1
|
Role of protons in calcium signaling. Biochem J 2021; 478:895-910. [PMID: 33635336 DOI: 10.1042/bcj20200971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/03/2023]
Abstract
Thirty-six years after the publication of the important article by Busa and Nuccitelli on the variability of intracellular pH (pHi) and the interdependence of pHi and intracellular Ca2+ concentration ([Ca2+]i), little research has been carried out on pHi and calcium signaling. Moreover, the results appear to be contradictory. Some authors claim that the increase in [Ca2+]i is due to a reduction in pHi, others that it is caused by an increase in pHi. The reasons for these conflicting results have not yet been discussed and clarified in an exhaustive manner. The idea that variations in pHi are insignificant, because cellular buffers quickly stabilize the pHi, may be a limiting and fundamentally wrong concept. In fact, it has been shown that protons can move and react in the cell before they are neutralized. Variations in pHi have a remarkable impact on [Ca2+]i and hence on some of the basic biochemical mechanisms of calcium signaling. This paper focuses on the possible triggering role of protons during their short cellular cycle and it suggests a new hypothesis for an IP3 proton dependent mechanism of action.
Collapse
|
2
|
Ogasawara E, Nakada K, Ishihara N. Distal control of mitochondrial biogenesis and respiratory activity by extracellular lactate caused by large-scale deletion of mitochondrial DNA. Pharmacol Res 2020; 160:105204. [PMID: 32946932 DOI: 10.1016/j.phrs.2020.105204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022]
Abstract
Lactate is highly produced under conditions of respiratory dysfunction such as anaerobic respiration and various types of mitochondrial diseases, and it was also known as an active molecule that plays various roles both within and between cells. High levels of extracellular lactate may lead to lactic acidosis, which has been related to pathology of the mitochondrial diseases with mutated mitochondrial DNA (mtDNA). In this study, to elucidate the poorly understood molecular roles of extracellular lactate in mitochondrial regulation, we analyzed mouse B82 cells and their cybrid cells carrying mutated mtDNA with a large-scale deletion (ΔmtDNA). Inhibition of lactate production by sodium dichloroacetate (DCA) treatment improved mitochondrial respiration in cells carrying ΔmtDNA through the activation of mitochondrial biogenesis. Chronic exposure to extracellular lactate (more than 3 days) repressed mitochondrial respiration in healthy cells via calcium and CaMK signaling, leading to a decrease in PGC1α-mediated mitochondrial biogenesis. These mitochondrial dysfunctions induced by the lactate treatment were repressed by pH buffering of the medium. These results suggest that lactate, produced in respiration-deficient cells, acts not only as an intracellular source of energy through the TCA cycle, but also as an extracellular messenger molecule regulating the respiratory activity of both cells carrying ΔmtDNA and the surrounding cells, which could cause whole-body repression of respiratory activity.
Collapse
Affiliation(s)
- Emi Ogasawara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan; Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka, 830-0011, Japan.
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan; Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume, Fukuoka, 830-0011, Japan.
| |
Collapse
|
3
|
Molinari G, Molinari L, Nervo E. Environmental and Endogenous Acids Can Trigger Allergic-Type Airway Reactions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4688. [PMID: 32610702 PMCID: PMC7370125 DOI: 10.3390/ijerph17134688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory allergic and nonallergic respiratory disorders are spreading worldwide and often coexist. The root cause is not clear. This review demonstrates that, from a biochemical point of view, it is ascribable to protons (H+) released into cells by exogenous and endogenous acids. The hypothesis of acids as the common cause stems from two considerations: (a) it has long been known that exogenous acids present in air pollutants can induce the irritation of epithelial surfaces, particularly the airways, inflammation, and bronchospasm; (b) according to recent articles, endogenous acids, generated in cells by phospholipases, play a key role in the biochemical mechanisms of initiation and progression of allergic-type reactions. Therefore, the intracellular acidification and consequent Ca2+ increase, induced by protons generated by either acid pollutants or endogenous phospholipases, may constitute the basic mechanism of the multimorbidity of these disorders, and environmental acidity may contribute to their spread.
Collapse
Affiliation(s)
- Giuliano Molinari
- Studio Tecnico Ing. Laura Molinari, Environmental Health and Safety Via Quarto Ponte 17, 37138 Verona, Italy;
| | - Laura Molinari
- Studio Tecnico Ing. Laura Molinari, Environmental Health and Safety Via Quarto Ponte 17, 37138 Verona, Italy;
| | - Elsa Nervo
- Elsa Nervo, Società Chimica Italiana, 00198 Rome, Italy;
| |
Collapse
|
4
|
Marchand G, Demuynck S, Slaby S, Lescuyer A, Lemière S, Marin M. Adverse effects of fly ashes used as immobilizing agents for highly metal-contaminated soils on Xenopus laevis oocytes survival and maturation-a study performed in the north of France with field soil extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3706-3714. [PMID: 30875069 DOI: 10.1007/s11356-019-04560-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Amphibians are now recognized as the most endangered group. One of this decline causes is the degradation of their habitat through direct contamination of water, soil leaching, or runoff from surrounding contaminated soils and environments. In the North of France, the extensive industrial activities resulted in massive soil contamination by metal compounds. Mineral amendments were added to soils to decrease trace metal mobility. Because of the large areas to be treated, the use of inexpensive industrial by-products was favored. Two types of fly ashes were both tested in an experimental site with the plantation of trees in 2000. Aim of the present work was to investigate the effects of extracts from metal-contaminated soils treated or not for 10 years with fly ashes on Xenopus laevis oocyte using cell biology approaches. Indeed, our previous studies have shown that the Xenopus oocyte is a relevant model to study the metal ion toxicity. Survival and maturation of oocyte exposed to the soil extracts were evaluated by phenotypic approaches and electrophysiological recordings. An extract derived from a metal-contaminated soil treated for 10 years with sulfo-calcic ashes induced the largest effects. Membrane integrity appeared affected and ion fluxes in exposed oocytes were changed. Thus, it appeared that extracted elements from certain mineral amendments used to prevent the mobility of metals in the case of highly metal-contaminated soils could have a negative impact on X. laevis oocytes.
Collapse
Affiliation(s)
- Guillaume Marchand
- UGSF, CNRS, INRA, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille, F-59000, Lille, France
- LGCgE, EA 4515, Laboratoire Génie Civil et géo-Environnement, Cité scientifique, SN3, Université de Lille, F-59655, Villeneuve d'Ascq, France
| | - Sylvain Demuynck
- LGCgE, EA 4515, Laboratoire Génie Civil et géo-Environnement, Cité scientifique, SN3, Université de Lille, F-59655, Villeneuve d'Ascq, France
| | - Sylvain Slaby
- UGSF, CNRS, INRA, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille, F-59000, Lille, France
- LGCgE, EA 4515, Laboratoire Génie Civil et géo-Environnement, Cité scientifique, SN3, Université de Lille, F-59655, Villeneuve d'Ascq, France
- URAFPA, Unité de Recherche Animal et Fonctionnalités des Produits Animaux, Université de Lorraine, INRA, 2 avenue de la Forêt de Haye, 54500, Vandoeuvre-lès-Nancy, France
| | - Arlette Lescuyer
- UGSF, CNRS, INRA, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille, F-59000, Lille, France
| | - Sébastien Lemière
- LGCgE, EA 4515, Laboratoire Génie Civil et géo-Environnement, Cité scientifique, SN3, Université de Lille, F-59655, Villeneuve d'Ascq, France
| | - Matthieu Marin
- UGSF, CNRS, INRA, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille, F-59000, Lille, France.
| |
Collapse
|
5
|
Slaby S, Marin M, Marchand G, Lemiere S. Exposures to chemical contaminants: What can we learn from reproduction and development endpoints in the amphibian toxicology literature? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:478-495. [PMID: 30831345 DOI: 10.1016/j.envpol.2019.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Environmental contamination is one of the major factors or cofactors affecting amphibian populations. Since 2000, the number of studies conducted in laboratory conditions to understand impacts of chemical exposures increased. They aimed to characterize biological effects on amphibians. This review proposes an overview of biological responses reported after exposures to metals, phytopharmaceuticals or emerging organic contaminants and focuses on endpoints relating to reproduction and development. Due to amphibian peculiar features, these periods of their life cycle are especially critical to pollutant exposures. Despite the large range of tested compounds, the same model species are often used as biological models and morphological alterations are the most studied observations. From the results, the laboratory-to-field extrapolation remained uneasy and exposure designs have to be more elaborated to be closer to environmental conditions. Few studies proposed such experimental approaches. Lastly, gametes, embryos and larvae constitute key stages of amphibian life cycle that can be harmed by exposures to freshwater pollutants. Specific efforts have to be intensified on the earliest stages and notably germ cells.
Collapse
Affiliation(s)
- Sylvain Slaby
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France; Univ. Lille, EA 4515 - LGCgE - Laboratoire Génie Civil et Géo-Environnement, Cité Scientifique, SN3, F-59655, Villeneuve D'Ascq, France
| | - Matthieu Marin
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Guillaume Marchand
- Univ. Lille, CNRS, INRA, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Sébastien Lemiere
- Univ. Lille, EA 4515 - LGCgE - Laboratoire Génie Civil et Géo-Environnement, Cité Scientifique, SN3, F-59655, Villeneuve D'Ascq, France.
| |
Collapse
|
6
|
Shu L, Laurila A, Räsänen K. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis. Sci Rep 2015; 5:14201. [PMID: 26381453 PMCID: PMC4585641 DOI: 10.1038/srep14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/19/2015] [Indexed: 02/01/2023] Open
Abstract
Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca(2+) influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca(2+) balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress.
Collapse
Affiliation(s)
- Longfei Shu
- Eawag, Department of Aquatic Ecology, Switzerland and ETH Zurich, Institute of Integrative Biology, Switzerland
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Sweden
| | - Katja Räsänen
- Eawag, Department of Aquatic Ecology, Switzerland and ETH Zurich, Institute of Integrative Biology, Switzerland
| |
Collapse
|
7
|
Xenopus laevis oocyte maturation is affected by metal chlorides. Toxicol In Vitro 2015; 29:1124-31. [DOI: 10.1016/j.tiv.2015.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/02/2023]
|
8
|
Molinari G. Is hydrogen ion (H(+)) the real second messenger in calcium signalling? Cell Signal 2015; 27:1392-7. [PMID: 25843778 DOI: 10.1016/j.cellsig.2015.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/10/2015] [Accepted: 03/23/2015] [Indexed: 11/28/2022]
Abstract
Most second messengers have the acknowledged ability to mobilize the segregated Ca(2+) from intracellular stores, although the mechanisms of mobilization are unclear. To study this problem, the fact that inositol 1,4,5-trisphosphate, and six other known endogenous Ca(2+) mobilizers are acids, or acid-generating compounds, is highlighted. In physiological conditions, a newly generated acid releases H(+). The transient rise of H(+) in the cytosol may induce the lowering of pH, mobilization of bound Ca(2+), protein conformational rearrangement, store depletion, and Ca(2+) influx. Accordingly, a new description of the basic mechanism for signal transduction in non-excitable cells and the related consequences is put forward.
Collapse
Affiliation(s)
- Giuliano Molinari
- Biochemical Specialist at Molinari Giuliano, Via Agrigento 56, 37138 Verona Italy.
| |
Collapse
|
9
|
Jeseta M, Marin M, Tichovska H, Melicharova P, Cailliau-Maggio K, Martoriati A, Lescuyer-Rousseau A, Beaujois R, Petr J, Sedmikova M, Bodart JF. Nitric oxide-donor SNAP induces Xenopus eggs activation. PLoS One 2012; 7:e41509. [PMID: 22911804 PMCID: PMC3402422 DOI: 10.1371/journal.pone.0041509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/22/2012] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is identified as a signaling molecule involved in many cellular or physiological functions including meiotic maturation and parthenogenetic activation of mammalian oocytes. We observed that nitric oxide donor SNAP was potent to induce parthenogenetic activation in Xenopus eggs. NO-scavenger CPTIO impaired the effects of SNAP, providing evidence for the effects of the latter to be specific upon NO release. In Xenopus eggs, SNAP treatment induced pigment rearrangement, pronucleus formation and exocytosis of cortical granules. At a biochemical level, SNAP exposure lead to MAPK and Rsk inactivation within 30 minutes whereas MPF remained active, in contrast to calcium ionophore control where MPF activity dropped rapidly. MAPK inactivation could be correlated to pronuclear envelope reformation observed. In SNAP-treated eggs, a strong increase in intracellular calcium level was observed. NO effects were impaired in calcium-free or calcium limited medium, suggesting that that parthenogenetic activation of Xenopus oocytes with a NO donor was mainly calcium-dependent.
Collapse
Affiliation(s)
- Michal Jeseta
- Veterinary Research Institute, Department of Genetics and Reproduction, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marin M. Calcium Signaling in Xenopus oocyte. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:1073-94. [DOI: 10.1007/978-94-007-2888-2_49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Stewart AK, Shmukler BE, Vandorpe DH, Rivera A, Heneghan JF, Li X, Hsu A, Karpatkin M, O'Neill AF, Bauer DE, Heeney MM, John K, Kuypers FA, Gallagher PG, Lux SE, Brugnara C, Westhoff CM, Alper SL. Loss-of-function and gain-of-function phenotypes of stomatocytosis mutant RhAG F65S. Am J Physiol Cell Physiol 2011; 301:C1325-43. [PMID: 21849667 PMCID: PMC3233792 DOI: 10.1152/ajpcell.00054.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Four patients with overhydrated cation leak stomatocytosis (OHSt) exhibited the heterozygous RhAG missense mutation F65S. OHSt erythrocytes were osmotically fragile, with elevated Na and decreased K contents and increased cation channel-like activity. Xenopus oocytes expressing wild-type RhAG and RhAG F65S exhibited increased ouabain and bumetanide-resistant uptake of Li(+) and (86)Rb(+), with secondarily increased (86)Rb(+) influx sensitive to ouabain and to bumetanide. Increased RhAG-associated (14)C-methylammonium (MA) influx was severely reduced in RhAG F65S-expressing oocytes. RhAG-associated influxes of Li(+), (86)Rb(+), and (14)C-MA were pharmacologically distinct, and Li(+) uptakes associated with RhAG and RhAG F65S were differentially inhibited by NH(4)(+) and Gd(3+). RhAG-expressing oocytes were acidified and depolarized by 5 mM bath NH(3)/NH(4)(+), but alkalinized and depolarized by subsequent bath exposure to 5 mM methylammonium chloride (MA/MA(+)). RhAG F65S-expressing oocytes exhibited near-wild-type responses to NH(4)Cl, but MA/MA(+) elicited attenuated alkalinization and strong hyperpolarization. Expression of RhAG or RhAG F65S increased steady-state cation currents unaltered by bath Li(+) substitution or bath addition of 5 mM NH(4)Cl or MA/MA(+). These oocyte studies suggest that 1) RhAG expression increases oocyte transport of NH(3)/NH(4)(+) and MA/MA(+); 2) RhAG F65S exhibits gain-of-function phenotypes of increased cation conductance/permeability, and loss-of-function phenotypes of decreased and modified MA/MA(+) transport, and decreased NH(3)/NH(4)(+)-associated depolarization; and 3) RhAG transports NH(3)/NH(4)(+) and MA/MA(+) by distinct mechanisms, and/or the substrates elicit distinct cellular responses. Thus, RhAG F65S is a loss-of-function mutation for amine transport. The altered oocyte intracellular pH, membrane potential, and currents associated with RhAG or RhAG F65S expression may reflect distinct transport mechanisms.
Collapse
Affiliation(s)
- Andrew K Stewart
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kanjhan R, Bellingham MC. Penetratin peptide potentiates endogenous calcium-activated chloride currents in Xenopus oocytes. J Membr Biol 2011; 241:21-9. [PMID: 21442407 DOI: 10.1007/s00232-011-9359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 03/16/2011] [Indexed: 01/17/2023]
Abstract
Calcium-activated chloride currents (CaCCs) are required for epithelial electrolyte and fluid secretion, fertilization, sensory transduction and excitability of neurons and smooth muscle. Defolliculated Xenopus oocytes express a robust CaCC formed by a heterologous group of proteins including transmembrane protein 16A (TMEM16A) and bestrophins. Penetratin, a 17-amino acid peptide, potentiated endogenous oocyte CaCCs by ~50-fold at 10 μM, recorded using a two-electrode voltage clamp. CaCC potentiation was rapid and dose-dependent (EC50=3.2 μM). Penetratin-potentiated currents reversed at -18 mV and were dependent on the extracellular divalent cations present, showing positive regulation by Ca2+ and Mg2+ but effective block by Zn2+ (IC50=5.9 μM). Extracellular Cd2+, Cu2+ and Ba2+ resulted in bimodal responses: CaCC inhibition at low but potentiation at high concentrations. Intracellular BAPTA injection, which prevents activation of CaCCs, and the Cl- channel blockers niflumic acid and DIDS significantly reduced potentiation. In contrast, the K+ channel blockers Cs+, TEA, tertiapin-Q and halothane had no significant effect. This pharmacological profile is consistent with penetratin potentiation of zinc-sensitive CaCCs that are activated by influx of extracellular Ca2+. These findings may stimulate basic research on CaCCs in native cells and may lead to development of novel therapeutics targeting disorders caused by insufficient chloride secretion.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia,
| | | |
Collapse
|