1
|
An W, Gao Y, Liu L, Bai Q, Zhao J, Zhao Y, Zhang XC. Structural basis of urea transport by Arabidopsis thaliana DUR3. Nat Commun 2025; 16:1782. [PMID: 39972035 PMCID: PMC11840088 DOI: 10.1038/s41467-025-56943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025] Open
Abstract
Urea is a primary nitrogen source used as fertilizer in agricultural plant production and a crucial nitrogen metabolite in plants, playing an essential role in modern agriculture. In plants, DUR3 is a proton-driven high-affinity urea transporter located on the plasma membrane. It not only absorbs external low-concentration urea as a nutrient but also facilitates nitrogen transfer by recovering urea from senescent leaves. Despite its importance, the high-affinity urea transport mechanism in plants remains insufficiently understood. In this study, we determine the structures of Arabidopsis thaliana DUR3 in two different conformations: the inward-facing open state of the apo structure and the occluded urea-bound state, with overall resolutions of 2.8 Å and 3.0 Å, respectively. By comparing these structures and analyzing their functional characteristics, we elucidated how urea molecules are specifically recognized. In the urea-bound structure, we identified key titratable amino acid residues and proposed a model for proton involvement in urea transport based on structural and functional data. This study enhances our understanding of proton-driven urea transport mechanisms in DUR3.
Collapse
Affiliation(s)
- Weidong An
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Laihua Liu
- Department of Plant Nutrition, Key Laboratory of Plant and Soil Interactions of MEoC, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qinru Bai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Lu Q, Wang J, Tang Y, Li W, Li C. Phytochemical analysis of dried ginger extract and its inhibitory effect and mechanism on Helicobacter pylori and associated ureases. Food Funct 2025; 16:1100-1115. [PMID: 39831446 DOI: 10.1039/d4fo04991h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Helicobacter pylori (H. pylori), one of the most common infectious pathogens in the world, can cause gastritis, digestive ulcers, and even gastric cancer. H. pylori urease (HPU) is a distinctive virulence factor of H. pylori that allows it to be distinguished from other pathogens. Dried ginger is a famous edible and medicinal herb that is commonly used to prevent and treat gastrointestinal tract-related diseases. In this study, phytochemical analysis of the aqueous extract of dried ginger (DGE) and the inhibition of DGE on H. pylori was investigated. Subsequently, we evaluated the inhibitory activity of DGE against enzymes including HPU and jack bean urease (JBU) and determined its potential mechanism of action. UPLC-ESI-MS/MS analysis indicated that a total of 63 compounds including seven glycosides, nine terpenoids, two esters, seven phenols, eight lignans, five phenylpropanoids, and four phenolic acids were identified in DGE. DGE was observed to inhibit the growth of four H. pylori strains (ATCC 43504, NCTC 26695, SS1, and ICDC 111001) with minimum inhibitory concentration (MIC) values spanning the range of 0.05 to 1.50 mg mL-1. Moreover, DGE has higher enzyme inhibitory activity on HPU (IC50 = 0.49 ± 0.01 mg mL-1) than on JBU (IC50 = 0.54 ± 0.01 mg mL-1). Enzyme inhibitory kinetic analysis revealed that the inhibition type of DGE against HPU was slow-binding and anti-competitive, whereas it was slow-binding and mixed type on JBU. A further mechanism study indicated that the protective effect of sulfhydryl-containing compounds on enzyme activity was significantly better than that of inorganic compounds, indicating that the action site of DGE inhibition of enzyme was the sulfhydryl residue. The results of DTT reactivation experiments showed that the DGE-urease complex was reversible. Furthermore, molecular docking investigation showed that the main components of DGE interacted with sulfhydryl groups and Ni2+. In conclusion, DGE effectively inhibited the growth of H. pylori and the activity of its key virulence factor urease. And the in-depth study of the kinetic characteristics and the mechanism of action showed that the active site sulfhydryl group and Ni2+ might be the targets of urease inhibition by DGE. Our study may provide experimental evidence for the traditional application of dried ginger in the treatment of H. pylori-associated gastric diseases.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| | - Wenna Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| | - Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, PR China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, PR China
| |
Collapse
|
3
|
Li X, Guo Y, Ling Q, Guo Z, Lei Y, Feng X, Wu J, Zhang N. Advances in the Structure, Function, and Regulatory Mechanism of Plant Plasma Membrane Intrinsic Proteins. Genes (Basel) 2024; 16:10. [PMID: 39858557 PMCID: PMC11765485 DOI: 10.3390/genes16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Plasma membrane intrinsic proteins (PIPs), as members of the aquaporin (AQPs) family, can transport not only water but also urea, CO2, H2O2, metal ions, and trace elements. They are crucial for maintaining water balance, substance transport, and responding to various stresses. This article delves into the structure, function, response mechanism, molecular mechanism, and regulatory mechanism of PIPs as a result of biological and abiotic stresses. It also summarizes current research trends surrounding PIPs and highlights potential research directions for further exploration. The aim is to assist researchers in related fields in gaining a more comprehensive understanding and precise insight into the advancements in PIP research.
Collapse
Affiliation(s)
- Xueting Li
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Yirong Guo
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Qiuping Ling
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Zhejun Guo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yawen Lei
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| |
Collapse
|
4
|
Ramón A, Sanguinetti M, Silva Santos LH, Amillis S. Understanding fungal and plant active urea transport systems: Keys from Aspergillus nidulans and beyond. Biochem Biophys Res Commun 2024; 735:150801. [PMID: 39437702 DOI: 10.1016/j.bbrc.2024.150801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Urea is present in all ecosystems, as a result of the metabolism of different organisms and also of human activity, being the world's most common form of nitrogen fertilizer. Fungi and plants can use urea as a nitrogen source, taking it up from the environment through specialized active transport proteins. These proteins belong to a subfamily of urea/H+ symporters included in the Solute:Sodium Symporter (SSS) family of transporters. In this review we summarize the current knowledge on this group of transporters, based on our previous studies on Aspergillus nidulans UreA. We delve into its transcriptional and post-translational regulation, structure-function relationships, transport mechanism, and certain aspects of its biogenesis. Recent findings suggest that this urea transporter subfamily is more expanded than originally thought, with representatives found in organisms as diverse as Archaea and mollusks, which raises questions on evolutionary aspects. A. nidulans ureA knockout strains provide a valuable platform for expressing urea transporters from diverse sources, facilitating their characterization and functional analysis. In this context, given the close relationship between plant and fungal active urea transporters, this knowledge could serve to develop strategies to improve the efficiency of applied urea as fertilizer.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225 CP 11400, Montevideo, Uruguay.
| | - Manuel Sanguinetti
- Sección Bioquímica, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá 4225 CP 11400, Montevideo, Uruguay.
| | | | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece; Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
5
|
Bu Y, Dong X, Zhang R, Shen X, Liu Y, Wang S, Takano T, Liu S. Unraveling the role of urea hydrolysis in salt stress response during seed germination and seedling growth in Arabidopsis thaliana. eLife 2024; 13:e96797. [PMID: 39037769 PMCID: PMC11364434 DOI: 10.7554/elife.96797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Urea is intensively utilized as a nitrogen fertilizer in agriculture, originating either from root uptake or from catabolism of arginine by arginase. Despite its extensive use, the underlying physiological mechanisms of urea, particularly its adverse effects on seed germination and seedling growth under salt stress, remain unclear. In this study, we demonstrate that salt stress induces excessive hydrolysis of arginine-derived urea, leading to an increase in cytoplasmic pH within seed radical cells, which, in turn, triggers salt-induced inhibition of seed germination (SISG) and hampers seedling growth. Our findings challenge the long-held belief that ammonium accumulation and toxicity are the primary causes of SISG, offering a novel perspective on the mechanism underlying these processes. This study provides significant insights into the physiological impact of urea hydrolysis under salt stress, contributing to a better understanding of SISG.
Collapse
Affiliation(s)
- Yuanyuan Bu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xingye Dong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Rongrong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Xianglian Shen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Yan Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of EducationHarbinChina
- College of Life Sciences, Northeast Forestry UniversityHarbinChina
| | - Shu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ASNESC), University of TokyoTokyoJapan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
6
|
Nwe MK, Jangpromma N, Taemaitree L. Evaluation of molecular inhibitors of loop-mediated isothermal amplification (LAMP). Sci Rep 2024; 14:5916. [PMID: 38467647 PMCID: PMC10928092 DOI: 10.1038/s41598-024-55241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a cost-effective and easy-to-perform assay that enables the direct detection of DNA. Its use in point-of-care diagnostic tests is growing, while it has the potential to be used in presumptive on-the-field forensic tests. Samples are often collected from complex matrices that contain high levels of contaminants. Herein, we evaluate the effect of seven common DNA amplification inhibitors on LAMP - bile salts, calcium chloride, hematin, humic acid, immunoglobulin G, tannic acid and urea. We study the effect of each inhibitor individually in real-time detection systems coupled with end-point measurements to delineate their inhibitory effects from the matrix in which they may be found. Our studies show LAMP inhibitors generally delay the onset of amplicon formation and quench fluorescence at similar or higher concentrations compared to PCR, but that end-point measurements of LAMP amplicons are unaffected. This is important as LAMP amplicons can be detected in non-fluorometric ways thus contributing to the assertions that LAMP is more robust to inhibitors than PCR.
Collapse
Affiliation(s)
- May Khat Nwe
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Wang J, Abazari R, Sanati S, Ejsmont A, Goscianska J, Zhou Y, Dubal DP. Water-Stable Fluorous Metal-Organic Frameworks with Open Metal Sites and Amine Groups for Efficient Urea Electrocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300673. [PMID: 37376842 DOI: 10.1002/smll.202300673] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Urea oxidation reaction (UOR) is one of the promising alternative anodic reactions to water oxidation that has attracted extensive attention in green hydrogen production. The application of specifically designed electrocatalysts capable of declining energy consumption and environmental consequences is one of the major challenges in this field. Therefore, the goal is to achieve a resistant, low-cost, and environmentally friendly electrocatalyst. Herein, a water-stable fluorinated Cu(II) metalorganic framework (MOF) {[Cu2 (L)(H2 O)2 ]·(5DMF)(4H2 O)}n (Cu-FMOF-NH2 ; H4 L = 3,5-bis(2,4-dicarboxylic acid)-4-(trifluoromethyl)aniline) is developed utilizing an angular tetracarboxylic acid ligand that incorporates both trifluoromethyl (-CF3 ) and amine (-NH2 ) groups. The tailored structure of Cu-FMOF-NH2 where linkers are connected by fluoride bridges and surrounded by dicopper nodes reveals a 4,24T1 topology. When employed as electrocatalyst, Cu-FMOF-NH2 requires only 1.31 V versus reversible hydrogen electrode (RHE) to deliver 10 mA cm-2 current density in 1.0 m KOH with 0.33 m urea electrolyte and delivered an even higher current density (50 mA cm-2 ) at 1.47 V versus RHE. This performance is superior to several reported catalysts including commercial RuO2 catalyst with overpotential of 1.52 V versus RHE. This investigation opens new opportunities to develop and utilize pristine MOFs as a potential electrocatalyst for various catalytic reactions.
Collapse
Affiliation(s)
- Jinhu Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, 55181-83111, Iran
| | - Aleksander Ejsmont
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Department of Chemical Technology, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Joanna Goscianska
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Department of Chemical Technology, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
8
|
Wen X, Zhou Y, Liang X, Li J, Huang Y, Li Q. A novel carbon-nitrogen coupled metabolic pathway promotes the recyclability of nitrogen in composting habitats. BIORESOURCE TECHNOLOGY 2023; 381:129134. [PMID: 37164230 DOI: 10.1016/j.biortech.2023.129134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
This study revealed a novel carbon-nitrogen coupled metabolic pathway. Results showed that the addition of inorganic carbon sources slowed down the decomposition of urea and conserved more nutrients in composting. Metagenomic analysis showed that the main bacteria involved in this new pathway were Actinobacteria, Proteobacteria and Firmicutes. During the late composting period, the dominant genus Microbacteium involved in denitrification accounted for 22.18% in control (CP) and only 0.12% in treatment group (T). Moreover, ureC, rocF, argF, argI, argG were key genes involved in urea cycle. The abundance of functional gene ureC and denitrification genes decreased in thermophilic and cooling phases, respectively. The genes hao, nosZ, ureA and nifH were more closely associated with Chloroflexi_bacterium and Bacillus_paralichenformis. In conclusion, composting habitats with additional inorganic carbon sources could not only weaken denitrification but also allow more nitrogen to be conserved through slow-release urea to improve resource utilization and decrease the environmental risk.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xueling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Qin R, Zhang Y, Ren S, Nie P. Rapid Detection of Available Nitrogen in Soil by Surface-Enhanced Raman Spectroscopy. Int J Mol Sci 2022; 23:ijms231810404. [PMID: 36142315 PMCID: PMC9499669 DOI: 10.3390/ijms231810404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Soil-available nitrogen is the main nitrogen source that plants can directly absorb for assimilation. It is of great significance to detect the concentration of soil-available nitrogen in a simple, rapid and reliable method, which is beneficial to guiding agricultural production activities. This study confirmed that Raman spectroscopy is one such approach, especially after surface enhancement; its spectral response is more sensitive. Here, we collected three types of soils (chernozem, loess and laterite) and purchased two kinds of nitrogen fertilizers (ammonium sulfate and sodium nitrate) to determine ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the soil. The spectral data were acquired using a portable Raman spectrometer. Unique Raman characteristic peaks of NH4-N and NO3-N in different soils were found at 978 cm−1 and 1044 cm−1, respectively. Meanwhile, it was found that the enhancement of the Raman spectra by silver nanoparticles (AgNPs) was greater than that of gold nanoparticles (AuNPs). Combined with soil characteristics and nitrogen concentrations, Raman peak data were analyzed by multiple linear regression. The coefficient of determination for the validation (Rp2) of multiple linear regression prediction models for NH4-N and NO3-N were 0.976 and 0.937, respectively, which deeply interpreted the quantitative relationship among related physical quantities. Furthermore, all spectral data in the range of 400–2000 cm−1 were used to establish the partial least squares (PLS), back-propagation neural network (BPNN) and least squares support vector machine (LSSVM) models for quantification. After cross-validation and comparative analysis, the results showed that LSSVM optimized by particle swarm methodology had the highest accuracy and stability from an overall perspective. For all datasets of particle swarm optimization LSSVM (PSO-LSSVM), the Rp2 was above 0.99, the root mean square errors of prediction (RMSEP) were below 0.15, and the relative prediction deviation (RPD) was above 10. The ultra-portable Raman spectrometer, in combination with scatter-enhanced materials and machine learning algorithms, could be a promising solution for high-efficiency and real-time field detection of soil-available nitrogen.
Collapse
Affiliation(s)
- Ruimiao Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Yahui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Shijie Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
- Correspondence: ; Tel.: +86-0571-8898-2456
| |
Collapse
|
10
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
11
|
Loharch S, Berlicki Ł. Rational Development of Bacterial Ureases Inhibitors. CHEM REC 2022; 22:e202200026. [PMID: 35502852 DOI: 10.1002/tcr.202200026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Indexed: 12/23/2022]
Abstract
Urease, an enzyme that catalyzes the hydrolysis of urea, is a virulence factor of various pathogenic bacteria. In particular, Helicobacter pylori, that colonizes the digestive tract and Proteus spp., that can infect the urinary tract, are related to urease activity. Therefore, urease inhibitors are considered as potential therapeutics against these infections. This review describes current knowledge of the structures, activity, and biological importance of bacterial ureases. Moreover, the structure-based design of several classes of bacterial urease inhibitors is presented and discussed. Phosphinic and phosphonic acids were applied as transition-state analogues, while Michael acceptors and ebselen derivatives were applied as covalent binders of cysteine residue. This review incorporates bacterial urease inhibitors from literature published between 2008 and 2021.
Collapse
Affiliation(s)
- Saurabh Loharch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
12
|
Xie K, Ren Y, Chen A, Yang C, Zheng Q, Chen J, Wang D, Li Y, Hu S, Xu G. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153591. [PMID: 34936969 DOI: 10.1016/j.jplph.2021.153591] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is the most abundant mineral nutrient required by plants, and crop productivity depends heavily on N fertilization in many soils. Production and application of N fertilizers consume huge amounts of energy and substantially increase the costs of agricultural production. Excess N compounds released from agricultural systems are also detrimental to the environment. Thus, increasing plant N uptake efficiency is essential for the development of sustainable agriculture. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most terrestrial plants that facilitate plant nutrient uptake and increase host resistance to diverse environmental stresses. AM association is an endosymbiotic process that relies on the differentiation of both host plant roots and AM fungi to create novel contact interfaces within the cells of plant roots. AM plants have two pathways for nutrient uptake: either direct uptake via the root hairs and root epidermis, or indirectly through AM fungal hyphae into root cortical cells. Over the last few years, great progress has been made in deciphering the molecular mechanisms underlying the AM-mediated modulation of nutrient uptake processes, and a growing number of fungal and plant genes responsible for the uptake of nutrients from soil or transfer across the fungi-root interface have been identified. Here, we mainly summarize the recent advances in N uptake, assimilation, and translocation in AM symbiosis, and also discuss how N interplays with C and P in modulating AM development, as well as the synergies between AM fungi and soil microbial communities in N uptake.
Collapse
Affiliation(s)
- Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuhan Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Congfan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qingsong Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Horticulture Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Dongsheng Wang
- Department of Ecological Environment and Soil Science, Nanjing Institute of Vegetable Science, Nanjing, Jiangsu, China
| | - Yiting Li
- Key Laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Buoso S, Tomasi N, Arkoun M, Maillard A, Jing L, Marroni F, Pluchon S, Pinton R, Zanin L. Transcriptomic and metabolomic profiles of Zea mays fed with urea and ammonium. PHYSIOLOGIA PLANTARUM 2021; 173:935-953. [PMID: 34245168 PMCID: PMC8597056 DOI: 10.1111/ppl.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The simultaneous presence of different N-forms in the rhizosphere leads to beneficial effects on nitrogen (N) nutrition in plants. Although widely used as fertilizers, the occurrence of cross connection between urea and ammonium nutrition has been scarcely studied in plants. Maize fed with a mixture of urea and ammonium displayed a better N-uptake efficiency than ammonium- or urea-fed plants (Buoso et al., Plant Physiol Biochem, 2021a; 162: 613-623). Through multiomic approaches, we provide the molecular characterization of maize response to urea and ammonium nutrition. Several transporters and enzymes involved in N-nutrition were upregulated by all three N-treatments (urea, ammonium, or urea and ammonium). Already after 1 day of treatment, the availability of different N-forms induced specific transcriptomic and metabolomic responses. The combination of urea and ammonium induced a prompt assimilation of N, characterized by high levels of some amino acids in shoots. Moreover, ZmAMT1.1a, ZmGLN1;2, ZmGLN1;5, ZmGOT1, and ZmGOT3, as well transcripts involved in glycolysis-TCA cycle were induced in roots by urea and ammonium mixture. Depending on N-form, even changes in the composition of phytohormones were observed in maize. This study paves the way to formulate guidelines for the optimization of N fertilization to improve N-use efficiency in maize and therefore limit N-losses in the environment.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental, and Animal SciencesUniversity of UdineUdine
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental, and Animal SciencesUniversity of UdineUdine
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Agroinnovation International—TIMAC AGROSaint‐MaloFrance
| | - Anne Maillard
- Laboratoire de Nutrition Végétale, Agroinnovation International—TIMAC AGROSaint‐MaloFrance
| | - Lun Jing
- Laboratoire de Nutrition Végétale, Agroinnovation International—TIMAC AGROSaint‐MaloFrance
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental, and Animal SciencesUniversity of UdineUdine
| | - Sylvain Pluchon
- Laboratoire de Nutrition Végétale, Agroinnovation International—TIMAC AGROSaint‐MaloFrance
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental, and Animal SciencesUniversity of UdineUdine
| | - Laura Zanin
- Department of Agricultural, Food, Environmental, and Animal SciencesUniversity of UdineUdine
| |
Collapse
|
14
|
Buoso S, Tomasi N, Said-Pullicino D, Arkoun M, Yvin JC, Pinton R, Zanin L. Characterization of physiological and molecular responses of Zea mays seedlings to different urea-ammonium ratios. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:613-623. [PMID: 33774466 DOI: 10.1016/j.plaphy.2021.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 05/14/2023]
Abstract
Despite the wide use of urea and ammonium as N-fertilizers, no information is available about the proper ratio useful to maximize the efficiency of their acquisition by crops. Ionomic analyses of maize seedlings fed with five different mixes of urea and ammonium indicated that after 7 days of treatment, the elemental composition of plant tissues was more influenced by ammonium in the nutrient solution than by urea. Within 24 h, similar high affinity influx rates of ammonium were measured in ammonium-treated seedlings, independently from the amount of the cation present in the nutrient solution (from 0.5 to 2.0 mM N), and it was confirmed by the similar accumulation of 15N derived from ammonium source. After 7 days, some changes in ammonium acquisition occurred among treatments, with the highest ammonium uptake efficiency when the urea-to-ammonium ratio was 3:1. Gene expression analyses of enzymes and transporters involved in N nutrition highlight a preferential induction of the cytosolic N-assimilatory pathway (via GS, ASNS) when both urea and ammonium were supplied in conjunction, this response might explain the higher N-acquisition efficiency when both sources are applied. In conclusion, this study provides new insights on plant responses to mixes of N sources that maximize the N-uptake efficiency by crops and thus could allow to adapt agronomic practices in order to limit the economic and environmental impact of N-fertilization.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Daniel Said-Pullicino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy.
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l'Innovation, Groupe Roullier, Saint-Malo, France.
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Centre Mondial de l'Innovation, Groupe Roullier, Saint-Malo, France.
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| | - Laura Zanin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy.
| |
Collapse
|
15
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
16
|
Beier MP, Kojima S. The function of high-affinity urea transporters in nitrogen-deficient conditions. PHYSIOLOGIA PLANTARUM 2021; 171:802-808. [PMID: 33280129 DOI: 10.1111/ppl.13303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 05/14/2023]
Abstract
Urea is the most used nitrogenous fertilizer worldwide and an important nitrogen-containing plant metabolite. Despite its major use as fertilizer, its direct uptake is limited due to the ubiquitous presence of bacterial urease, which leads to the formation of ammonium. In this review, we will focus mainly on the more recent research about the high-affinity urea transporter function in nitrogen-deficient conditions. The effective use of nitrogenous compounds is essential for plants to be able to deal with nitrogen-deficient conditions. Leaf senescence, either induced by development and/or by nitrogen deficiency, plays an important role in the efficient use of already assimilated nitrogen. Proteinaceous nitrogen is set free through catabolic reactions: the released amino acids from protein catabilization are in turn catabolized leading to an accumulation of ammonium and urea. The concentration and conversion to transportable forms of nitrogen, e.g. amino acids like glutamine and asparagine, are coordinated around the vascular tissue. Urea itself can be translocated directly over the phloem by a mechanism that involves DUR3, or it is converted by urease to ammonium and assimilated again into amino acids. The details of the high-affinity transporter function in this physiological context and the implications for crop yield are explained.
Collapse
Affiliation(s)
- Marcel P Beier
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Alotaibi N, Hammud HH, Al Otaibi N, Prakasam T. Electrocatalytic Properties of 3D Hierarchical Graphitic Carbon-Cobalt Nanoparticles for Urea Oxidation. ACS OMEGA 2020; 5:26038-26048. [PMID: 33073130 PMCID: PMC7558028 DOI: 10.1021/acsomega.0c03477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
A 3D hierarchical graphitic carbon nanostructure encapsulating cobalt(0)/cobalt oxide nanoparticles (CoGC) has been prepared by solid-state pyrolysis of a mixture of anthracene and cobalt 2,2'-bipyridine terephthalate complex at 850 °C. Based on the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, the prepared material has high surface area (186.8 m2 g-1) with an average pore width of 205.5 Å. XPS reveals the functionalization of carbon with different oxygen-containing groups, such as carboxylic acid groups. The presence of metallic cobalt nanoparticles with cubic and hexagonal crystalline structures encapsulated in graphitized carbon is confirmed using XRD and TEM. Raman spectroscopy indicates a graphitization degree of I D/I G = 1.02. CoGC was cast onto a glassy carbon electrode and used for urea electrooxidation in an alkaline solution. The electrochemical investigation shows that the newly prepared CoGC has a promising electrocatalytic activity toward urea. The specific activity is 128 mA cm-1 mg-1 for the electrooxidation of 0.3 M urea in 1 M KOH at a relatively low onset potential (0.31 V vs Ag/AgCl). It can be mainly attributed to the morphological structure of carbon and the high reactivity of cobalt nanoparticles. The calculated charge-transfer resistance, R ct, of the modified electrode in the presence of urea (10.95 Ω) is significantly lower than that in the absence of urea (113.5 Ω), which indicates electrocatalytic activity. The value of charge-transfer rate constant, k s, for the anodic reaction is 0.0058 s-1. Electrocatalytic durability in 1000 s chronoamperometry of the modified electrode suggests high structure stability. The modified electrode retained about 60% of its activity after 100 cycles as indicated by linear sweep voltammetry.
Collapse
Affiliation(s)
- Nusaybah Alotaibi
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Hassan H. Hammud
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Nasreen Al Otaibi
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Thirumurugan Prakasam
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Wang D, Xu T, Yin Z, Wu W, Geng H, Li L, Yang M, Cai H, Lian X. Overexpression of OsMYB305 in Rice Enhances the Nitrogen Uptake Under Low-Nitrogen Condition. FRONTIERS IN PLANT SCIENCE 2020; 11:369. [PMID: 32351516 PMCID: PMC7174616 DOI: 10.3389/fpls.2020.00369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/13/2020] [Indexed: 05/10/2023]
Abstract
Excessive nitrogen fertilizer application causes severe environmental degradation and drives up agricultural production costs. Thus, improving crop nitrogen use efficiency (NUE) is essential for the development of sustainable agriculture. Here, we characterized the roles of the MYB transcription factor OsMYB305 in nitrogen uptake and assimilation in rice. OsMYB305 encoded a transcriptional activator and its expression was induced by N deficiency in rice root. Under low-N condition, OsMYB305 overexpression significantly increased the tiller number, shoot dry weight and total N concentration. In the roots of OsMYB305-OE rice lines, the expression of OsNRT2.1, OsNRT2.2, OsNAR2.1, and OsNiR2 was up-regulated and 15NO3 - influx was significantly increased. In contrast, the expression of lignocellulose biosynthesis-related genes was repressed so that cellulose content decreased, and soluble sugar concentration increased. Certain intermediates in the glycolytic pathway and the tricarboxylic acid cycle were significantly altered and NADH-GOGAT, Pyr-K, and G6PDH were markedly elevated in the roots of OsMYB305-OE rice lines grown under low-N condition. Our results revealed that OsMYB305 overexpression suppressed cellulose biosynthesis under low-nitrogen condition, thereby freeing up carbohydrate for nitrate uptake and assimilation and enhancing rice growth. OsMYB305 is a potential molecular target for increasing NUE in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Pereira PN, Cushman JC. Exploring the Relationship between Crassulacean Acid Metabolism (CAM) and Mineral Nutrition with a Special Focus on Nitrogen. Int J Mol Sci 2019; 20:E4363. [PMID: 31491972 PMCID: PMC6769741 DOI: 10.3390/ijms20184363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023] Open
Abstract
Crassulacean acid metabolism (CAM) is characterized by nocturnal CO2 uptake and concentration, reduced photorespiration, and increased water-use efficiency (WUE) when compared to C3 and C4 plants. Plants can perform different types of CAM and the magnitude and duration of CAM expression can change based upon several abiotic conditions, including nutrient availability. Here, we summarize the abiotic factors that are associated with an increase in CAM expression with an emphasis on the relationship between CAM photosynthesis and nutrient availability, with particular focus on nitrogen, phosphorus, potassium, and calcium. Additionally, we examine nitrogen uptake and assimilation as this macronutrient has received the greatest amount of attention in studies using CAM species. We also discuss the preference of CAM species for different organic and inorganic sources of nitrogen, including nitrate, ammonium, glutamine, and urea. Lastly, we make recommendations for future research areas to better understand the relationship between macronutrients and CAM and how their interaction might improve nutrient and water-use efficiency in order to increase the growth and yield of CAM plants, especially CAM crops that may become increasingly important as global climate change continues.
Collapse
Affiliation(s)
- Paula Natália Pereira
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
20
|
Beier MP, Fujita T, Sasaki K, Kanno K, Ohashi M, Tamura W, Konishi N, Saito M, Imagawa F, Ishiyama K, Miyao A, Yamaya T, Kojima S. The urea transporter DUR3 contributes to rice production under nitrogen-deficient and field conditions. PHYSIOLOGIA PLANTARUM 2019; 167:75-89. [PMID: 30426495 DOI: 10.1111/ppl.12872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Nitrogen is one of the most important elements for plant growth, and urea is one of the most frequently used nitrogen fertilizers worldwide. Besides the exogenously-supplied urea to the soil, urea is endogenously synthesized during secondary nitrogen metabolism. Here, we investigated the contribution of a urea transporter, DUR3, to rice production using a reverse genetic approach combined with localization studies. Tos17 insertion lines for DUR3 showed a 50% yield reduction in hydroponic culture, and a 26.2% yield reduction in a paddy field, because of decreased grain filling. Because shoot biomass production and shoot total N was not reduced, insertion lines were disordered not only in nitrogen acquisition but also in nitrogen allocation. During seed development, DUR3 insertion lines accumulated nitrogen in leaves and could not sufficiently develop their panicles, although shoot and root dry weights were not significantly different from the wild-type. The urea concentration in old leaf harvested from DUR3 insertion lines was lower than that in wild-type. DUR3 promoter-dependent β-glucuronidase (GUS) activity was localized in vascular tissue and the midribs of old leaves. These results indicate that DUR3 contributes to nitrogen translocation and rice yield under nitrogen-deficient and field conditions.
Collapse
Affiliation(s)
- Marcel P Beier
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Graduate School of Life and Environmental Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Takayuki Fujita
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kazuhiro Sasaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan
| | - Keiichi Kanno
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Miwa Ohashi
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Wataru Tamura
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Noriyuki Konishi
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Masahide Saito
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Fumi Imagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Akio Miyao
- National Institute of Agrobiological Science, Tsukuba, Ibaraki 3058602, Japan
| | - Tomoyuki Yamaya
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
21
|
Barakat NA, Amen MT, Al-Mubaddel FS, Karim MR, Alrashed M. NiSn nanoparticle-incorporated carbon nanofibers as efficient electrocatalysts for urea oxidation and working anodes in direct urea fuel cells. J Adv Res 2019; 16:43-53. [PMID: 30899588 PMCID: PMC6412973 DOI: 10.1016/j.jare.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022] Open
Abstract
Synthesis of NiSn alloy nanoparticle-incorporated carbon nanofibers was performed by calcining electrospun mats composed of nickel acetate, tin chloride and poly(vinyl alcohol) under vacuum. The electrochemical measurements indicated that utilization of tin as a co-catalyst could strongly enhance the electrocatalytic activity if its content and calcination temperature were optimized. Typically, the nanofibers prepared from calcination of an electrospun solution containing 15 wt% SnCl2 at 700 °C have a current density almost 9-fold higher than that of pristine nickel-incorporated carbon nanofibers (77 and 9 mA/cm2, respectively) at 30 °C in a 1.0 M urea solution. Furthermore, the current density increases to 175 mA/cm2 at 55 °C for the urea oxidation reaction. Interestingly, the nanofibers prepared from a solution with 10 wt% of co-catalyst precursor show an onset potential of 175 mV (vs. Ag/AgCl) at 55 °C, making this proposed composite an adequate anode material for direct urea fuel cells. Optimization of the co-catalyst content to maximize the generated current density resulted in a Gaussian function peak at 15 wt%. However, studying the influence of the calcination temperature indicated that 850 °C was the optimum temperature because synthesizing the proposed nanofibers at 1000 °C led to a decrease in the graphite content, which dramatically decreased the catalyst activity. Overall, the study opens a new venue for the researchers to exploit tin as effective co-catalyst to enhance the electrocatalytic performance of the nickel-based nanostructures. Moreover, the proposed co-catalyst can be utilized with other functional electrocatalysts to improve their activity toward oxidation of different fuels.
Collapse
Affiliation(s)
- Nasser A.M. Barakat
- Chemical Engineering Department, Minia University, PO Box 61519, El-Minia, Egypt
| | - Mohamed T. Amen
- Bionano System Engineering Department, College of Engineering, Chonbuk National University, PO Box 54896, Jeonju, South Korea
| | - Fahad S. Al-Mubaddel
- Department of Chemical Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammad Rezual Karim
- Center for Excellence in Materials Research CEREM, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
| | - Maher Alrashed
- Department of Chemical Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
22
|
Ding L, Lu Z, Gao L, Guo S, Shen Q. Is Nitrogen a Key Determinant of Water Transport and Photosynthesis in Higher Plants Upon Drought Stress? FRONTIERS IN PLANT SCIENCE 2018; 9:1143. [PMID: 30186291 PMCID: PMC6113670 DOI: 10.3389/fpls.2018.01143] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/17/2018] [Indexed: 05/19/2023]
Abstract
Drought stress is a major global issue limiting agricultural productivity. Plants respond to drought stress through a series of physiological, cellular, and molecular changes for survival. The regulation of water transport and photosynthesis play crucial roles in improving plants' drought tolerance. Nitrogen (N, ammonium and nitrate) is an essential macronutrient for plants, and it can affect many aspects of plant growth and metabolic pathways, including water relations and photosynthesis. This review focuses on how drought stress affects water transport and photosynthesis, including the regulation of hydraulic conductance, aquaporin expression, and photosynthesis. It also discusses the cross talk between N, water transport, and drought stress in higher plants.
Collapse
Affiliation(s)
- Lei Ding
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Richter LV, Mansfeldt CB, Kuan MM, Cesare AE, Menefee ST, Richardson RE, Ahner BA. Altered Microbiome Leads to Significant Phenotypic and Transcriptomic Differences in a Lipid Accumulating Chlorophyte. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6854-6863. [PMID: 29750518 DOI: 10.1021/acs.est.7b06581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Given the challenges facing the economically favorable production of products from microalgae, understanding factors that might impact productivity rates including growth rates and accumulation of desired products, for example, triacylglycerols (TAG) for biodiesel feedstock, remains critical. Although operational parameters such as media composition and reactor design can clearly effect growth rates, the role of microbe-microbe interactions is just beginning to be elucidated. In this study an oleaginous marine algae Chlorella spp. C596 culture is shown to be better described as a microbial community. Perturbations to this microbial community showed a significant impact on phenotypes including sustained differences in growth rate and TAG accumulation of 2.4 and 2.5 fold, respectively. Characterization of the associated community using Illumina 16S rRNA amplicon and random shotgun transcriptomic analyses showed that the fast growth rate correlated with two specific bacterial species ( Ruegeria and Rhodobacter spp). The transcriptomic response of the Chlorella species revealed that the slower growing algal consortium C596-S1 upregulated genes associated with photosynthesis and resource scavenging and decreased the expression of genes associated with transcription and translation relative to the initial C596-R1. Our studies advance the appreciation of the effects microbiomes can have on algal growth in bioreactors and suggest that symbiotic interactions are involved in a range of critical processes including nitrogen, carbon cycling, and oxidative stress.
Collapse
Affiliation(s)
- Lubna V Richter
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Michael M Kuan
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Alexandra E Cesare
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Stephen T Menefee
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Ruth E Richardson
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Beth A Ahner
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
24
|
Effective NiMn Nanoparticles-Functionalized Carbon Felt as an Effective Anode for Direct Urea Fuel Cells. NANOMATERIALS 2018; 8:nano8050338. [PMID: 29772710 PMCID: PMC5977352 DOI: 10.3390/nano8050338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
The internal resistances of fuel cells strongly affect the generated power. Basically, in the fuel cell, the anode can be prepared by deposition of a film from the functional electrocatalyst on a proper gas diffusion layer. Accordingly, an interfacial resistance for the electron transport is created between the two layers. Electrocatalyst-functionalized gas diffusion layer (GDL) can distinctly reduce the interfacial resistance between the catalyst layer and the GDL. In this study, NiMn nanoparticles-decorated carbon felt is introduced as functionalized GDL to be exploited as a ready-made anode in a direct urea fuel cell. The proposed treated GDL was prepared by calcination of nickel acetate/manganese acetate-loaded carbon felt under an argon atmosphere at 850 °C. The physiochemical characterizations confirmed complete reduction for the utilized precursors and deposition of pristine NiMn nanoparticles on the carbon felt fiber. In passive direct urea fuel cells, investigation the performance of the functionalized GDLs indicated that the composition of the metal nanoparticles has to be optimized as the GDL obtained from 40 wt % manganese acetate reveals the maximum generated power density; 36 mW/m² at room temperature and 0.5 M urea solution. Moreover, the electrochemical measurements proved that low urea solution concentration is preferred as utilizing 0.5 M solution resulted into generating higher power compared to 1.0 and 2.0 M solution. Overall, this study opens a new avenue toward functionalization of the GDL as a novel strategy to overcome the interfacial resistance between the electrocatalyst and the GDL.
Collapse
|
25
|
Jing X, Lin S, Zhang H, Koerting C, Yu Z. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLoS One 2017; 12:e0187837. [PMID: 29117255 PMCID: PMC5678928 DOI: 10.1371/journal.pone.0187837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 01/23/2023] Open
Abstract
Urea has been shown to contribute more than half of total nitrogen (N) required by phytoplankton in some estuaries and coastal waters and to provide a substantial portion of the N demand for many harmful algal blooms (HABs) of dinoflagellates. In this study, we investigated the physiological and transcriptional responses in Prorocentrum donghaiense to changes in nitrate and urea availability. We found that this species could efficiently utilize urea as sole N source and achieve comparable growth rate and photosynthesis capability as it did under nitrate. These physiological parameters were markedly lower in cultures grown under nitrate- or urea-limited conditions. P. donghaiense N content was similarly low under nitrate- or urea-limited culture condition, but was markedly higher under urea-replete condition than under nitrate-replete condition. Carbon (C) content was consistently elevated under N-limited condition. Consequently, the C:N ratio was as high as 21:1 under nitrate- or urea-limitation, but 7:1 under urea-replete condition and 9:1 to 10:1 under nitrate-replete condition. Using quantitative reverse transcription PCR, we investigated the expression pattern for four genes involved in N transport and assimilation. The results indicated that genes encoding nitrate transport, urea hydrolysis, and nickel transporter gene were sensitive to changes in general N nutrient availability whereas the urea transporter gene responded much more strongly to changes in urea concentration. Taken together, our study shows the high bioavailability of urea, its impact on C:N stoichiometry, and the sensitivity of urea transporter gene expression to urea availability.
Collapse
Affiliation(s)
- Xiaoli Jing
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Claudia Koerting
- Department of Marine Sciences, University of Connecticut, Groton, United States of America
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
26
|
Applicable anode based on Co3O4–SrCO3 heterostructure nanorods-incorporated CNFs with low-onset potential for DUFCs. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0601-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Homology Modeling, Molecular Docking and Molecular Dynamics Based Functional Insights into Rice Urease Bound to Urea. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40011-017-0898-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS. Nanosensor Technology Applied to Living Plant Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:113-140. [PMID: 28605605 DOI: 10.1146/annurev-anchem-061516-045310] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Amir Kaplan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Catherine Hamann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| |
Collapse
|
29
|
Kakati N, Maiti J, Lee KS, Viswanathan B, Yoon YS. Hollow Sodium Nickel Fluoride Nanocubes Deposited MWCNT as An Efficient Electrocatalyst for Urea Oxidation. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Murphree CA, Dums JT, Jain SK, Zhao C, Young DY, Khoshnoodi N, Tikunov A, Macdonald J, Pilot G, Sederoff H. Amino Acids Are an Ineffective Fertilizer for Dunaliella spp. Growth. FRONTIERS IN PLANT SCIENCE 2017; 8:847. [PMID: 28603530 PMCID: PMC5445130 DOI: 10.3389/fpls.2017.00847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 06/01/2023]
Abstract
Autotrophic microalgae are a promising bioproducts platform. However, the fundamental requirements these organisms have for nitrogen fertilizer severely limit the impact and scale of their cultivation. As an alternative to inorganic fertilizers, we investigated the possibility of using amino acids from deconstructed biomass as a nitrogen source in the genus Dunaliella. We found that only four amino acids (glutamine, histidine, cysteine, and tryptophan) rescue Dunaliella spp. growth in nitrogen depleted media, and that supplementation of these amino acids altered the metabolic profile of Dunaliella cells. Our investigations revealed that histidine is transported across the cell membrane, and that glutamine and cysteine are not transported. Rather, glutamine, cysteine, and tryptophan are degraded in solution by a set of oxidative chemical reactions, releasing ammonium that in turn supports growth. Utilization of biomass-derived amino acids is therefore not a suitable option unless additional amino acid nitrogen uptake is enabled through genetic modifications of these algae.
Collapse
Affiliation(s)
- Colin A. Murphree
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | - Jacob T. Dums
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | - Siddharth K. Jain
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | - Chengsong Zhao
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| | - Danielle Y. Young
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | | | - Andrey Tikunov
- Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel HillNC, United States
| | - Jeffrey Macdonald
- Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel HillNC, United States
| | - Guillaume Pilot
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, BlacksburgVA, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| |
Collapse
|
31
|
Li H, Hu B, Chu C. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2477-2488. [PMID: 28419301 DOI: 10.1093/jxb/erx101] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Application of chemical fertilizers, especially nitrogen (N), to crops has increased dramatically in the last half century and therefore developing crop varieties with improved N use efficiency (NUE) is urgent for sustainable agriculture. N utilization procedures generally can be divided into uptake, transport, and assimilation. Transporters for nitrate or ammonium acquisition and enzymes for assimilation are among the essential components determining NUE, and many transcription factors also play a pivotal role in regulating N use-associated genes, thereby contributing to NUE. Although some efforts in improving NUE have been made in various plants, the regulatory mechanisms underlying NUE are still elusive, and NUE improvement in crop breeding is very limited. In this review, the crucial components involved in N utilization and the candidates with the potential for NUE improvement in dicot Arabidopsis and monocot rice are summarized. In addition, strategies based on new techniques which can be used for dissecting regulatory mechanisms of NUE and also the possible ways in which NUE can be improved in crops are discussed.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Rollinson AN. Gasification reactor engineering approach to understanding the formation of biochar properties. Proc Math Phys Eng Sci 2016; 472:20150841. [PMID: 27616911 PMCID: PMC5014096 DOI: 10.1098/rspa.2015.0841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The correlation between thermochemical provenance and biochar functionality is poorly understood. To this end, operational reactor temperatures (spanning the reduction zone), pressure and product gas composition measurements were obtained from a downdraft gasifier and compared against elemental composition, surface morphology and polyaromatic hydrocarbon content (PAH) of the char produced. Pine feedstock moisture with values of 7% and 17% was the experimental variable. Moderately high steady-state temperatures were observed inside the reactor, with a ca 50°C difference in how the gasifier operated between the two feedstock types. Both chars exhibited surface properties comparable to activated carbon, but the relatively small differences in temperature caused significant variations in biochar surface area and morphology: micropore area 584 against 360 m2 g−1, and micropore volume 0.287 against 0.172 cm3 g−1. Differences in char extractable PAH content were also observed, with higher concentrations (187 µg g−1 ± 18 compared with 89 ± 19 µg g−1 Σ16EPA PAH) when the gasifier was operated with higher moisture content feedstock. It is recommended that greater detail on operational conditions during biochar production should be incorporated to future biochar characterization research as a consequence of these results.
Collapse
Affiliation(s)
- Andrew N Rollinson
- University of Nottingham , Energy Technologies Building, Innovation Park, Triumph Road, Nottingham NG7 2TU , UK
| |
Collapse
|
33
|
Zhang L, Yan J, Vatamaniuk OK, Du X. CsNIP2;1 is a Plasma Membrane Transporter from Cucumis sativus that Facilitates Urea Uptake When Expressed in Saccharomyces cerevisiae and Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:616-629. [PMID: 26858284 DOI: 10.1093/pcp/pcw018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Urea is an important source of nitrogen (N) for the growth and development of plants. It occurs naturally in soils, is the major N source in agricultural fertilizers and is an important N metabolite in plants. Therefore, the identification and characterization of urea transporters in higher plants is important for the fundamental understanding of urea-based N nutrition in plants and for designing novel strategies for improving the N-use efficiency of urea based-fertilizers. Progress in this area, however, is hampered due to scarce knowledge of plant urea transporters. From what is known, urea uptake from the soil into plant roots is mediated by two types of transporters: the major intrinsic proteins (MIPs) and the DUR3 orthologs, mediating low- and high-affinity urea transport, respectively. Here we characterized a MIP family member from Cucumis sativus, CsNIP2;1, with regard to its contribution to urea transport. We show that CsNIP2;1 is a plasma membrane transporter that mediates pH-dependent urea uptake when expressed in yeast. We also found that ectopic expression of CsNIP2;1 improves growth of wild-type Arabidopsis thaliana and rescues growth and development of the atdur3-3 mutant on medium with urea as the sole N source. In addition, CsNIP2;1 is transcriptionally up-regulated by N deficiency, urea and NO3 (-). These data and results from the analyses of the pattern of CsNIP2;1 expression in A. thaliana and cucumber suggest that CsNIP2;1 might be involved in multiple steps of urea-based N nutrition, including urea uptake and internal transport during N remobilization throughout seed germination and N delivery to developing tissues.
Collapse
Affiliation(s)
- Lu Zhang
- Research Center of Organic Agriculture Technology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, PR China These authors contributed equally to this work.
| | - Jiapei Yan
- School of Integrative Plant Sciences, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA These authors contributed equally to this work.
| | - Olena K Vatamaniuk
- School of Integrative Plant Sciences, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA
| | - Xiangge Du
- Research Center of Organic Agriculture Technology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, PR China
| |
Collapse
|
34
|
Pinton R, Tomasi N, Zanin L. Molecular and physiological interactions of urea and nitrate uptake in plants. PLANT SIGNALING & BEHAVIOR 2016; 11:e1076603. [PMID: 26338073 PMCID: PMC4871653 DOI: 10.1080/15592324.2015.1076603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 05/09/2023]
Abstract
While nitrate acquisition has been extensively studied, less information is available on transport systems of urea. Furthermore, the reciprocal influence of the two sources has not been clarified, so far. In this review, we will discuss recent developments on plant response to urea and nitrate nutrition. Experimental evidence suggests that, when urea and nitrate are available in the external solution, the induction of the uptake systems of each nitrogen (N) source is limited, while plant growth and N utilization is promoted. This physiological behavior might reflect cooperation among acquisition processes, where the activation of different N assimilatory pathways (cytosolic and plastidic pathways), allow a better control on the nutrient uptake. Based on physiological and molecular evidence, plants might increase (N) metabolism promoting a more efficient assimilation of taken-up nitrogen. The beneficial effect of urea and nitrate nutrition might contribute to develop new agronomical approaches to increase the (N) use efficiency in crops.
Collapse
Affiliation(s)
- Roberto Pinton
- Department of Agricultural and Environmental Sciences; University of Udine; Udine, Italy
| | - Nicola Tomasi
- Department of Agricultural and Environmental Sciences; University of Udine; Udine, Italy
| | - Laura Zanin
- Department of Agricultural and Environmental Sciences; University of Udine; Udine, Italy
| |
Collapse
|
35
|
Zanin L, Venuti S, Tomasi N, Zamboni A, De Brito Francisco RM, Varanini Z, Pinton R. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:845. [PMID: 27446099 PMCID: PMC4916206 DOI: 10.3389/fpls.2016.00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/30/2016] [Indexed: 05/06/2023]
Abstract
To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients.
Collapse
Affiliation(s)
- Laura Zanin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdine, Italy
| | - Silvia Venuti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdine, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdine, Italy
| | - Anita Zamboni
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Zeno Varanini
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Roberto Pinton
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdine, Italy
- *Correspondence: Roberto Pinton
| |
Collapse
|
36
|
Prince SJ, Joshi T, Mutava RN, Syed N, Joao Vitor MDS, Patil G, Song L, Wang J, Lin L, Chen W, Shannon JG, Valliyodan B, Xu D, Nguyen HT. Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:65-78. [PMID: 26475188 DOI: 10.1016/j.plantsci.2015.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/17/2015] [Accepted: 08/22/2015] [Indexed: 05/20/2023]
Abstract
Drought stress causes significant yield losses in major oil seed crops, such as soybean [Glycine max (L.) Merr]. Few soybean lines have been identified as canopy-wilting tolerant; however, the molecular mechanism conferring tolerance is not fully understood. To understand the biological process, a whole genome transcriptome analysis was performed for leaf tissues of two contrasting soybean lines: drought-susceptible (DS) Pana and drought-tolerant (DT) PI 567690. A pairwise comparison of the DS and DT lines under drought and control conditions detected 1914 and 670 genes with a greater than two-fold change in expression under drought conditions. Pairwise treatment comparison and gene enrichment analysis on the DT line showed the down-regulation of genes associated with protein binding, hydrolase activity, carbohydrate/lipid metabolism, xyloglucan endo-transglycosylases associated with cell-wall, apoplast, and chlorophyll a/b binding proteins. On the other hand, genes that were associated with the biotic stress response, ion binding and transport, the oxido-reductive process and electron carrier activity were up-regulated. Gene enrichment analysis detected UDP glucuronosyl transferase activity-encoding genes to be differentially expressed in PI 567690 under drought stress conditions. We found valuable SNPs variation in aquaporin genes of the DT line that are conserved in known slower canopy-wilting lines, this should facilitate marker-assisted selection in soybeans with improved drought tolerance.
Collapse
Affiliation(s)
- Silvas J Prince
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Raymond N Mutava
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - Naeem Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | | | - Gunvant Patil
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - Li Song
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - JiaoJiao Wang
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Li Lin
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - Wei Chen
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - J Grover Shannon
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA
| | - Dong Xu
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, MO 65211, USA; School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Henry T Nguyen
- National Center for Soybean Biotechnology and Division of Plant Sciences University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
37
|
Terrado R, Monier A, Edgar R, Lovejoy C. Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes. JOURNAL OF PHYCOLOGY 2015; 51:490-506. [PMID: 26986665 DOI: 10.1111/jpy.12292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/15/2015] [Indexed: 06/05/2023]
Abstract
In an effort to better understand the diversity of genes coding for nitrogen (N) uptake and assimilation pathways among microalgae, we analyzed the transcriptomes of five phylogenetically diverse single celled algae originally isolated from the same high arctic marine region. The five photosynthetic flagellates (a pelagophyte, dictyochophyte, chrysoph-yte, cryptophyte and haptophyte) were grown on standard media and media with only urea or nitrate as a nitrogen source; cells were harvested during late exponential growth. Based on homolog protein sequences, transcriptomes of each alga were interrogated to retrieve genes potentially associated with nitrogen uptake and utilization pathways. We further investigated the phylogeny of poorly characterized genes and gene families that were identified. While the phylogeny of the active urea transporter (DUR3) was taxonomically coherent, those for the urea transporter superfamily, putative nitrilases and amidases indicated complex evolutionary histories, and preliminary evidence for horizontal gene transfers. All five algae expressed genes for ammonium assimilation and all but the chrysophyte expressed genes involved in nitrate utilization and the urea cycle. Among the four algae with nitrate transporter transcripts, we detected lower expression levels in three of these (the dictyochophyte, pelagophyte, and cryptophyte) grown in the urea only medium compared with cultures from the nitrate only media. The diversity of N pathway genes in the five algae, and their ability to grow using urea as a nitrogen source, suggest that these flagellates are able to use a variety of organic nitrogen sources, which would be an advantage in an inorganic nitrogen - limited environment, such as the Arctic Ocean.
Collapse
Affiliation(s)
- Ramon Terrado
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Adam Monier
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Robyn Edgar
- Département de Biologie, Takuvik Joint International Laboratory, Centre National de la Recherche Scientifique (France, CNRS UMI 3376), Québec Océan, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| | - Connie Lovejoy
- Département de Biologie, Takuvik Joint International Laboratory, Centre National de la Recherche Scientifique (France, CNRS UMI 3376), Québec Océan, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
| |
Collapse
|
38
|
Wang Z, Yu T, Sang JP, Zou XW, Yan C, Zou X. Computation and simulation of the structural characteristics of the kidney urea transporter and behaviors of urea transport. J Phys Chem B 2015; 119:5124-31. [PMID: 25781365 DOI: 10.1021/jp511300u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Urea transporters are a family of membrane proteins that transport urea molecules across cell membranes and play important roles in a variety of physiological processes. Although the crystal structure of bacterial urea channel dvUT has been solved, there lacks an understanding of the dynamics of urea transport in dvUT. In this study, by using molecular dynamics simulations, Monte Carlo methods, and the adaptive biasing force approach, we built the equilibrium structure of dvUT, calculated the variation in the free energy of urea, determined the urea-binding sites of dvUT, gained insight into the microscopic process of urea transport, and studied the water permeability in dvUT including the analysis of a water chain in the pore. The strategy used in this work can be applied to studying transport behaviors of other membrane proteins.
Collapse
Affiliation(s)
- Zhe Wang
- †Department of Physics, Wuhan University, Wuhan 430072, China
| | - Tao Yu
- †Department of Physics, Wuhan University, Wuhan 430072, China
- ‡Department of Physics, Jianghan University, Wuhan 430056, China
| | - Jian-Ping Sang
- †Department of Physics, Wuhan University, Wuhan 430072, China
- ‡Department of Physics, Jianghan University, Wuhan 430056, China
| | - Xian-Wu Zou
- †Department of Physics, Wuhan University, Wuhan 430072, China
| | - Chengfei Yan
- §Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaoqin Zou
- §Dalton Cardiovascular Research Center, Department of Physics and Astronomy, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
39
|
Bohner A, Kojima S, Hajirezaei M, Melzer M, von Wirén N. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:377-87. [PMID: 25440717 PMCID: PMC4329417 DOI: 10.1111/tpj.12740] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 05/08/2023]
Abstract
In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence.
Collapse
Affiliation(s)
- Anne Bohner
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchCorrensstr 3, D-06466, Gatersleben, Germany
| | - Soichi Kojima
- Department of Applied Plant Science, Tohoku UniversitySendai 981-8555, Japan
| | - Mohammad Hajirezaei
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchCorrensstr 3, D-06466, Gatersleben, Germany
| | - Michael Melzer
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchCorrensstr 3, D-06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchCorrensstr 3, D-06466, Gatersleben, Germany
| |
Collapse
|
40
|
Reddy MM, Ulaganathan K. Nitrogen Nutrition, Its Regulation and Biotechnological Approaches to Improve Crop Productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.618275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Zanin L, Zamboni A, Monte R, Tomasi N, Varanini Z, Cesco S, Pinton R. Transcriptomic Analysis Highlights Reciprocal Interactions of Urea and Nitrate for Nitrogen Acquisition by Maize Roots. ACTA ACUST UNITED AC 2014; 56:532-48. [DOI: 10.1093/pcp/pcu202] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
42
|
Zanin L, Tomasi N, Wirdnam C, Meier S, Komarova NY, Mimmo T, Cesco S, Rentsch D, Pinton R. Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays. BMC PLANT BIOLOGY 2014; 14:222. [PMID: 25168432 PMCID: PMC4160556 DOI: 10.1186/s12870-014-0222-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/06/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. RESULTS Kinetic characterization of urea uptake (<300 μM) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15[N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. CONCLUSIONS This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.
Collapse
Affiliation(s)
- Laura Zanin
- />Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, I-33100 Udine, Italy
| | - Nicola Tomasi
- />Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, I-33100 Udine, Italy
| | - Corina Wirdnam
- />Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Stefan Meier
- />Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Nataliya Y Komarova
- />Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Tanja Mimmo
- />Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, I-39100 Bolzano, Italy
| | - Stefano Cesco
- />Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, I-39100 Bolzano, Italy
| | - Doris Rentsch
- />Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Roberto Pinton
- />Dipartimento di Scienze Agrarie e Ambientali, University of Udine, via delle Scienze 208, I-33100 Udine, Italy
| |
Collapse
|
43
|
Kutman BY, Kutman UB, Cakmak I. Effects of seed nickel reserves or externally supplied nickel on the growth, nitrogen metabolites and nitrogen use efficiency of urea- or nitrate-fed soybean. PLANT AND SOIL 2014; 376:261-276. [PMID: 0 DOI: 10.1007/s11104-013-1983-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
44
|
Abstract
Some unicellular organisms can take up urea from the surrounding fluids by an uphill pumping mechanism. Several active (energy-dependent) urea transporters (AUTs) have been cloned in these organisms. Functional studies show that active urea transport also occurs in elasmobranchs, amphibians, and mammals. In the two former groups, active urea transport may serve to conserve urea in body fluids in order to balance external high ambient osmolarity or prevent desiccation. In mammals, active urea transport may be associated with the need to either store and/or reuse nitrogen in the case of low nitrogen supply, or to excrete nitrogen efficiently in the case of excess nitrogen intake. There are probably two different families of AUTs, one with a high capacity able to establish only a relatively modest transepithelial concentration difference (renal tubule of some frogs, pars recta of the mammalian kidney, early inner medullary collecting duct in some mammals eating protein-poor diets) and others with a low capacity but able to maintain a high transepithelial concentration difference that has been created by another mechanism or in another organ (elasmobranch gills, ventral skin of some toads, and maybe mammalian urinary bladder). Functional characterization of these transporters shows that some are coupled to sodium (symports or antiports) while others are sodium-independent. In humans, only one genetic anomaly, with a mild phenotype (familial azotemia), is suspected to concern one of these transporters. In spite of abundant functional evidence for such transporters in higher organisms, none have been molecularly identified yet.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 1138, Centre de Recherche Des Cordeliers, Paris, France,
| |
Collapse
|
45
|
Wang M, Shen Q, Xu G, Guo S. New insight into the strategy for nitrogen metabolism in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 310:1-37. [PMID: 24725423 DOI: 10.1016/b978-0-12-800180-6.00001-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitrogen (N) is one of the most important mineral nutrients required by higher plants. Primary N absorbed by higher plants includes nitrate (NO3(-)), ammonium (NH4(+)), and organic N. Plants have developed several mechanisms for regulating their N metabolism in response to N availability and environmental conditions. Numerous transporters have been characterized and the mode of N movement within plants has been demonstrated. For further assimilation of N, various enzymes are involved in the key processes of NO3(-) or NH4(+) assimilation. N and carbon (C) metabolism are tightly coordinated in the fundamental biochemical pathway that permits plant growth. As N and C metabolism are the fundamental constituents of plant life, understanding N regulation is essential for growing plants and improving crop production. Regulation of N metabolism at the transcriptional and posttranscriptional levels provides important perceptions in the complex regulatory network of plants to adapt to changing N availability. In this chapter, recent advances in elucidating molecular mechanisms of N metabolism processes and regulation strategy, as well as interactions between C and N, are discussed. This review provides new insights into the strategy for studying N metabolism at the cellular level for optimum plant growth in different environments.
Collapse
Affiliation(s)
- Min Wang
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Qirong Shen
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Guohua Xu
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Shiwei Guo
- Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Agricultural Ministry, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
46
|
Perez Di Giorgio J, Soto G, Alleva K, Jozefkowicz C, Amodeo G, Muschietti JP, Ayub ND. Prediction of Aquaporin Function by Integrating Evolutionary and Functional Analyses. J Membr Biol 2013; 247:107-25. [DOI: 10.1007/s00232-013-9618-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/09/2013] [Indexed: 01/08/2023]
|
47
|
Gao L, Guo YJ. Isolation of a fruit ripening-related tonoplast aquaporin (GjTIP) gene from Gardenia jasminoides. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2013; 19:555-561. [PMID: 24431525 PMCID: PMC3781284 DOI: 10.1007/s12298-013-0191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aquaporins are membrane water channels that play critical roles in controlling the water content of cells and tissues. In this work, a full-length cDNA encoding putative aquaporins was isolated from Gardenia jasminoides fruit cDNA library. The GjTIP cDNA is 1188 bp, contains a predicted 774 bp open reading frame that encodes 257 amino acids. A phylogenetic analysis conducted with previously characterized aquaporins from other plant species indicates that the cDNA encode putative tonoplast aquaporins (TIPs), and proposed that GjTIP has a tendency to be a mixed function aquaporin similar to the TIP1s from Arabidopsis and Gossypium raimondii. A typical "hourglasses" three-dimensional model of GjTIP was built. The expression of the GjTIP transcripts at fruits during maturation was conducted by RT-PCR analysis. The data revealed that the transcript levels of GjTIP have increased during fruit maturation.
Collapse
Affiliation(s)
- Lan Gao
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006 Peoples Republic of China
| | - Yi-jun Guo
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006 Peoples Republic of China
| |
Collapse
|
48
|
Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate. TRENDS IN PLANT SCIENCE 2012; 17:458-67. [PMID: 22658680 DOI: 10.1016/j.tplants.2012.04.006] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/20/2012] [Accepted: 04/26/2012] [Indexed: 05/18/2023]
Abstract
Plants need to acquire nitrogen (N) efficiently from the soil for growth. Nitrate is one of the major N sources for higher plants. Therefore, nitrate uptake and allocation are key factors in efficient N utilization. Membrane-bound transporters are required for nitrate uptake from the soil and for the inter- and intracellular movement of nitrate inside the plants. Four gene families, nitrate transporter 1/peptide transporter (NRT1/PTR), NRT2, chloride channel (CLC), and slow anion channel-associated 1 homolog 3 (SLAC1/SLAH), are involved in nitrate uptake, allocation, and storage in higher plants. Recent studies of these transporters or channels have provided new insights into the molecular mechanisms of nitrate uptake and allocation. Interestingly, several of these transporters also play versatile roles in nitrate sensing, plant development, pathogen defense, and/or stress response.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
49
|
Gu R, Chen X, Zhou Y, Yuan L. Isolation and characterization of three maize aquaporin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4 involved in urea transport. BMB Rep 2012; 45:96-101. [PMID: 22360887 DOI: 10.5483/bmbrep.2012.45.2.96] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urea-based nitrogen fertilizer was widely utilized in maize production, but transporters involved in urea uptake, translocation and cellular homeostasis have not been identified. Here, we isolated three maize aquapoin genes, ZmNIP2;1, ZmNIP2;4 and ZmTIP4;4, from a cDNA library by heterogeneous complementation of a urea uptake-defective yeast. ZmNIP2;1 and ZmNIP2;4 belonged to the nodulin 26-like intrinsic proteins (NIPs) localized at plasma membrane, and ZmTIP4;4 belonged to the tonoplast intrinsic protein (TIPs) at vacuolar membrane. Quantitative RT-PCR revealed that ZmNIP2;1 was expressed constitutively in various organs while ZmNIP2;4 and ZmTIP4;4 transcripts were abundant in reproductive organs and roots. Expression of ZmTIP4;4 was significantly increased in roots and expanded leaves under nitrogen starvation, while those of ZmNIP2;1 and ZmNIP2;4 remained unaffected. Functions of maize aquapoin genes in urea transport together with their distinct expression manners suggested that they might play diverse roles on urea uptake and translocation, or equilibrating urea concentration across tonoplast.
Collapse
Affiliation(s)
- Riliang Gu
- Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, MOE, College of Environmental and Resources Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
50
|
Bankir L, Yang B. New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism. Kidney Int 2012; 81:1179-98. [PMID: 22456603 DOI: 10.1038/ki.2012.67] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanism by which urine is concentrated in the mammalian kidney remains incompletely understood. Urea is the dominant urinary osmole in most mammals and may be concentrated a 100-fold above its plasma level in humans and even more in rodents. Several facilitated urea transporters have been cloned. The phenotypes of mice with deletion of the transporters expressed in the kidney have challenged two previously well-accepted paradigms regarding urea and sodium handling in the renal medulla but have provided no alternative explanation for the accumulation of solutes that occurs in the inner medulla. In this review, we present evidence supporting the existence of an active urea secretion in the pars recta of the proximal tubule and explain how it changes our views regarding intrarenal urea handling and UT-A2 function. The transporter responsible for this secretion could be SGLT1, a sodium-glucose cotransporter that also transports urea. Glucagon may have a role in the regulation of this secretion. Further, we describe a possible transfer of osmotic energy from the outer to the inner medulla via an intrarenal Cori cycle converting glucose to lactate and back. Finally, we propose that an active urea transporter, expressed in the urothelium, may continuously reclaim urea that diffuses out of the ureter and bladder. These hypotheses are all based on published findings. They may not all be confirmed later on, but we hope they will stimulate further research in new directions.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM Unit 872/Equipe 2, Centre de Recherche des Cordeliers, Paris, France.
| | | |
Collapse
|