1
|
Wason TD. A model integrating multiple processes of synchronization and coherence for information instantiation within a cortical area. Biosystems 2021; 205:104403. [PMID: 33746019 DOI: 10.1016/j.biosystems.2021.104403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
What is the form of dynamic, e.g., sensory, information in the mammalian cortex? Information in the cortex is modeled as a coherence map of a mixed chimera state of synchronous, phasic, and disordered minicolumns. The theoretical model is built on neurophysiological evidence. Complex spatiotemporal information is instantiated through a system of interacting biological processes that generate a synchronized cortical area, a coherent aperture. Minicolumn elements are grouped in macrocolumns in an array analogous to a phased-array radar, modeled as an aperture, a "hole through which radiant energy flows." Coherence maps in a cortical area transform inputs from multiple sources into outputs to multiple targets, while reducing complexity and entropy. Coherent apertures can assume extremely large numbers of different information states as coherence maps, which can be communicated among apertures with corresponding very large bandwidths. The coherent aperture model incorporates considerable reported research, integrating five conceptually and mathematically independent processes: 1) a damped Kuramoto network model, 2) a pumped area field potential, 3) the gating of nearly coincident spikes, 4) the coherence of activity across cortical lamina, and 5) complex information formed through functions in macrocolumns. Biological processes and their interactions are described in equations and a functional circuit such that the mathematical pieces can be assembled the same way the neurophysiological ones are. The model can be conceptually convolved over the specifics of local cortical areas within and across species. A coherent aperture becomes a node in a graph of cortical areas with a corresponding distribution of information.
Collapse
Affiliation(s)
- Thomas D Wason
- North Carolina State University, Department of Biological Sciences, Meitzen Laboratory, Campus Box 7617, 128 David Clark Labs, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
2
|
Yang GY, Liu FY, Li X, Zhu QR, Chen BJ, Liu LQ. Decreased expression of gap junction delta-2 (GJD2) messenger RNA and connexin 36 protein in form-deprivation myopia of guinea pigs. Chin Med J (Engl) 2019; 132:1700-1705. [PMID: 31283648 PMCID: PMC6759107 DOI: 10.1097/cm9.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND More than ten genome-wide association studies have identified the significant association between the gap junction delta-2 (GJD2) gene and myopia. However, no functional studies have been performed to confirm that this gene is correlated with myopia. This study aimed to observe how this gene changed in mRNA and protein level in the form-deprivation myopia (FDM) animal model. METHODS Four-week-old guinea pigs were randomly divided into two groups: control and FDM groups (n = 12 for each group). The right eyes of the FDM group were covered with opaque hemispherical plastic lenses for 3 weeks. For all the animals, refractive status, axial length (AL), and corneal radius of curvature were measured at baseline and 3 weeks later by streak retinoscope, A-scan ultrasonography, and keratometer, respectively. Retinal GJD2 mRNA expression and connexin 36 (Cx36) levels in FDM and control groups were measured by quantitative real-time PCR and Western blot analyses, respectively. Those results were compared using independent t test, Mann-Whitney U test, or paired t test. A significance level of P < 0.05 was used. RESULTS Three weeks later, the FDM group (form-deprived eyes) showed about a myopic shift of approximately -6.75 (-7.94 to -6.31) D, while the control group remained hyperopic with only a shift of -0.50 (-0.75 to 0.25) D (Z = -3.38, P < 0.01). The AL increased by 0.74 (0.61-0.76) and 0.10 (0.05-0.21) mm in FDM and control groups, respectively (Z = -3.37, P < 0.01). The relative mRNA expression of GJD2 in the FDM group decreased 31.58% more than the control group (t = 11.44, P < 0.01). The relative protein expression of CX36 on the retina was lowered by 37.72% in form-deprivation eyes as compared to the controls (t = 17.74, P < 0.01). CONCLUSION Both the mRNA expression of GJD2 and Cx36 protein amount were significantly decreased in the retina of FDM guinea pigs. This indicates that Cx36 is involved in FDM development, providing compensating evidence for the results obtained from genome-wide association studies.
Collapse
Affiliation(s)
- Guo-Yuan Yang
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng-Yang Liu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xia Li
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiu-Rong Zhu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing-Jie Chen
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Long-Qian Liu
- Department of Opthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Snipas M, Kraujalis T, Paulauskas N, Maciunas K, Bukauskas FF. Stochastic Model of Gap Junctions Exhibiting Rectification and Multiple Closed States of Slow Gates. Biophys J 2016; 110:1322-33. [PMID: 27028642 DOI: 10.1016/j.bpj.2016.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/03/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022] Open
Abstract
Gap-junction (GJ) channels formed from connexin (Cx) proteins provide direct pathways for electrical and metabolic cell-cell communication. Earlier, we developed a stochastic 16-state model (S16SM) of voltage gating of the GJ channel containing two pairs of fast and slow gates, each operating between open (o) and closed (c) states. However, experimental data suggest that gates may in fact contain two or more closed states. We developed a model in which the slow gate operates according to a linear reaction scheme, o↔c1↔c2, where c1 and c2 are initial-closed and deep-closed states that both close the channel fully, whereas the fast gate operates between the open state and the closed state and exhibits a residual conductance. Thus, we developed a stochastic 36-state model (S36SM) of GJ channel gating that is sensitive to transjunctional voltage (Vj). To accelerate simulation and eliminate noise in simulated junctional conductance (gj) records, we transformed an S36SM into a Markov chain 36-state model (MC36SM) of GJ channel gating. This model provides an explanation for well-established experimental data, such as delayed gj recovery after Vj gating, hysteresis of gj-Vj dependence, and the low ratio of functional channels to the total number of GJ channels clustered in junctional plaques, and it has the potential to describe chemically mediated gating, which cannot be reflected using an S16SM. The MC36SM, when combined with global optimization algorithms, can be used for automated estimation of gating parameters including probabilities of c1↔c2 transitions from experimental gj-time and gj-Vj dependencies.
Collapse
Affiliation(s)
- Mindaugas Snipas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Mathematical Modelling, Kaunas University of Technology, Kaunas, Lithuania
| | - Tadas Kraujalis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nerijus Paulauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kestutis Maciunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Feliksas F Bukauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York.
| |
Collapse
|
4
|
Falk MM, Bell CL, Kells Andrews RM, Murray SA. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions. BMC Cell Biol 2016; 17 Suppl 1:22. [PMID: 27230503 PMCID: PMC4896261 DOI: 10.1186/s12860-016-0087-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
Collapse
Affiliation(s)
- Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18049, USA.
| | - Cheryl L Bell
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, l5261, USA
| | | | - Sandra A Murray
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, l5261, USA.
| |
Collapse
|
5
|
Emmons-Bell M, Durant F, Hammelman J, Bessonov N, Volpert V, Morokuma J, Pinet K, Adams DS, Pietak A, Lobo D, Levin M. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms. Int J Mol Sci 2015; 16:27865-96. [PMID: 26610482 PMCID: PMC4661923 DOI: 10.3390/ijms161126065] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022] Open
Abstract
The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria.
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Fallon Durant
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Jennifer Hammelman
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Nicholas Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178, Russia;
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne 69622, France;
| | - Junji Morokuma
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Kaylinnette Pinet
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
| | | | - Daniel Lobo
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;
| | - Michael Levin
- Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; (M.E.-B.); (F.D.); (J.H.); (J.M.); (K.P.); (D.S.A.)
- Correspondence: ; Tel.: +1-617-627-6161; Fax: +1-617-627-6121
| |
Collapse
|
6
|
The ever-changing electrical synapse. Curr Opin Neurobiol 2014; 29:64-72. [PMID: 24955544 DOI: 10.1016/j.conb.2014.05.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/30/2014] [Indexed: 12/26/2022]
Abstract
A wealth of research has revealed that electrical synapses in the central nervous system exhibit a high degree of plasticity. Several recent studies, particularly in the retina and inferior olive, highlight this plasticity. Three classes of mechanisms can alter electrical coupling over time courses ranging from milliseconds to days. Changes of membrane conductance through synaptic input or spiking activity shunt current and decouple neurons on the millisecond time scale. Such activity can also alter coupling symmetry, rectifying electrical synapses. More stable rectification can be accomplished through molecular asymmetry of the synapse itself. On the minutes time scale, changes in connexin phosphorylation can change coupling quasi-stably with an order of magnitude dynamic range. On the hours to days time scale, changes in expression level of connexins alter coupling through the course of circadian time, over developmental time, or in response to tissue injury. Combined, all of these mechanisms allow electrical coupling to be highly dynamic, changing in response to demands at the whole network level, in small portions of a network, or at the level of an individual synapse.
Collapse
|
7
|
Turecek J, Yuen GS, Han VZ, Zeng XH, Bayer KU, Welsh JP. NMDA receptor activation strengthens weak electrical coupling in mammalian brain. Neuron 2014; 81:1375-1388. [PMID: 24656255 DOI: 10.1016/j.neuron.2014.01.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
Electrical synapses are formed by gap junctions and permit electrical coupling, which shapes the synchrony of neuronal ensembles. Here, we provide a direct demonstration of receptor-mediated strengthening of electrical coupling in mammalian brain. Electrical coupling in the inferior olive of rats was strengthened by activation of NMDA-type glutamate receptors (NMDARs), which were found at synaptic loci and at extrasynaptic loci 20-100 nm proximal to gap junctions. Electrical coupling was strengthened by pharmacological and synaptic activation of NMDARs, whereas costimulation of ionotropic non-NMDAR glutamate receptors transiently antagonized the effect of NMDAR activation. NMDAR-dependent strengthening (1) occurred despite increased input conductance, (2) induced Ca(2+)-influx microdomains near dendritic spines, (3) required activation of the Ca(2+)/calmodulin-dependent protein-kinase II, (4) was restricted to neurons that were weakly coupled, and (5) thus strengthened coupling, mainly between nonadjacent neurons. This provided a mechanism to expand the synchronization of rhythmic membrane potential oscillations by chemical neurotransmitter input.
Collapse
Affiliation(s)
- Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Genevieve S Yuen
- Department of Psychiatry, New York Presbyterian Hospital-Weill Cornell Medical College, 525 East 68(th) Street, New York, NY 10065, USA
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9(th) Avenue, Seattle, WA 98155, USA
| | - Xiao-Hui Zeng
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9(th) Avenue, Seattle, WA 98155, USA
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado-Denver School of Medicine, 12800 E. 19(th) Avenue, Aurora, CO 80045, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9(th) Avenue, Seattle, WA 98155, USA; Department of Pediatrics, University of Washington, 1959 N.E. Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Thévenin AF, Kowal TJ, Fong JT, Kells RM, Fisher CG, Falk MM. Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. Physiology (Bethesda) 2014; 28:93-116. [PMID: 23455769 DOI: 10.1152/physiol.00038.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.
Collapse
Affiliation(s)
- Anastasia F Thévenin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lynn BD, Li X, Nagy JI. Under construction: building the macromolecular superstructure and signaling components of an electrical synapse. J Membr Biol 2012; 245:303-17. [PMID: 22722764 PMCID: PMC3506381 DOI: 10.1007/s00232-012-9451-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
A great deal is now known about the protein components of tight junctions and adherens junctions, as well as how these are assembled. Less is known about the molecular framework of gap junctions, but these also have membrane specializations and are subject to regulation of their assembly and turnover. Thus, it is reasonable to consider that these three types of junctions may share macromolecular commonalities. Indeed, the tight junction scaffolding protein zonula occluden-1 (ZO-1) is also present at adherens and gap junctions, including neuronal gap junctions. On the basis of these earlier observations, we more recently found that two additional proteins, AF6 and MUPP1, known to be associated with ZO-1 at tight and adherens junctions, are also components of neuronal gap junctions in rodent brain and directly interact with connexin36 (Cx36) that forms these junctions. Here, we show by immunofluorescence labeling that the cytoskeletal-associated protein cingulin, commonly found at tight junctions, is also localized at neuronal gap junctions throughout the central nervous system. In consideration of known functions related to ZO-1, AF6, MUPP1, and cingulin, our results provide a context in which to examine functional relationships between these proteins at Cx36-containing electrical synapses in brain--specifically, how they may contribute to regulation of transmission at these synapses, and how they may govern gap junction channel assembly and/or disassembly.
Collapse
Affiliation(s)
- B. D. Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|