 2) slope conductance approximately proportional to the square root of external K(+) concentration, 3) voltage- and time-dependent and high-affinity block by external Ba(2+), and 4) voltage-dependent inhibition by external Cs(+). Accordingly, RT-PCR analysis revealed the gene expression of Kir2.1, but not Kir2.2, Kir2.3, and Kir2.4, in lactating mouse mammary gland, and immunohistochemical staining showed Kir2.1 protein expression in the secretory cells. Cell-attached patch recordings from MS cells revealed that a 31-pS K(+) channel with strong inward rectification was likely active at the resting membrane potential. Collectively, the present work demonstrates that a functional Kir2.1-like channel is expressed in lactating mouse MS cells. We propose that the channel might be involved, at least in part, in secretion and/or preservation of ionic components of milk stored into the lumen of these cells.
Collapse
Affiliation(s)
- Akihiro Kamikawa
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | |
Collapse
|
18
|
Giannelli M, Chellini F, Sassoli C, Francini F, Pini A, Squecco R, Nosi D, Bani D, Zecchi-Orlandini S, Formigli L. Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol 2012; 228:172-81. [PMID: 22628164 DOI: 10.1002/jcp.24119] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell candidate in tissue engineering and regenerative medicine. Their proliferative potential can be increased by low-level laser irradiation (LLLI), but the mechanisms involved remain to be clarified. With the aim of expanding the therapeutic application of LLLI to MSC therapy, in the present study we investigated the effects of 635 nm diode laser on mouse MSC proliferation and investigated the underlying cellular and molecular mechanisms, focusing the attention on the effects of laser irradiation on Notch-1 signal activation and membrane ion channel modulation. It was found that MSC proliferation was significantly enhanced after laser irradiation, as judged by time lapse videomicroscopy and EdU incorporation. This phenomenon was associated with the up-regulation and activation of Notch-1 pathway, and with increased membrane conductance through voltage-gated K(+) , BK and Kir, channels and T- and L-type Ca(2+) channels. We also showed that MSC proliferation was mainly dependent on Kir channel activity, on the basis that the cell growth and Notch-1 up-regulation were severely decreased by the pre-treatment with the channel inhibitor Ba(2+) (0.5 mM). Interestingly, the channel inhibition was also able to attenuate the stimulatory effects of diode laser on MSCs, thus providing novel evidence to expand our knowledge on the mechanisms of biostimulation after LLLI. In conclusions, our findings suggest that diode laser may be a valid approach for the preconditioning of MSCs in vitro prior cell transplantation.
Collapse
|
19
|
de Boer TP, Houtman MJC, Compier M, van der Heyden MAG. The mammalian K(IR)2.x inward rectifier ion channel family: expression pattern and pathophysiology. Acta Physiol (Oxf) 2010; 199:243-56. [PMID: 20331539 DOI: 10.1111/j.1748-1716.2010.02108.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inward rectifier currents based on K(IR)2.x subunits are regarded as essential components for establishing a stable and negative resting membrane potential in many excitable cell types. Pharmacological inhibition, null mutation in mice and dominant positive and negative mutations in patients reveal some of the important functions of these channels in their native tissues. Here we review the complex mammalian expression pattern of K(IR)2.x subunits and relate these to the outcomes of functional inhibition of the resultant channels. Correlations between expression and function in muscle and bone tissue are observed, while we recognize a discrepancy between neuronal expression and function.
Collapse
Affiliation(s)
- T P de Boer
- Department of Medical Physiology, UMCU, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
20
|
Gupta SK, Vlahakis NE. Integrin alpha9beta1: Unique signaling pathways reveal diverse biological roles. Cell Adh Migr 2010; 4:194-8. [PMID: 20179422 DOI: 10.4161/cam.4.2.10900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin alpha9beta1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demonstrated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce alpha9beta1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control alpha9beta1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in alpha9beta1 signal transduction. Here we provide an over view of known integrin alpha9beta1 signaling pathways and highlight its roles in diverse biological conditions.
Collapse
Affiliation(s)
- Shiv K Gupta
- Thoracic Disease Research Unit, Division of Pulmonary & Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
21
|
Gurney AM, Joshi S, Manoury B. KCNQ potassium channels: new targets for pulmonary vasodilator drugs? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:405-17. [PMID: 20204745 DOI: 10.1007/978-1-60761-500-2_26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smooth muscle cells regulate the diameter of pulmonary arteries and the resistance to blood flow in the pulmonary circulation. These cells are normally relaxed to maintain low intrinsic vessel tone, but are contracted in pulmonary arterial hypertension (PAH). Potassium channels in the smooth muscle cell help to maintain low tone by polarising the membrane and preventing Ca(2+) influx through voltage-operated Ca(2+) channels. There is a loss of K(+) channel activity in PAH, so drugs that open K(+) channels are predicted to have a beneficial effect, provided their action can be restricted to the pulmonary circulation. Here we review the myriad of K(+) channels that are expressed in pulmonary arteries and suggest the roles that each might play in regulating pulmonary artery tone. We conclude that members of the KCNQ family of K(+) channels, the most recent K(+) channels to be discovered in pulmonary artery, may be a useful therapeutic target for the treatment of PAH. KCNQ channels appear to be preferentially expressed in pulmonary arteries and drugs that modulate their activity have potent effects on pulmonary artery tone.
Collapse
Affiliation(s)
- Alison M Gurney
- Faculty of Life Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK, Alison.
| | | | | |
Collapse
|
22
|
Gurney A, Manoury B. Two-pore potassium channels in the cardiovascular system. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2009; 38:305-18. [PMID: 18449536 DOI: 10.1007/s00249-008-0326-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/31/2008] [Accepted: 04/02/2008] [Indexed: 12/24/2022]
Abstract
Two-pore domain (K(2P)) channels emerged about a decade ago and since then have been an expanding area of interest. This is because their biophysical and pharmacological properties make them good candidates to support background potassium currents and membrane potential in many cell types. There is clear evidence for TREK-1 and TASK-1 in the heart and these channels are likely to regulate cardiac action potential duration through their regulation by stretch, polyunsaturated fatty acids, pH, and neurotransmitters. TREK-1 may also have a critical role in mediating the vasodilator response of resistance arteries to polyunsaturated fatty acids, thus contributing to their protective effect on the cardiovascular system. TASK-1, on the other hand, is a strong candidate for a role in hypoxic vasoconstriction of pulmonary arteries. Many other members of the K(2P) channel family have been identified in the cardiovascular system, although their functional roles are still to be demonstrated. This review provides an up to date summary of what is known about the involvement of members of the K(2P) channel family in cells of the heart and arterial circulation. Our knowledge of their roles will improve with the rapidly increasing interest in them and as new selective pharmacological tools emerge. As their physiological roles emerge, the K(2P) family of potassium channels may offer promising therapeutic solutions to target cardiovascular diseases.
Collapse
Affiliation(s)
- Alison Gurney
- Faculty of Life Sciences, The University of Manchester, Floor 2, Core Technology Facility, 46 Grafton Street, Manchester M139NT, UK.
| | | |
Collapse
|
23
|
Park WS, Han J, Earm YE. Physiological role of inward rectifier K+ channels in vascular smooth muscle cells. Pflugers Arch 2008; 457:137-47. [DOI: 10.1007/s00424-008-0512-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/19/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
|