1
|
Decker ST, Funai K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab 2024; 36:1963-1978. [PMID: 39178855 PMCID: PMC11374467 DOI: 10.1016/j.cmet.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Oxidative phosphorylation (OXPHOS) occurs through and across the inner mitochondrial membrane (IMM). Mitochondrial membranes contain a distinct lipid composition, aided by lipid biosynthetic machinery localized in the IMM and class-specific lipid transporters that limit lipid traffic in and out of mitochondria. This unique lipid composition appears to be essential for functions of mitochondria, particularly OXPHOS, by its effects on direct lipid-to-protein interactions, membrane properties, and cristae ultrastructure. This review highlights the biological significance of mitochondrial lipids, with a particular spotlight on the role of lipids in mitochondrial bioenergetics. We describe pathways for the biosynthesis of mitochondrial lipids and provide evidence for their roles in physiology, their implications in human disease, and the mechanisms by which they regulate mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Stephen Thomas Decker
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Osiewacz HD. Impact of Mitochondrial Architecture, Function, Redox Homeostasis, and Quality Control on Organismic Aging: Lessons from a Fungal Model System. Antioxid Redox Signal 2024; 40:948-967. [PMID: 38019044 DOI: 10.1089/ars.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: Mitochondria are eukaryotic organelles with various essential functions. They are both the source and the targets of reactive oxygen species (ROS). Different branches of a mitochondrial quality control system (mQCS), such as ROS balancing, degradation of damaged proteins, or whole mitochondria, can mitigate the adverse effects of ROS stress. However, the capacity of mQCS is limited. Overwhelming this capacity leads to dysfunctions and aging. Strategies to interfere into mitochondria-dependent human aging with the aim to increase the healthy period of life, the health span, rely on the precise knowledge of mitochondrial functions. Experimental models such as Podospora anserina, a filamentous fungus with a clear mitochondrial aging etiology, proved to be instrumental to reach this goal. Recent Advances: Investigations of the P. anserina mQCS revealed that it is constituted by a complex network of different branches. Moreover, mitochondrial architecture and lipid homeostasis emerged to affect aging. Critical Issues: The regulation of the mQCS is only incompletely understood. Details about the involved signaling molecules and interacting pathways remain to be elucidated. Moreover, most of the currently generated experimental data were generated in well-controlled experiments that do not reflect the constantly changing natural life conditions and bear the danger to miss relevant aspects leading to incorrect conclusions. Future Directions: In P. anserina, the precise impact of redox signaling as well as of molecular damaging for aging remains to be defined. Moreover, natural fluctuation of environmental conditions needs to be considered to generate a realistic picture of aging mechanisms as they developed during evolution.
Collapse
|
3
|
Liang Z, Ralph-Epps T, Schmidtke MW, Kumar V, Greenberg ML. Decreased pyruvate dehydrogenase activity in Tafazzin-deficient cells is caused by dysregulation of pyruvate dehydrogenase phosphatase 1 (PDP1). J Biol Chem 2024; 300:105697. [PMID: 38301889 PMCID: PMC10884759 DOI: 10.1016/j.jbc.2024.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Cardiolipin (CL), the signature lipid of the mitochondrial inner membrane, is critical for maintaining optimal mitochondrial function and bioenergetics. Disruption of CL metabolism, caused by mutations in the CL remodeling enzyme TAFAZZIN, results in the life-threatening disorder Barth syndrome (BTHS). While the clinical manifestations of BTHS, such as dilated cardiomyopathy and skeletal myopathy, point to defects in mitochondrial bioenergetics, the disorder is also characterized by broad metabolic dysregulation, including abnormal levels of metabolites associated with the tricarboxylic acid (TCA) cycle. Recent studies have identified the inhibition of pyruvate dehydrogenase (PDH), the gatekeeper enzyme for TCA cycle carbon influx, as a key deficiency in various BTHS model systems. However, the molecular mechanisms linking aberrant CL remodeling, particularly the primary, direct consequence of reduced tetralinoleoyl-CL (TLCL) levels, to PDH activity deficiency are not yet understood. In the current study, we found that remodeled TLCL promotes PDH function by directly binding to and enhancing the activity of PDH phosphatase 1 (PDP1). This is supported by our findings that TLCL uniquely activates PDH in a dose-dependent manner, TLCL binds to PDP1 in vitro, TLCL-mediated PDH activation is attenuated in the presence of phosphatase inhibitor, and PDP1 activity is decreased in Tafazzin-knockout (TAZ-KO) C2C12 myoblasts. Additionally, we observed decreased mitochondrial calcium levels in TAZ-KO cells and treating TAZ-KO cells with calcium lactate (CaLac) increases mitochondrial calcium and restores PDH activity and mitochondrial oxygen consumption rate. Based on our findings, we conclude that reduced mitochondrial calcium levels and decreased binding of PDP1 to TLCL contribute to decreased PDP1 activity in TAZ-KO cells.
Collapse
Affiliation(s)
- Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tyler Ralph-Epps
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael W Schmidtke
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Vikalp Kumar
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
4
|
Osiewacz HD. The impact of biomembranes and their dynamics on organismic aging: insights from a fungal aging model. FRONTIERS IN AGING 2024; 5:1356697. [PMID: 38327611 PMCID: PMC10847301 DOI: 10.3389/fragi.2024.1356697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Biomembranes fulfill several essential functions. They delimitate cells and control the exchange of compounds between cells and the environment. They generate specialized cellular reaction spaces, house functional units such as the respiratory chain (RC), and are involved in content trafficking. Biomembranes are dynamic and able to adjust their properties to changing conditions and requirements. An example is the inner mitochondrial membrane (IMM), which houses the RC involved in the formation of adenosine triphosphate (ATP) and the superoxide anion as a reactive oxygen species (ROS). The IMM forms a characteristic ultrastructure that can adapt to changing physiological situations. In the fungal aging model Podospora anserina, characteristic age-related changes of the mitochondrial ultrastructure occur. More recently, the impact of membranes on aging was extended to membranes involved in autophagy, an important pathway involved in cellular quality control (QC). Moreover, the effect of oleic acid on the lifespan was linked to basic biochemical processes and the function of membranes, providing perspectives for the elucidation of the mechanistic effects of this nutritional component, which positively affects human health and aging.
Collapse
Affiliation(s)
- Heinz D. Osiewacz
- Institute for Molecular Biosciences, Faculty of Biosciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
5
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
6
|
Anishkin A, Adepu KK, Bhandari D, Adams SH, Chintapalli SV. Computational Analysis Reveals Unique Binding Patterns of Oxygenated and Deoxygenated Myoglobin to the Outer Mitochondrial Membrane. Biomolecules 2023; 13:1138. [PMID: 37509174 PMCID: PMC10377724 DOI: 10.3390/biom13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Myoglobin (Mb) interaction with the outer mitochondrial membrane (OMM) promotes oxygen (O2) release. However, comprehensive molecular details on specific contact regions of the OMM with oxygenated (oxy-) and deoxygenated (deoxy-)Mb are missing. We used molecular dynamics (MD) simulations to explore the interaction of oxy- and deoxy-Mb with the membrane lipids of the OMM in two lipid compositions: (a) a typical whole membrane on average, and (b) specifically the cardiolipin-enriched cristae region (contact site). Unrestrained relaxations showed that on average, both the oxy- and deoxy-Mb established more stable contacts with the lipids typical of the cristae contact site, then with those of the average OMM. However, in steered detachment simulations, deoxy-Mb clung more tightly to the average OMM, and oxy-Mb strongly preferred the contact sites of the OMM. The MD simulation analysis further indicated that a non-specific binding, mediated by local electrostatic interactions, existed between charged or polar groups of Mb and the membrane, for stable interaction. To the best of our knowledge, this is the first computational study providing the molecular details of the direct Mb-mitochondria interaction that assisted in distinguishing the preferred localization of oxy- and deoxy-Mb on the OMM. Our findings support the existing experimental evidence on Mb-mitochondrial association and shed more insights on Mb-mediated O2 transport for cellular bioenergetics.
Collapse
Affiliation(s)
- Andriy Anishkin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kiran Kumar Adepu
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95616, USA
- Center for Alimentary and Metabolic Science, University of California Davis, Sacramento, CA 95616, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
7
|
Unsihuay D, Hu H, Qiu J, Latorre-Palomino A, Yang M, Yue F, Yin R, Kuang S, Laskin J. Multimodal high-resolution nano-DESI MSI and immunofluorescence imaging reveal molecular signatures of skeletal muscle fiber types. Chem Sci 2023; 14:4070-4082. [PMID: 37063787 PMCID: PMC10094364 DOI: 10.1039/d2sc06020e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 μm) and mosaic-like distribution across the tissue tnecessitates the use of high-resolution imaging to differentiate between fiber types. Herein, we use a multimodal approach to characterize the chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. Specifically, we combine high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image registration and segmentation approaches are used to integrate the information obtained with both techniques. Our results indicate that the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly, we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated phospholipids, and oxidized phospholipids, were identified as molecular signatures of oxidative metabolism. In contrast, histidine-related compounds were found as molecular signatures of glycolytic fibers. Additionally, the presence of highly polyunsaturated acyl chains in phospholipids was found in oxidative fibers whereas more saturated acyl chains in phospholipids were found in glycolytic fibers which suggests an effect of the membrane fluidity on the metabolic properties of skeletal myofibers.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Philadelphia PA 19104 USA
| | - Hang Hu
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | | | - Manxi Yang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | - Julia Laskin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
8
|
Miranda ER, Shahtout JL, Funai K. Chicken or Egg? Mitochondrial Phospholipids and Oxidative Stress in Disuse-Induced Skeletal Muscle Atrophy. Antioxid Redox Signal 2023; 38:338-351. [PMID: 36301935 PMCID: PMC9986029 DOI: 10.1089/ars.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: Accumulation of reactive oxygen species (ROS) is known to promote cellular damage in multiple cell types. In skeletal muscle, ROS has been implicated in disuse-induced muscle atrophy. However, the molecular origin and mechanism of how disuse promotes ROS and muscle dysfunction remains unclear. Recent Advances: Recently, we implicated membrane lipids of mitochondria to be a potential source of ROS to promote muscle atrophy. Critical Issues: In this review, we discuss evidence that changes in mitochondrial lipids represent a physiologically relevant process by which disuse promotes mitochondrial electron leak and oxidative stress. Future Directions: We further discuss lipid hydroperoxides as a potential downstream mediator of ROS to induce muscle atrophy. Antioxid. Redox Signal. 38, 338-351.
Collapse
Affiliation(s)
- Edwin R. Miranda
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Justin L. Shahtout
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Kleinwächter I, Mohr B, Joppe A, Hellmann N, Bereau T, Osiewacz HD, Schneider D. CLiB - a novel cardiolipin-binder isolated via data-driven and in vitro screening. RSC Chem Biol 2022; 3:941-954. [PMID: 35866160 PMCID: PMC9257654 DOI: 10.1039/d2cb00125j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiolipin, the mitochondria marker lipid, is crucially involved in stabilizing the inner mitochondrial membrane and is vital for the activity of mitochondrial proteins and protein complexes. Directly targeting cardiolipin by a chemical-biology approach and thereby altering the cellular concentration of "available" cardiolipin eventually allows to systematically study the dependence of cellular processes on cardiolipin availability. In the present study, physics-based coarse-grained free energy calculations allowed us to identify the physical and chemical properties indicative of cardiolipin selectivity and to apply these to screen a compound database for putative cardiolipin-binders. The membrane binding properties of the 22 most promising molecules identified in the in silico approach were screened in vitro, using model membrane systems finally resulting in the identification of a single molecule, CLiB (CardioLipin-Binder). CLiB clearly affects respiration of cardiolipin-containing intact bacterial cells as well as of isolated mitochondria. Thus, the structure and function of mitochondrial membranes and membrane proteins might be (indirectly) targeted and controlled by CLiB for basic research and, potentially, also for therapeutic purposes.
Collapse
Affiliation(s)
- Isabel Kleinwächter
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
| | - Bernadette Mohr
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam Amsterdam The Netherlands
| | - Aljoscha Joppe
- Institute for Molecular Biosciences, J. W. Goethe University Frankfurt am Main Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
| | - Tristan Bereau
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam Amsterdam The Netherlands
| | - Heinz D Osiewacz
- Institute for Molecular Biosciences, J. W. Goethe University Frankfurt am Main Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz Hanns-Dieter-Hüsch-Weg 17 55128 Mainz Germany
| |
Collapse
|
10
|
Lifespan Extension of Podospora anserina Mic60-Subcomplex Mutants Depends on Cardiolipin Remodeling. Int J Mol Sci 2022; 23:ijms23094741. [PMID: 35563132 PMCID: PMC9099538 DOI: 10.3390/ijms23094741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 01/18/2023] Open
Abstract
Function of mitochondria largely depends on a characteristic ultrastructure with typical invaginations, namely the cristae of the inner mitochondrial membrane. The mitochondrial signature phospholipid cardiolipin (CL), the F1Fo-ATP-synthase, and the ‘mitochondrial contact site and cristae organizing system’ (MICOS) complex are involved in this process. Previous studies with Podospora anserina demonstrated that manipulation of MICOS leads to altered cristae structure and prolongs lifespan. While longevity of Mic10-subcomplex mutants is induced by mitohormesis, the underlying mechanism in the Mic60-subcomplex deletion mutants was unclear. Since several studies indicated a connection between MICOS and phospholipid composition, we now analyzed the impact of MICOS on mitochondrial phospholipid metabolism. Data from lipidomic analysis identified alterations in phospholipid profile and acyl composition of CL in Mic60-subcomplex mutants. These changes appear to have beneficial effects on membrane properties and promote longevity. Impairments of CL remodeling in a PaMIC60 ablated mutant lead to a complete abrogation of longevity. This effect is reversed by supplementation of the growth medium with linoleic acid, a fatty acid which allows the formation of tetra-octadecanoyl CL. In the PaMic60 deletion mutant, this CL species appears to lead to longevity. Overall, our data demonstrate a tight connection between MICOS, the regulation of mitochondrial phospholipid homeostasis, and aging of P. anserina.
Collapse
|
11
|
Salamone IM, Quattrocelli M, Barefield DY, Page PG, Tahtah I, Hadhazy M, Tomar G, McNally EM. Intermittent glucocorticoid treatment enhances skeletal muscle performance through sexually dimorphic mechanisms. J Clin Invest 2022; 132:149828. [PMID: 35143417 PMCID: PMC8920338 DOI: 10.1172/jci149828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid steroids are commonly prescribed for many inflammatory conditions, but chronic daily use produces adverse effects, including muscle wasting and weakness. In contrast, shorter glucocorticoid pulses may improve athletic performance, although the mechanisms remain unclear. Muscle is sexually dimorphic and comparatively little is known about how male and female muscles respond to glucocorticoids. We investigated the impact of once-weekly glucocorticoid exposure on skeletal muscle performance comparing male and female mice. One month of once-weekly glucocorticoid dosing improved muscle specific force in both males and females. Transcriptomic profiling of isolated myofibers identified a striking sexually dimorphic response to weekly glucocorticoids. Male myofibers had increased expression of genes in the IGF1/PI3K pathway and calcium handling, while female myofibers had profound upregulation of lipid metabolism genes. Muscles from weekly prednisone–treated males had improved calcium handling, while comparably treated female muscles had reduced intramuscular triglycerides. Consistent with altered lipid metabolism, weekly prednisone–treated female mice had greater endurance relative to controls. Using chromatin immunoprecipitation, we defined a sexually dimorphic chromatin landscape after weekly prednisone. These results demonstrate that weekly glucocorticoid exposure elicits distinct pathways in males versus females, resulting in enhanced performance.
Collapse
Affiliation(s)
- Isabella M Salamone
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Mattia Quattrocelli
- Department of Pediatrics, Cinicinnati Children's Hospital, Cincinnati, United States of America
| | - David Y Barefield
- Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, United States of America
| | - Patrick G Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Ibrahim Tahtah
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Garima Tomar
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| |
Collapse
|
12
|
Bertero E, Nickel A, Kohlhaas M, Hohl M, Sequeira V, Brune C, Schwemmlein J, Abeßer M, Schuh K, Kutschka I, Carlein C, Münker K, Atighetchi S, Müller A, Kazakov A, Kappl R, von der Malsburg K, van der Laan M, Schiuma AF, Böhm M, Laufs U, Hoth M, Rehling P, Kuhn M, Dudek J, von der Malsburg A, Prates Roma L, Maack C. Loss of Mitochondrial Ca 2+ Uniporter Limits Inotropic Reserve and Provides Trigger and Substrate for Arrhythmias in Barth Syndrome Cardiomyopathy. Circulation 2021; 144:1694-1713. [PMID: 34648376 DOI: 10.1161/circulationaha.121.053755] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Barth syndrome (BTHS) is caused by mutations of the gene encoding tafazzin, which catalyzes maturation of mitochondrial cardiolipin and often manifests with systolic dysfunction during early infancy. Beyond the first months of life, BTHS cardiomyopathy typically transitions to a phenotype of diastolic dysfunction with preserved ejection fraction, blunted contractile reserve during exercise, and arrhythmic vulnerability. Previous studies traced BTHS cardiomyopathy to mitochondrial formation of reactive oxygen species (ROS). Because mitochondrial function and ROS formation are regulated by excitation-contraction coupling, integrated analysis of mechano-energetic coupling is required to delineate the pathomechanisms of BTHS cardiomyopathy. METHODS We analyzed cardiac function and structure in a mouse model with global knockdown of tafazzin (Taz-KD) compared with wild-type littermates. Respiratory chain assembly and function, ROS emission, and Ca2+ uptake were determined in isolated mitochondria. Excitation-contraction coupling was integrated with mitochondrial redox state, ROS, and Ca2+ uptake in isolated, unloaded or preloaded cardiac myocytes, and cardiac hemodynamics analyzed in vivo. RESULTS Taz-KD mice develop heart failure with preserved ejection fraction (>50%) and age-dependent progression of diastolic dysfunction in the absence of fibrosis. Increased myofilament Ca2+ affinity and slowed cross-bridge cycling caused diastolic dysfunction, in part, compensated by accelerated diastolic Ca2+ decay through preactivated sarcoplasmic reticulum Ca2+-ATPase. Taz deficiency provoked heart-specific loss of mitochondrial Ca2+ uniporter protein that prevented Ca2+-induced activation of the Krebs cycle during β-adrenergic stimulation, oxidizing pyridine nucleotides and triggering arrhythmias in cardiac myocytes. In vivo, Taz-KD mice displayed prolonged QRS duration as a substrate for arrhythmias, and a lack of inotropic response to β-adrenergic stimulation. Cellular arrhythmias and QRS prolongation, but not the defective inotropic reserve, were restored by inhibiting Ca2+ export through the mitochondrial Na+/Ca2+ exchanger. All alterations occurred in the absence of excess mitochondrial ROS in vitro or in vivo. CONCLUSIONS Downregulation of mitochondrial Ca2+ uniporter, increased myofilament Ca2+ affinity, and preactivated sarcoplasmic reticulum Ca2+-ATPase provoke mechano-energetic uncoupling that explains diastolic dysfunction and the lack of inotropic reserve in BTHS cardiomyopathy. Furthermore, defective mitochondrial Ca2+ uptake provides a trigger and a substrate for ventricular arrhythmias. These insights can guide the ongoing search for a cure of this orphaned disease.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Now with Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Italy (E.B.)
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Mathias Hohl
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Carolin Brune
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Julia Schwemmlein
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Marco Abeßer
- Institute of Physiology, University of Würzburg, Germany (M.A., K.S., M. Kuhn)
| | - Kai Schuh
- Institute of Physiology, University of Würzburg, Germany (M.A., K.S., M. Kuhn)
| | - Ilona Kutschka
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Christopher Carlein
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Kai Münker
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Sarah Atighetchi
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Andreas Müller
- Clinic for Radiology (A.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Andrey Kazakov
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Reinhard Kappl
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Karina von der Malsburg
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine (K.v.d.M., M.v.d.L., A.v.d.M.), Saarland University, Homburg/Saar, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine (K.v.d.M., M.v.d.L., A.v.d.M.), Saarland University, Homburg/Saar, Germany
| | - Anna-Florentine Schiuma
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.)
| | - Michael Böhm
- Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany
| | - Ulrich Laufs
- Now with Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Germany (U.L.)
| | - Markus Hoth
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany (P.R., J.D.).,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (P.R.).,Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany (P.R.)
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Germany (M.A., K.S., M. Kuhn)
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany (P.R., J.D.)
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine (K.v.d.M., M.v.d.L., A.v.d.M.), Saarland University, Homburg/Saar, Germany
| | - Leticia Prates Roma
- Department for Biophysics, ZHMB, CIPMM (C.C., R.K., M. Hoth, L.P.R.), Saarland University, Homburg/Saar, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic, Würzburg, Germany (E.B., A.N., M. Kohlhaas, V.S., J.S., I.K., K.M., S.A., A.-F.S., J.D., C.M.).,Clinic for Internal Medicine III (M. Hohl, C.B., K.M., S.A., A.K., M.B., C.M.), Saarland University Clinic, Homburg/Saar, Germany.,Department for Internal Medicine 1, University Clinic Würzburg, Germany (C.M.)
| |
Collapse
|
13
|
Mitochondrial Phospholipid Homeostasis Is Regulated by the i-AAA Protease PaIAP and Affects Organismic Aging. Cells 2021; 10:cells10102775. [PMID: 34685755 PMCID: PMC8534651 DOI: 10.3390/cells10102775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.
Collapse
|
14
|
Elkes M, Andonovski M, Vidal D, Farago M, Modafferi R, Claypool SM, LeBlanc PJ. The Influence of Supplemental Dietary Linoleic Acid on Skeletal Muscle Contractile Function in a Rodent Model of Barth Syndrome. Front Physiol 2021; 12:731961. [PMID: 34489741 PMCID: PMC8416984 DOI: 10.3389/fphys.2021.731961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Barth syndrome is a rare and incurable X-linked (male-specific) genetic disease that affects the protein tafazzin (Taz). Taz is an important enzyme responsible for synthesizing biologically relevant cardiolipin (for heart and skeletal muscle, cardiolipin rich in linoleic acid), a critical phospholipid of mitochondrial form and function. Mutations to Taz cause dysfunctional mitochondria, resulting in exercise intolerance due to skeletal muscle weakness. To date, there has been limited research on improving skeletal muscle function, with interventions focused on endurance and resistance exercise. Previous cell culture research has shown therapeutic potential for the addition of exogenous linoleic acid in improving Taz-deficient mitochondrial function but has not been examined in vivo. The purpose of this study was to examine the influence of supplemental dietary linoleic acid on skeletal muscle function in a rodent model of Barth syndrome, the inducible Taz knockdown (TazKD) mouse. One of the main findings was that TazKD soleus demonstrated an impaired contractile phenotype (slower force development and rates of relaxation) in vitro compared to their WT littermates. Interestingly, this impaired contractile phenotype seen in vitro did not translate to altered muscle function in vivo at the whole-body level. Also, supplemental linoleic acid attenuated, to some degree, in vitro impaired contractile phenotype in TazKD soleus, and these findings appear to be partially mediated by improvements in cardiolipin content and resulting mitochondrial supercomplex formation. Future research will further examine alternative mechanisms of dietary supplemental LA on improving skeletal muscle contractile dysfunction in TazKD mice.
Collapse
Affiliation(s)
- Mario Elkes
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Martin Andonovski
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Daislyn Vidal
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Madison Farago
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Ryan Modafferi
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul J LeBlanc
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
15
|
Silvera S, Wilkinson JA, LeBlanc PJ. Characterization of neutral sphingomyelinase activity and isoform expression in rodent skeletal muscle mitochondria. Mitochondrion 2021; 59:184-189. [PMID: 34089907 DOI: 10.1016/j.mito.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Skeletal muscle is composed of fiber types that differ in mitochondrial content, antioxidant capacity, and susceptibility to apoptosis. Ceramides have been linked to oxidative stress-mediated apoptotic intracellular signalling and the enzyme neutral sphingomyelinase (nSMase) is, in part, responsible for generating these ceramides through the hydrolysis of sphingomyelin. Despite the role of ceramides in mediating apoptosis, there is a gap in the literature regarding nSMase in skeletal muscle mitochondria. This study aimed to characterize total nSMase activity and individual isoform expression in isolated subsarcolemmal (SS) mitochondria from soleus, diaphragm, plantaris, and extensor digitorum longus (EDL). Total nSMase activity did not differ between muscle types. nSMase2 content was detectable in all muscles and higher in EDL, soleus, and plantaris compared to diaphragm whereas nSMase3 was undetectable in all muscles. Finally, total nSMase activity positively correlated to nSMase2 protein content in soleus but not the other muscles. These findings suggest that nSMase associated with SS mitochondria may play a role in intracellular signalling processes involving ceramides in skeletal muscle and nSMase2 may be the key isoform, specifically in slow twitch muscle like soleus. Further studies are needed to fully elucidate the specific contribution of nSMase, along with the role of the various isoforms and mitochondrial subpopulation in generating mitochondrial ceramides in skeletal muscle, and its potential effects on mediating apoptosis.
Collapse
Affiliation(s)
- Sebastian Silvera
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada
| | - Jennifer A Wilkinson
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada
| | - Paul J LeBlanc
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada.
| |
Collapse
|
16
|
Murakami K, Sato M, Miyasaka Y, Hatori K. Selective association of desmin intermediate filaments with a phospholipid layer in droplets. Biochem Biophys Res Commun 2021; 555:109-114. [PMID: 33813269 DOI: 10.1016/j.bbrc.2021.03.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/24/2021] [Indexed: 10/24/2022]
Abstract
Desmin, an intermediate filament protein expressed in muscle cells, plays a key role in the integrity and regulation of the contractile system. Furthermore, the distribution of desmin in cells and its interplay with plasma and organelle membranes are crucial for cell functions; however, the fundamental properties of lipid-desmin interactions remain unknown. Using a water-in-oil method for a limited space system in vitro, we examined the distribution of desmin in three types of phospholipid droplets: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS). When fluorescent-labeled desmin was observed for 60 min after desmin assembly was initiated by adding 25 mM KCl, desmin accumulated on both the DOPE and DOPS layers; however, it did not accumulate on the DOPC layer of droplets. An increase in salt concentration did not moderate the accumulation. The initial form of either oligomer or mature filament affected the accumulation on each lipid layer. When liposomes were included in the droplets, desmin was associated with DOPE but not on DOPC liposomes. These results suggest that desmin has the potential for association with phospholipids concerning desmin form and lipid shape. The behavior and composition of living membranes may affect the distribution of desmin networks.
Collapse
Affiliation(s)
- Keigo Murakami
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan
| | - Masashi Sato
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan
| | - Yoshiya Miyasaka
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan
| | - Kuniyuki Hatori
- Department of Bio-Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jyonan, Yonezawa, 992-8510, Japan.
| |
Collapse
|
17
|
Wilkinson JA, Silvera S, LeBlanc PJ. The effect of cardiolipin side chain composition on cytochrome c protein conformation and peroxidase activity. Physiol Rep 2021; 9:e14772. [PMID: 33667034 PMCID: PMC7934914 DOI: 10.14814/phy2.14772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle, a highly active tissue, makes up 40% of the total body weight. This tissue relies on mitochondria for ATP production, calcium homeostasis, and programed cell death. Mitochondrial phospholipid composition, namely, cardiolipin (CL), influences the functional efficiency of mitochondrial proteins, specifically cytochrome c. The interaction of CL with cytochrome c in the presence of free radicals induces structural and functional changes promoting peroxidase activity and cytochrome c release, a key event in the initiation of apoptosis. The CL acyl chain degree of saturation has been implicated in the cytochrome c to cytochrome c peroxidase transition in liposomal models. However, mitochondrial membranes are composed of differing CL acyl chain composition. Currently, it is unclear how differing CL acyl chain composition utilizing liposomes will influence the cytochrome c form and function as a peroxidase. Thus, this study examined the role of CL acyl chain saturation within liposomes broadly reflecting the relative CL composition of mitochondrial membranes from healthy and dystrophic mouse muscle on cytochrome c conformation and function. Despite no differences in protein conformation or function between healthy and dystrophic liposomes, cytochrome c's affinity to CL increased with greater unsaturation. These findings suggest that increasing CL acyl chain saturation, as implicated in muscle wasting diseases, may not influence cytochrome c transformation and function as a peroxidase but may alter its interaction with CL, potentially impacting further downstream effects.
Collapse
Affiliation(s)
- Jennifer A Wilkinson
- Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Sebastian Silvera
- Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Paul J LeBlanc
- Center for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
18
|
Cardiolipin Synthesis in Skeletal Muscle Is Rhythmic and Modifiable by Age and Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5304768. [PMID: 32617138 PMCID: PMC7313160 DOI: 10.1155/2020/5304768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
Abstract
Circadian clocks regulate metabolic processes in a tissue-specific manner, which deteriorates during aging. Skeletal muscle is the largest metabolic organ in our body, and our previous studies highlight a key role of circadian regulation of skeletal muscle mitochondria in healthy aging. However, a possible circadian regulation of cardiolipin (CL), the signature lipid class in the mitochondrial inner membrane, remains largely unclear. Here, we show that CL levels oscillate during the diurnal cycle in C2C12 myotubes. Disruption of the Ror genes, encoding the ROR nuclear receptors in the secondary loop of the circadian oscillator, in C2C12 cells was found to dampen core circadian gene expression. Importantly, several genes involved in CL synthesis, including Taz and Ptpmt1, displayed rhythmic expression which was disrupted or diminished in Ror-deficient C2C12 cells. In vivo studies using skeletal muscle tissues collected from young and aged mice showed diverse effects of the clock and aging on the oscillatory expression of CL genes, and CL levels in skeletal muscle were enhanced in aged mice relative to young mice. Finally, consistent with a regulatory role of RORs, Nobiletin, a natural agonist of RORs, was found to partially restore transcripts levels of CL synthesis genes in aged muscle under a dietary challenge condition. Together, these observations highlight a rhythmic CL synthesis in skeletal muscle that is dependent on RORs and modifiable by age and diet.
Collapse
|
19
|
Ramos PM, Li C, Elzo MA, Wohlgemuth SE, Scheffler TL. Mitochondrial oxygen consumption in early postmortem permeabilized skeletal muscle fibers is influenced by cattle breed. J Anim Sci 2020; 98:skaa044. [PMID: 32171017 PMCID: PMC7071943 DOI: 10.1093/jas/skaa044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Functional properties and integrity of skeletal muscle mitochondria (mt) during the early postmortem period may influence energy metabolism and pH decline, thereby impacting meat quality development. Angus typically produce more tender beef than Brahman, a Bos indicus breed known for heat tolerance. Thus, our objectives were to compare mt respiratory function in muscle collected early postmortem (1 h) from Angus and Brahman steers (n = 26); and to evaluate the effect of normal and elevated temperature on mt function ex vivo. We measured mt oxygen consumption rate (OCR) in fresh-permeabilized muscle fibers from Longissimus lumborum (LL) at 2 temperatures (38.5 and 40.0 °C) and determined citrate synthase (CS) activity and expression of several mt proteins. The main effects of breed, temperature, and their interaction were tested for mt respiration, and breed effect was tested for CS activity and protein expression. Breed, but not temperature (P > 0.40), influenced mt OCR (per tissue weight), with Brahman exhibiting greater complex I+II-mediated oxidative phosphorylation capacity (P = 0.05). Complex I- and complex II-mediated OCR also tended to be greater in Brahman (P = 0.07 and P = 0.09, respectively). Activity of CS was higher in LL from Brahman compared to Angus (P = 0.05). Expression of specific mt proteins did not differ between breeds, except for higher expression of adenosine triphosphate (ATP) synthase subunit 5 alpha in Brahman muscle (P = 0.04). Coupling control ratio differed between breeds (P = 0.05), revealing greater coupling between oxygen consumption and phosphorylation in Brahman. Our data demonstrate that both Angus and Brahman mt retained functional capacity and integrity 1-h postmortem; greater oxidative phosphorylation capacity and coupling in Brahman mt could be related to heat tolerance and impact early postmortem metabolism.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Piracicaba, SP, Brazil
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | | | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
20
|
Funai K, Summers SA, Rutter J. Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol 2020; 63:162-173. [PMID: 32106003 DOI: 10.1016/j.ceb.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The lipids that make up biological membranes tend to be the forgotten molecules of cell biology. The paucity of data on these important entities likely reflects the difficulties of studying and understanding their biological roles, rather than revealing a lack of importance. Indeed, the lipid composition of biological membranes has a profound impact on a diverse array of cellular processes. The focus of this review is on the effects of different lipid classes on the function of mitochondria, particularly bioenergetics, in health and disease.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - Scott A Summers
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Jared Rutter
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA; Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
Miyasaka Y, Murakami K, Ito K, Kumaki J, Makabe K, Hatori K. Condensed desmin and actin cytoskeletal communication in lipid droplets. Cytoskeleton (Hoboken) 2019; 76:477-490. [DOI: 10.1002/cm.21573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Yoshiya Miyasaka
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Keigo Murakami
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Koji Ito
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Jiro Kumaki
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University Yamagata Japan
| | - Koki Makabe
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| | - Kuniyuki Hatori
- Department of Bio‐Systems Engineering, Graduate School of Science and EngineeringYamagata University Yamagata Japan
| |
Collapse
|
22
|
New C-Terminal Conserved Regions of Tafazzin, a Catalyst of Cardiolipin Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2901057. [PMID: 31781330 PMCID: PMC6855050 DOI: 10.1155/2019/2901057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Cardiolipin interacts with many proteins of the mitochondrial inner membrane and, together with cytochrome C and creatine kinase, activates them. It can be considered as an integrating factor for components of the mitochondrial respiratory chain, which provides for an efficient transfer of electrons and protons. The major, if not the only, factor of cardiolipin maturation is tafazzin. Variations of isoform proportions of this enzyme can cause severe diseases such as Barth syndrome. Using bioinformatic methods, we have found conserved C-terminal regions in many tafazzin isoforms and identified new mammalian species that acquired exon 5 as well as rare occasions of intron retention between exons 8 and 9. The regions in the C-terminal part arise from frameshifts relative to the full-length TAZ transcript after skipping exon 9 or retention of the intron between exons 10 and 11. These modifications demonstrate specific distribution among the orders of mammals. The dependence of the species maximum lifespan, body weight, and mitochondrial metabolic rate on the modifications has been demonstrated. Arguably, unconventional tafazzin isoforms provide for the optimal balance between the increased biochemical activity of mitochondria (resulting from specific environmental or nutritional conditions) and lifespan maintenance; and the functional role of such isoforms is linked to the modification of the primary and secondary structures at their C-termini.
Collapse
|
23
|
Koutakis P, Ismaeel A, Farmer P, Purcell S, Smith RS, Eidson JL, Bohannon WT. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol Rep 2019; 6:e13650. [PMID: 29611350 PMCID: PMC5880878 DOI: 10.14814/phy2.13650] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Peripheral artery disease is an atherosclerotic disease of arterial vessels that mostly affects arteries of lower extremities. Effort induced cycles of ischemia and reperfusion lead to increased reactive oxygen species production by mitochondria. Therefore, the pathophysiology of peripheral artery disease is a consequence of metabolic myopathy, and oxidative stress is the putative major operating mechanism behind the structural and metabolic changes that occur in muscle. In this review, we discuss the evidence for oxidative damage in peripheral artery disease and discuss management strategies related to antioxidant supplementation. We also highlight the major pathways governing oxidative stress in the disease and discuss their implications in disease progression. Potential therapeutic targets and diagnostic methods related to these mechanisms are explored, with an emphasis on the Nrf2 pathway.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Health Human Performance and Recreation, Baylor University, Waco, Texas
| | - Ahmed Ismaeel
- Department of Health Human Performance and Recreation, Baylor University, Waco, Texas
| | - Patrick Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas
| | - Seth Purcell
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - Robert S Smith
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - Jack L Eidson
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott and White Medical Center, Temple, Texas
| |
Collapse
|
24
|
Gerling CJ, Mukai K, Chabowski A, Heigenhauser GJF, Holloway GP, Spriet LL, Jannas-Vela S. Incorporation of Omega-3 Fatty Acids Into Human Skeletal Muscle Sarcolemmal and Mitochondrial Membranes Following 12 Weeks of Fish Oil Supplementation. Front Physiol 2019; 10:348. [PMID: 30984028 PMCID: PMC6449797 DOI: 10.3389/fphys.2019.00348] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Fish oil (FO) supplementation in humans results in the incorporation of omega-3 fatty acids (FAs) eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA; C20:6) into skeletal muscle membranes. However, despite the importance of membrane composition in structure–function relationships, a paucity of information exists regarding how different muscle membranes/organelles respond to FO supplementation. Therefore, the purpose of the present study was to determine the effects 12 weeks of FO supplementation (3g EPA/2g DHA daily) on the phospholipid composition of sarcolemmal and mitochondrial fractions, as well as whole muscle responses, in healthy young males. FO supplementation increased the total phospholipid content in whole muscle (57%; p < 0.05) and the sarcolemma (38%; p = 0.05), but did not alter the content in mitochondria. The content of omega-3 FAs, EPA and DHA, were increased (+3-fold) in whole muscle, and mitochondrial membranes, and as a result the omega-6/omega-3 ratios were dramatically decreased (-3-fold), while conversely the unsaturation indexes were increased. Intriguingly, before supplementation the unsaturation index (UI) of sarcolemmal membranes was ∼3 times lower (p < 0.001) than either whole muscle or mitochondrial membranes. While supplementation also increased DHA within sarcolemmal membranes, EPA was not altered, and as a result the omega-6/omega-3 ratio and UI of these membranes were not altered. All together, these data revealed that mitochondrial and sarcolemmal membranes display unique phospholipid compositions and responses to FO supplementation.
Collapse
Affiliation(s)
- Christopher J Gerling
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kazutaka Mukai
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | | | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Sebastian Jannas-Vela
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
25
|
Seneviratne AK, Xu M, Henao JJA, Fajardo VA, Hao Z, Voisin V, Xu GW, Hurren R, Kim S, MacLean N, Wang X, Gronda M, Jeyaraju D, Jitkova Y, Ketela T, Mullokandov M, Sharon D, Thomas G, Chouinard-Watkins R, Hawley JR, Schafer C, Yau HL, Khuchua Z, Aman A, Al-Awar R, Gross A, Claypool SM, Bazinet RP, Lupien M, Chan S, De Carvalho DD, Minden MD, Bader GD, Stark KD, LeBlanc P, Schimmer AD. The Mitochondrial Transacylase, Tafazzin, Regulates for AML Stemness by Modulating Intracellular Levels of Phospholipids. Cell Stem Cell 2019; 24:621-636.e16. [PMID: 30930145 DOI: 10.1016/j.stem.2019.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/19/2018] [Accepted: 02/27/2019] [Indexed: 12/17/2022]
Abstract
Tafazzin (TAZ) is a mitochondrial transacylase that remodels the mitochondrial cardiolipin into its mature form. Through a CRISPR screen, we identified TAZ as necessary for the growth and viability of acute myeloid leukemia (AML) cells. Genetic inhibition of TAZ reduced stemness and increased differentiation of AML cells both in vitro and in vivo. In contrast, knockdown of TAZ did not impair normal hematopoiesis under basal conditions. Mechanistically, inhibition of TAZ decreased levels of cardiolipin but also altered global levels of intracellular phospholipids, including phosphatidylserine, which controlled AML stemness and differentiation by modulating toll-like receptor (TLR) signaling.
Collapse
Affiliation(s)
- Ayesh K Seneviratne
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mingjing Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Juan J Aristizabal Henao
- Laboratory of Nutritional Lipidomics, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Val A Fajardo
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Veronique Voisin
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - G Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - S Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xiaoming Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danny Jeyaraju
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Geethu Thomas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Caitlin Schafer
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Helen Loo Yau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Zaza Khuchua
- Department of Biochemistry, Sechenov Medical University, Moscow, Russian Federation; Institute of Medical Research Ilia State University, Tbilisi, Georgia
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Steven Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ken D Stark
- Laboratory of Nutritional Lipidomics, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul LeBlanc
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Chung YH, Bang JS, Kang CM, Goh JW, Lee HS, Hong SM, Kim DS, Park ES, Jung TW, Shin YK, Lee JH, Jeong JH. Aqueous Extract of Humulus japonicus Attenuates Hyperlipidemia and Fatty Liver in Obese Mice. J Med Food 2018; 21:999-1008. [DOI: 10.1089/jmf.2017.4135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Joon Seok Bang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Chang Muk Kang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ji Won Goh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Ho Sung Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Seok Myeong Hong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Eon Sub Park
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Seong-nam, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan, Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
27
|
Kuschner CE, Choi J, Yin T, Shinozaki K, Becker LB, Lampe JW, Kim J. Comparing phospholipid profiles of mitochondria and whole tissue: Higher PUFA content in mitochondria is driven by increased phosphatidylcholine unsaturation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:147-157. [PMID: 30029201 DOI: 10.1016/j.jchromb.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/29/2018] [Accepted: 07/07/2018] [Indexed: 01/26/2023]
Abstract
Phospholipids content in cellular and mitochondrial membranes is essential for maintaining normal function. Previous studies have found a lower polyunsaturated fatty acid (PUFA) content in mitochondria than whole tissue, theorizing decreased PUFA protects against oxidative injury. However, phospholipids (PPLs) are uniquely difficult to quantify without class separation and, as prior approaches have predominately used reverse-phase HPLC or shotgun analysis, quantitation of PPL classes may have been complicated due to the existence of numerous isobaric and isomeric species. We apply normal-phase HPLC with class separation to compare whole tissue and mitochondrial PPL profiles in rat brain, heart, kidney, and liver. In addition, we establish a novel method to ascertain PPL origin, using cardiolipin as a comparator to establish relative cardiolipin /PPL ratios. We report a higher PUFA content in tissue mitochondria driven by increased phosphatidylcholine unsaturation, suggesting mitochondria purposefully incorporate higher PUFA PPLs.
Collapse
Affiliation(s)
- Cyrus E Kuschner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Tai Yin
- Department of Emergency Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Koichiro Shinozaki
- Department of Emergency Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Lance B Becker
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Emergency Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Joshua W Lampe
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Emergency Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Junhwan Kim
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Emergency Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
28
|
Fajardo VA, Mikhaeil JS, Leveille CF, Tupling AR, LeBlanc PJ. Elevated whole muscle phosphatidylcholine: phosphatidylethanolamine ratio coincides with reduced SERCA activity in murine overloaded plantaris muscles. Lipids Health Dis 2018. [PMID: 29534725 PMCID: PMC5851149 DOI: 10.1186/s12944-018-0687-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An increase in phosphatidylcholine:phosphatidylethanolamine (PC:PE) and a decrease in fatty acyl chain length, monounsaturated:polyunsaturated (MUFA:PUFA) fatty acyl ratio reduces SERCA activity in liposomes and in mouse models of obesity and muscular dystrophy. We have previously shown that maximal SERCA activity is significantly reduced in mechanically overloaded (OVL) plantaris, however, whether changes in PC:PE ratio or fatty acyl composition may contribute to the alterations in maximal SERCA activity remain unknown. Here, we tested the hypotheses that in OVL plantaris 1) PC:PE ratio would negatively correlate with maximal SERCA activity and 2) PC fatty acyl chain length (ACL) and/or MUFA:PUFA ratio would positively correlate with maximal SERCA activity. METHODS To overload plantaris in mice, we transected the soleus and gastrocnemius tendons from one leg, while the contralateral leg underwent a sham surgery. After two weeks, plantaris muscles were extracted, homogenized and processed for SERCA activity and lipid analyses. Specifically, we performed HPTLC densitometry to examine changes in PC, PE, and the ratio of PC:PE. We also performed gas chromatography to assess any potential changes to fatty acyl composition. RESULTS SERCA activity was significantly reduced in OVL plantaris compared with sham. Coinciding with this, we found a significant increase in PC but not PE in OVL plantaris. In turn, there was an increase in PC:PE but did not reach significance (p = 0.09). However, we found a significant negative correlation between PC:PE and maximal SERCA activity. Fatty acyl composition of PE remained similar between OLV and sham and PC demonstrated higher percent mole fraction of 17:1, 18:1, and ACL compared to sham. In addition, PC ACL, % MUFA, % PUFA, or MUFA:PUFA did not significantly correlate with maximal SERCA activity. CONCLUSIONS Our results indicate that the phospholipid headgroup PC:PE negatively correlated and could potentially contribute to reductions in SERCA activity seen in functionally overloaded plantaris. In contrast, fatty acyl chain (ACL, % MUFA, % PUFA, MUFA:PUFA) did not correlate with maximal SERCA activity. Future studies will determine whether altering PC:PE with genetic and dietary interventions can influence SERCA activity and ultimately change the physiological outcome in response to muscle overloading.
Collapse
Affiliation(s)
- Val A Fajardo
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - John S Mikhaeil
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Cameron F Leveille
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada. .,Centre for Bone and Muscle Health, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
29
|
Baati N, Feillet-Coudray C, Fouret G, Vernus B, Goustard B, Coudray C, Lecomte J, Blanquet V, Magnol L, Bonnieu A, Koechlin-Ramonatxo C. Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1044-1055. [DOI: 10.1016/j.bbalip.2017.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022]
|
30
|
Cardiolipin content, linoleic acid composition, and tafazzin expression in response to skeletal muscle overload and unload stimuli. Sci Rep 2017; 7:2060. [PMID: 28515468 PMCID: PMC5435726 DOI: 10.1038/s41598-017-02089-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/05/2017] [Indexed: 02/04/2023] Open
Abstract
Cardiolipin (CL) is a unique mitochondrial phospholipid that, in skeletal muscle, is enriched with linoleic acid (18:2n6). Together, CL content and CL 18:2n6 composition are critical determinants of mitochondrial function. Skeletal muscle is comprised of slow and fast fibers that have high and low mitochondrial content, respectively. In response to overloading and unloading stimuli, these muscles undergo a fast-to-slow oxidative fiber type shift and a slow-to-fast glycolytic fiber type shift, respectively, with a concomitant change in mitochondrial content. Here, we examined changes in CL content and CL 18:2n6 composition under these conditions along with tafazzin (Taz) protein, which is a transacylase enzyme that generates CL lipids enriched with 18:2n6. Our results show that CL content, CL 18:2n6 composition, and Taz protein content increased with an overload stimulus in plantaris. Conversely, CL content and CL 18:2n6 composition was reduced with an unloaded stimulus in soleus. Interestingly, Taz protein was increased in the unloaded soleus, suggesting that Taz may provide some form of compensation for decreased CL content and CL 18:2n6 composition. Together, this study highlights the dynamic nature of CL and Taz in skeletal muscle, and future studies will examine the physiological significance behind the changes in CL content, CL 18:2n6 and Taz.
Collapse
|
31
|
Leveille CF, Mikhaeil JS, Turner KD, Silvera S, Wilkinson J, Fajardo VA. Mitochondrial cristae density: a dynamic entity that is critical for energy production and metabolic power in skeletal muscle. J Physiol 2017; 595:2779-2780. [PMID: 28217967 DOI: 10.1113/jp274158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Cameron F Leveille
- Department of Health Sciences and Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - John S Mikhaeil
- Department of Health Sciences and Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Kelli D Turner
- Department of Health Sciences and Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Sebastian Silvera
- Department of Health Sciences and Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Jennifer Wilkinson
- Department of Health Sciences and Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| | - Val A Fajardo
- Department of Health Sciences and Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
32
|
Heden TD, Neufer PD, Funai K. Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria. Trends Endocrinol Metab 2016; 27:553-562. [PMID: 27370525 PMCID: PMC4958499 DOI: 10.1016/j.tem.2016.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Skeletal muscle mitochondria are highly dynamic and are capable of tremendous expansion to meet cellular energetic demands. Such proliferation in mitochondrial mass requires a synchronized supply of enzymes and structural phospholipids. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are generated in skeletal muscle. Herein we describe how each class of phospholipids that constitute mitochondrial membranes are synthesized and/or imported, and summarize genetic evidence indicating that membrane phospholipid composition represents a significant modulator of skeletal muscle mitochondrial respiratory function. We also discuss how skeletal muscle mitochondrial phospholipids may mediate the effect of diet and exercise on oxidative metabolism.
Collapse
Affiliation(s)
- Timothy D Heden
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Katsuhiko Funai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
33
|
Salucci S, Baldassarri V, Canonico B, Burattini S, Battistelli M, Guescini M, Papa S, Stocchi V, Falcieri E. Melatonin behavior in restoring chemical damaged C2C12 myoblasts. Microsc Res Tech 2016; 79:532-40. [DOI: 10.1002/jemt.22663] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/09/2016] [Accepted: 03/12/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Valentina Baldassarri
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Michele Guescini
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Stefano Papa
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino 61029 Italy
| |
Collapse
|
34
|
Turnbull PC, Longo AB, Ramos SV, Roy BD, Ward WE, Peters SJ. Increases in skeletal muscle ATGL and its inhibitor G0S2 following 8 weeks of endurance training in metabolically different rat skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2015; 310:R125-33. [PMID: 26511521 DOI: 10.1152/ajpregu.00062.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/21/2015] [Indexed: 12/26/2022]
Abstract
Adipose triglyceride lipase (ATGL) catalyzes the rate-limiting removal of the first fatty acid from a triglyceride. ATGL is activated by comparative gene identification-58 and inhibited by G(0)/G(1) switch gene-2 protein (G0S2). Research in other tissues and cell culture indicates that inhibition is dependent on relative G0S2-to-ATGL protein content. G0S2 may also have several roles within mitochondria; however, this has yet to be observed in skeletal muscle. The purpose of this study was to determine if muscle G0S2 relative to ATGL content would decrease to facilitate intramuscular lipolysis following endurance training. Male Sprague-Dawley rats (n = 10; age 51-53 days old) were progressively treadmill trained at a 10% incline for 8 wk ending with 25 m/min for 1 h compared with control. Sciatic nerve stimulation for hind-limb muscle contraction (and lipolysis) was administered for 30 min to one leg, leaving the opposing leg as a resting control. Soleus (SOL), red gastrocnemius (RG), and white gastrocnemius were excised from both legs following stimulation or control. ATGL protein increased in all trained muscles. Unexpectedly, G0S2 protein was greater in the trained SOL and RG. In RG-isolated mitochondria, G0S2 also increased with training, yet mitochondrial G0S2 content was unaltered with acute contraction; therefore, any role of G0S2 in the mitochondria does not appear to be acutely mediated by content alone. In summary, G0S2 increased with training in oxidative muscles and mitochondria but not following acute contraction, suggesting that inhibition is not through relative G0S2-to-ATGL content but through more complicated intracellular mechanisms.
Collapse
Affiliation(s)
- Patrick C Turnbull
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Amanda B Longo
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Sofhia V Ramos
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Brian D Roy
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Wendy E Ward
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Sandra J Peters
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
35
|
Sarcoplasmic Reticulum Phospholipid Fatty Acid Composition and Sarcolipin Content in Rat Skeletal Muscle. J Membr Biol 2015; 248:1089-96. [PMID: 26193810 DOI: 10.1007/s00232-015-9822-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
In a previous study, we reported lower sarcoplasmic reticulum (SR) Ca(2+) pump ionophore ratios in rat soleus compared to red and white gastrocnemius (RG, WG) muscles which may be indicative of greater SR Ca(2+) permeability in soleus. Here we assessed the lipid composition of the SR membranes obtained from these muscles to determine if SR docosahexaenoic acid (DHA) content and fatty acid unsaturation could help to explain the previously observed differences in SR Ca(2+) permeability. Since we have shown previously that sarcolipin may also influence SR Ca(2+) permeability, we also examined the levels of sarcolipin in rat muscle. We found that SR membrane DHA content was significantly higher in soleus (5.3 ± 0.2 %) compared to RG (4.2 ± 0.2 %) and WG (3.3 ± 0.2 %). Likewise, total SR membrane unsaturation and unsaturation index (UI) were significantly higher in soleus (% unsaturation: 59.1 ± 2.4; UI: 362.9 ± 0.8) compared to RG (% unsaturation: 55.3 ± 1.0; UI: 320.9 ± 2.5) and WG (% unsaturation: 52.6 ± 1.1; UI: 310. ± 2.2). Sarcolipin protein was 17-fold more abundant in rat soleus compared to RG and was not detected in WG; however, comparisons between soleus, RG, and WG in sarcolipin-null mice revealed that, in the absence of sarcolipin, ionophore ratios are still lowest in soleus and highest in WG. Overall, our results suggest that SR membrane DHA content and unsaturation, and, in part, sarcolipin expression may contribute to SR Ca(2+) permeability and, in turn, may have implications in muscle-based metabolism and diet-induced obesity.
Collapse
|
36
|
Ramos SV, Turnbull PC, MacPherson REK, LeBlanc PJ, Ward WE, Peters SJ. Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction. Exp Physiol 2015; 100:450-62. [PMID: 25663294 DOI: 10.1113/expphysiol.2014.084434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to determine whether mitochondrial protein content of perilipin 3 (PLIN3) and perilipin 5 (PLIN5) is increased following endurance training and whether mitochondrial PLIN5 protein is increased to a greater extent in endurance-trained rats when compared with sedentary rats following acute contraction. What is the main finding and its importance? Mitochondrial PLIN3 but not PLIN5 protein was increased in endurance-trained compared with sedentary rats, suggesting a mitochondrial role for PLIN3 due to chronic exercise. Contrary to our hypothesis, acute mitochondrial PLIN5 protein was similar in both sedentary and endurance-trained rats. Endurance training results in an increased association between skeletal muscle lipid droplets and mitochondria. This association is likely to be important for the expected increase in intramuscular fatty acid oxidation that occurs with endurance training. The perilipin family of lipid droplet proteins, PLIN(2-5), are thought to play a role in skeletal muscle lipolysis. Recently, results from our laboratory demonstrated that skeletal muscle mitochondria contain PLIN3 and PLIN5 protein. Furthermore, 30 min of stimulated contraction induces an increased mitochondrial PLIN5 content. To determine whether mitochondrial content of PLIN3 and PLIN5 is altered with endurance training, Sprague-Dawley rats were randomized into sedentary or endurance-trained groups for 8 weeks of treadmill running followed by an acute (30 min) sciatic nerve stimulation to induce lipolysis. Mitochondrial PLIN3 protein was ∼1.5-fold higher in red gastrocnemius of endurance-trained rats compared with sedentary animals, with no change in mitochondrial PLIN5 protein. In addition, there was an increase in plantaris intramuscular lipid storage. Acute electrically stimulated contraction in red gastrocnemius from sedentary and endurance-trained rats resulted in a similar increase of mitochondrial PLIN5 between these two groups, with no net change in PLIN3 in either group. Plantaris intramuscular lipid content decreased to a similar extent in sedentary and endurance-trained rats. These results suggest that while total mitochondrial PLIN5 content is not altered by endurance training, PLIN5 does have an acute role in the mitochondrial fraction during muscle contraction. Conversely, mitochondrial PLIN3 does not change acutely with muscle contraction, but PLIN3 content was increased following endurance training, indicating a role in chronic adaptations of skeletal muscle.
Collapse
Affiliation(s)
- S V Ramos
- Center for Bone and Muscle Health, Brock University, St Catharines, Ontario, Canada; Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Fajardo VA, Bombardier E, Irvine T, Metherel AH, Stark KD, Duhamel T, Rush JWE, Green HJ, Tupling AR. Dietary docosahexaenoic acid supplementation reduces SERCA Ca2+ transport efficiency in rat skeletal muscle. Chem Phys Lipids 2015; 187:56-61. [PMID: 25772907 DOI: 10.1016/j.chemphyslip.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/13/2015] [Accepted: 03/11/2015] [Indexed: 01/08/2023]
Abstract
Docosahexaenoic acid (DHA) can reduce the efficiency and increase the energy consumption of Na(+)/K(+)-ATPase pump and mitochondrial electron transport chain by promoting Na(+) and H(+) membrane permeability, respectively. In skeletal muscle, the sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) pumps are major contributors to resting metabolic rate. Whether DHA can affect SERCA efficiency remains unknown. Here, we examined the hypothesis that dietary supplementation with DHA would reduce Ca(2+) transport efficiency of the SERCA pumps in skeletal muscle. Total lipids were extracted from enriched sarcoplasmic reticulum (SR) membranes that were isolated from red vastus lateralis skeletal muscles of rats that were either fed a standard chow diet supplemented with soybean oil or supplemented with DHA for 8 weeks. The fatty acid composition of total SR membrane lipids and the major phospholipid species were determined using electrospray ionization mass spectrometry (ESI-MS). After 8 weeks of DHA supplementation, total SR DHA content was significantly elevated (control, 4.1 ± 1.0% vs. DHA, 9.9 ± 1.7%; weight percent of total fatty acids) while total arachidonic acid was reduced (control, 13.5 ± 0.4% vs. DHA-fed, 9.4 ± 0.2). Similar changes in these fatty acids were observed in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, altogether indicating successful incorporation of DHA into the SR membranes post-diet. As hypothesized, DHA supplementation reduced SERCA Ca(2+) transport efficiency (control, 0.018 ± 0.0002 vs. DHA-fed, 0.014 ± 0.0009) possibly through enhanced SR Ca(2+) permeability (ionophore ratio: control, 2.8 ± 0.2 vs. DHA-fed, 2.2 ± 0.3). Collectively, our results suggest that DHA may promote skeletal muscle-based metabolism and thermogenesis through its influence on SERCA.
Collapse
Affiliation(s)
- Val Andrew Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Thomas Irvine
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Adam H Metherel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Todd Duhamel
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2 Canada; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, 351 Tache Avenue, Winnipeg MB R2H 2A6, Canada
| | - James W E Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
38
|
Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle. Chem Phys Lipids 2015; 187:50-5. [PMID: 25727371 DOI: 10.1016/j.chemphyslip.2015.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/25/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
Abstract
Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.
Collapse
|
39
|
Ramos SV, MacPherson REK, Turnbull PC, Bott KN, LeBlanc P, Ward WE, Peters SJ. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol Rep 2014; 2:2/10/e12154. [PMID: 25318747 PMCID: PMC4254090 DOI: 10.14814/phy2.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Contraction-mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet-mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21; age, 52 days; weight = 317 ± 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10-20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red-O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6-fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction-induced lipolysis.
Collapse
Affiliation(s)
- Sofhia V Ramos
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Rebecca E K MacPherson
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Patrick C Turnbull
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Kirsten N Bott
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Paul LeBlanc
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| |
Collapse
|
40
|
Faber C, Zhu ZJ, Castellino S, Wagner DS, Brown RH, Peterson RA, Gates L, Barton J, Bickett M, Hagerty L, Kimbrough C, Sola M, Bailey D, Jordan H, Elangbam CS. Cardiolipin profiles as a potential biomarker of mitochondrial health in diet-induced obese mice subjected to exercise, diet-restriction and ephedrine treatment. J Appl Toxicol 2014; 34:1122-9. [PMID: 25132005 DOI: 10.1002/jat.3030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 11/08/2022]
Abstract
Cardiolipin (CL) is crucial for mitochondrial energy metabolism and structural integrity. Alterations in CL quantity or CL species have been associated with mitochondrial dysfunction in several pathological conditions and diseases, including mitochondrial dysfunction-related compound attrition and post-market withdrawal of promising drugs. Here we report alterations in the CL profiles in conjunction with morphology of soleus muscle (SM) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice, subjected to ephedrine treatment (EPH: 200 mg kg(-1) day(-1) orally), treadmill exercise (EX: 10 meters per min, 1 h per day), or dietary restriction (DR: 25% less of mean food consumed by the EX group) for 7 days. Mice from the DR and EPH groups had a significant decrease in percent body weight and reduced fat mass compared with DIO controls. Morphologic alterations in the BAT included brown adipocytes with reduced cytoplasmic lipid droplets and increased cytoplasmic eosinophilia in the EX, DR and EPH groups. Increased cytoplasmic eosinophilia in the BAT was ultrastructurally manifested by increased mitochondrial cristae, fenestration of mitochondrial cristae, increased electron density of mitochondrial matrix, and increased complexity of shape and elongation of mitochondria. Mitochondrial ultrastructural alterations in the SM of the EX and DR groups included increased mitochondrial cristae, cup-shaped mitochondria and mitochondrial degeneration. All four CL species (tri-linoleoyl-mono-docosahexaenoyl, tetralinoleoyl, tri-linoleoyl-mono-oleoyl, and di-linoleoyl-di-oleoyl) were increased in the BAT of the DR and EPH groups and in the SM of the EPH and EX groups. In conclusion, cardiolipin profiling supported standard methods for assessing mitochondrial biogenesis and health, and may serve as a potential marker of mitochondrial dysfunction in preclinical toxicity studies.
Collapse
Affiliation(s)
- Catherine Faber
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Serviddio G, Bellanti F, Stanca E, Lunetti P, Blonda M, Tamborra R, Siculella L, Vendemiale G, Capobianco L, Giudetti AM. Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis. Free Radic Biol Med 2014; 73:117-126. [PMID: 24819445 DOI: 10.1016/j.freeradbiomed.2014.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 02/08/2023]
Abstract
The accumulation of toxic hydrophobic bile acids in hepatocytes, observed during chronic cholestasis, induces substantial modification in the redox state and in mitochondrial functions. Recent reports have suggested a significant role of impaired lipid metabolism in the progression of chronic cholestasis. In this work we report that changes observed in the expression of the lipogenic enzymes acetyl-CoA carboxylase and fatty acid synthase were associated with a decrease in the activity of citrate carrier (CIC), a protein of the inner mitochondrial membrane closely related to hepatic lipogenesis. We also verified that the impairment of citrate transport was dependent on modification of the phospholipid composition of the mitochondrial membrane and on cardiolipin oxidation. Silybin, an extract of silymarin with antioxidant and anti-inflammatory properties, prevented mitochondrial reactive oxygen species (ROS) production, cardiolipin oxidation, and CIC failure in cirrhotic livers but did not affect the expression of lipogenic enzymes. Moreover, supplementation of silybin was also associated with mitochondrial biogenesis. In conclusion, we demonstrate that chronic cholestasis induces cardiolipin oxidation that in turn impairs mitochondrial function and further promotes ROS production. The capacity of silybin to limit mitochondrial failure is part of its hepatoprotective property.
Collapse
Affiliation(s)
- Gaetano Serviddio
- Centro CURE, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesco Bellanti
- Centro CURE, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Eleonora Stanca
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Paola Lunetti
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Maria Blonda
- Centro CURE, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Tamborra
- Centro CURE, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Luisa Siculella
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Gianluigi Vendemiale
- Centro CURE, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loredana Capobianco
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | - Anna Maria Giudetti
- Centro CURE, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
42
|
Oxidative damage in the gastrocnemius of patients with peripheral artery disease is myofiber type selective. Redox Biol 2014; 2:921-8. [PMID: 25180168 PMCID: PMC4143812 DOI: 10.1016/j.redox.2014.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023] Open
Abstract
Background Peripheral artery disease (PAD), a manifestation of systemic atherosclerosis that produces blockages in the arteries supplying the legs, affects approximately 5% of Americans. We have previously, demonstrated that a myopathy characterized by myofiber oxidative damage and degeneration is central to PAD pathophysiology. Objectives In this study, we hypothesized that increased oxidative damage in the myofibers of the gastrocnemius of PAD patients is myofiber-type selective and correlates with reduced myofiber size. Methods Needle biopsies were taken from the gastrocnemius of 53 PAD patients (28 with early PAD and 25 with advanced PAD) and 25 controls. Carbonyl groups (marker of oxidative damage), were quantified in myofibers of slide-mounted tissue, by quantitative fluorescence microscopy. Myofiber cross-sectional area was determined from sarcolemma labeled with wheat germ agglutinin. The tissues were also labeled for myosin I and II, permitting quantification of oxidative damage to and relative frequency of the different myofiber Types (Type I, Type II and mixed Type I/II myofibers). We compared PAD patients in early (N=28) vs. advanced (N=25) disease stage for selective, myofiber oxidative damage and altered morphometrics. Results The carbonyl content of gastrocnemius myofibers was higher in PAD patients compared to control subjects, for all three myofiber types (p<0.05). In PAD patients carbonyl content was higher (p<0.05) in Type II and I/II fibers compared to Type I fibers. Furthermore, the relative frequency and cross-sectional area of Type II fibers were lower, while the relative frequencies and cross-sectional area of Type I and Type I/II fibers were higher, in PAD compared to control gastrocnemius (p<0.05). Lastly, the type II-selective oxidative damage increased and myofiber size decreased as the disease progressed from the early to advanced stage. Conclusions Our data confirm increased myofiber oxidative damage and reduced myofiber size in PAD gastrocnemius and demonstrate that the damage is selective for type II myofibers and is worse in the most advanced stage of PAD. Peripheral artery disease, is characterized by the formation of atherosclerotic plaques that limit blood flow to the legs. There was increased myofiber oxidative damage and degeneration in the gastrocnemius of PAD patients compared to controls. Myofiber oxidative damage and morphology were worse for Type II myofibers. Type II-selective oxidative damage and abnormal morphology worsened as the PAD progressed from the early to advanced stage. Myofiber oxidative damage and degeneration is a significant contributors to the pathophysiology of PAD.
Collapse
|
43
|
Impact of high dietary lipid intake and related metabolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardiolipin. J Bioenerg Biomembr 2014; 46:447-57. [DOI: 10.1007/s10863-014-9555-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022]
|
44
|
Antunes D, Padrão AI, Maciel E, Santinha D, Oliveira P, Vitorino R, Moreira-Gonçalves D, Colaço B, Pires MJ, Nunes C, Santos LL, Amado F, Duarte JA, Domingues MR, Ferreira R. Molecular insights into mitochondrial dysfunction in cancer-related muscle wasting. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:896-905. [PMID: 24657703 DOI: 10.1016/j.bbalip.2014.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Alterations in muscle mitochondrial bioenergetics during cancer cachexia were previously suggested; however, the underlying mechanisms are not known. So, the goal of this study was to evaluate mitochondrial phospholipid remodeling in cancer-related muscle wasting and its repercussions to respiratory chain activity and fiber susceptibility to apoptosis. An animal model of urothelial carcinoma induced by exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) and characterized by significant body weight loss due to skeletal muscle mass decrease was used. Morphological evidences of muscle atrophy were associated to decreased respiratory chain activity and increased expression of mitochondrial UCP3, which altogether highlight the lower ability of wasted muscle to produce ATP. Lipidomic analysis of isolated mitochondria revealed a significant decrease of phosphatidic acid, phosphatidylglycerol and cardiolipin in BBN mitochondria, counteracted by increased phosphatidylcholine levels. Besides the impact on membrane fluidity, this phospholipid remodeling seems to justify, at least in part, the lower oxidative phosphorylation activity observed in mitochondria from wasted muscle and their increased susceptibility to apoptosis. Curiously, no evidences of lipid peroxidation were observed but proteins from BBN mitochondria, particularly the metabolic ones, seem more prone to carbonylation with the consequent implications in mitochondria functionality. Overall, data suggest that bladder cancer negatively impacts skeletal muscle activity specifically by affecting mitochondrial phospholipid dynamics and its interaction with proteins, ultimately leading to the dysfunction of this organelle. The regulation of phospholipid biosynthetic pathways might be seen as potential therapeutic targets for the management of cancer-related muscle wasting.
Collapse
Affiliation(s)
- Diana Antunes
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Paula Oliveira
- School of Agrarian Sciences, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Rui Vitorino
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Bruno Colaço
- School of Agrarian Sciences, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria João Pires
- School of Agrarian Sciences, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Cláudia Nunes
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Francisco Amado
- Health School of Sciences, University of Aveiro, Aveiro, Portugal
| | | | | | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
45
|
Aoun M, Fouret G, Michel F, Bonafos B, Ramos J, Cristol JP, Carbonneau MA, Coudray C, Feillet-Coudray C. Dietary fatty acids modulate liver mitochondrial cardiolipin content and its fatty acid composition in rats with non alcoholic fatty liver disease. J Bioenerg Biomembr 2012; 44:439-52. [PMID: 22689144 DOI: 10.1007/s10863-012-9448-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/29/2012] [Indexed: 12/23/2022]
Abstract
No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.
Collapse
Affiliation(s)
- Manar Aoun
- INRA UMR 866, Dynamique Musculaire et Métabolisme, 34060, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Unsaturation of mitochondrial membrane lipids is related to palmitate oxidation in subsarcolemmal and intermyofibrillar mitochondria. J Membr Biol 2012; 245:165-76. [PMID: 22527602 DOI: 10.1007/s00232-012-9426-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/01/2012] [Indexed: 10/28/2022]
Abstract
Membrane lipid composition is thought to influence the function of integral membrane proteins; however, the potential for lipid composition to influence overall mitochondrial long-chain fatty acids (LCFA) oxidation is currently unknown. Therefore, the naturally occurring variability of LCFA oxidation rates within subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in muscles with varying oxidative potentials (heart → red → white) was utilized to examine this relationship. To this end, SS and IMF mitochondria were isolated and palmitate oxidation rates were compared to membrane phospholipid composition. Among tissues, rates of palmitate oxidation in mitochondria displayed a 2.5-fold range, creating the required range to determine potential relationships with membrane lipid composition. In general, the percent mole fraction of phospholipid head groups and major fatty acid subclasses were similar in all mitochondria studied. However, rates of palmitate oxidation were positively correlated with both the unsaturation index and relative abundance of cardiolipin within mitochondria (r = 0.57 and 0.49, respectively; p < 0.05). Thus, these results suggest that mitochondrial LCFA oxidation may be significantly influenced by the total unsaturation and percent mole fraction of cardiolipin of the mitochondrial membrane, whereas other indices of membrane structure (e.g., percent mole fraction of other predominant membrane phospholipids, chain length, and ratio of phosphatidylcholine to phosphatidylethanolamine) were not significantly correlated.
Collapse
|
47
|
Gross VS, Greenberg HK, Baranov SV, Carlson GM, Stavrovskaya IG, Lazarev AV, Kristal BS. Isolation of functional mitochondria from rat kidney and skeletal muscle without manual homogenization. Anal Biochem 2011; 418:213-23. [PMID: 21820998 DOI: 10.1016/j.ab.2011.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/14/2011] [Accepted: 07/16/2011] [Indexed: 12/22/2022]
Abstract
Isolation of functional and intact mitochondria from solid tissue is crucial for studies that focus on the elucidation of normal mitochondrial physiology and/or mitochondrial dysfunction in conditions such as aging, diabetes, and cancer. There is growing recognition of the importance of mitochondria both as targets for drug development and as off-target mediators of drug side effects. Unfortunately, mitochondrial isolation from tissue is generally carried out using homogenizer-based methods that require extensive operator experience to obtain reproducible high-quality preparations. These methods limit dissemination, impede scale-up, and contribute to difficulties in reproducing experimental results over time and across laboratories. Here we describe semiautomated methods to disrupt tissue using kidney and muscle mitochondria preparations as exemplars. These methods use the Barocycler, the PCT Shredder, or both. The PCT Shredder is a mechanical grinder that quickly breaks up tissue without significant risk of overhomogenization. Mitochondria isolated using the PCT Shredder are shown to be comparable to controls. The Barocycler generates controlled pressure pulses that can be adjusted to lyse cells and release organelles. The mitochondria subjected to pressure cycling-mediated tissue disruption are shown to retain functionality, enabling combinations of the PCT Shredder and the Barocycler to be used to purify mitochondrial preparations.
Collapse
Affiliation(s)
- Vera S Gross
- Pressure BioSciences, South Easton, MA 02375, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Stefanyk LE, Gulli RA, Ritchie IR, Chabowski A, Snook LA, Bonen A, Dyck DJ. Recovered insulin response by 2 weeks of leptin administration in high-fat fed rats is associated with restored AS160 activation and decreased reactive lipid accumulation. Am J Physiol Regul Integr Comp Physiol 2011; 301:R159-71. [PMID: 21525176 DOI: 10.1152/ajpregu.00636.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Leptin is an adipokine that increases fatty acid (FA) oxidation, decreases intramuscular lipid stores, and improves insulin response in skeletal muscle. In an attempt to elucidate the underlying mechanisms by which these metabolic changes occur, we administered leptin (Lep) or saline (Sal) by miniosmotic pumps to rats during the final 2 wk of a 6-wk low-fat (LF) or high-fat (HF) diet. Insulin-stimulated glucose transport was impaired by the HF diet (HF-Sal) but was restored with leptin administration (HF-Lep). This improvement was associated with restored phosphorylation of Akt and AS160 and decreased in reactive lipid species (ceramide, diacylglycerol), known inhibitors of the insulin-signaling cascade. Total muscle citrate synthase (CS) activity was increased by both leptin and HF diet, but was not additive. Leptin increased subsarcolemmal (SS) and intramyofibrillar (IMF) mitochondria CS activity. Total muscle, sarcolemmal, and mitochondrial (SS and IMF) FA transporter (FAT/CD36) protein content was significantly increased with the HF diet, but not altered by leptin. Therefore, the decrease in reactive lipid stores and subsequent improvement in insulin response, secondary to leptin administration in rats fed a HF diet was not due to a decrease in FA transport protein content or altered cellular distribution.
Collapse
Affiliation(s)
- Leslie E Stefanyk
- Dept. of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada, N1G 2W1
| | | | | | | | | | | | | |
Collapse
|