1
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
2
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Hsieh YH, Huang YJ, Zhang H, Liu Q, Lu Y, Yang H, Houghton J, Jiang C, Sui SF, Tai PC. Dissecting structures and functions of SecA-only protein-conducting channels: ATPase, pore structure, ion channel activity, protein translocation, and interaction with SecYEG/SecDF•YajC. PLoS One 2017; 12:e0178307. [PMID: 28575061 PMCID: PMC5456053 DOI: 10.1371/journal.pone.0178307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022] Open
Abstract
SecA is an essential protein in the major bacterial Sec-dependent translocation pathways. E. coli SecA has 901 aminoacyl residues which form multi-functional domains that interact with various ligands to impart function. In this study, we constructed and purified tethered C-terminal deletion fragments of SecA to determine the requirements for N-terminal domains interacting with lipids to provide ATPase activity, pore structure, ion channel activity, protein translocation and interactions with SecYEG-SecDF•YajC. We found that the N-terminal fragment SecAN493 (SecA1-493) has low, intrinsic ATPase activity. Larger fragments have greater activity, becoming highest around N619-N632. Lipids greatly stimulated the ATPase activities of the fragments N608-N798, reaching maximal activities around N619. Three helices in amino-acyl residues SecA619-831, which includes the "Helical Scaffold" Domain (SecA619-668) are critical for pore formation, ion channel activity, and for function with SecYEG-SecDF•YajC. In the presence of liposomes, N-terminal domain fragments of SecA form pore-ring structures at fragment-size N640, ion channel activity around N798, and protein translocation capability around N831. SecA domain fragments ranging in size between N643-N669 are critical for functional interactions with SecYEG-SecDF•YajC. In the presence of liposomes, inactive C-terminal fragments complement smaller non-functional N-terminal fragments to form SecA-only pore structures with ion channel activity and protein translocation ability. Thus, SecA domain fragment interactions with liposomes defined critical structures and functional aspects of SecA-only channels. These data provide the mechanistic basis for SecA to form primitive, low-efficiency, SecA-only protein-conducting channels, as well as the minimal parameters for SecA to interact functionally with SecYEG-SecDF•YajC to form high-efficiency channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Ying-ju Huang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Qian Liu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Yang Lu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - John Houghton
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing China
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
4
|
Hsieh YH, Zhang H, Jin J, Dai C, Jiang C, Wang B, Tai PC. Biphasic actions of SecA inhibitors on Prl/Sec suppressors: Possible physiological roles of SecA-only channels. Biochem Biophys Res Commun 2017; 482:296-300. [PMID: 27856243 DOI: 10.1016/j.bbrc.2016.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 11/30/2022]
Abstract
SecA is an essential component in the bacterial Sec-dependent protein translocation process. We previously showed that in addition to the ubiquitous, high-affinity SecYEG-SecDF·YajC protein translocation channel, there is a low-affinity SecA-only channel that elicits ion channel activity and promotes protein translocation. The SecA-only channels are less efficient, and like Prl suppressors, lack signal peptide specificity; they function in the absence of signal peptides. The presence of SecYEG-SecDF·YajC alters the sensitivity of ATPase inhibitor Rose Bengal. In this study, we found that the suppressor membranes are much more resistant to inhibition by Rose Bengal. Similar results have been found for a SecA-specific inhibitor. Moreover, biphasic responses of inhibition of ion current and protein translocation activities were observed for many PrlA/SecY and PrlG/SecE suppressor membranes, with a low IC50 value similar to that of the SecA-only channels and a very high IC50. However, the suppressor strains are as sensitive to the inhibitor as the parental strain, suggesting that SecA-only channels have some essential physiological function(s) in the cells that are inhibited by the specific SecA inhibitor.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Hao Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jinshan Jin
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
5
|
Jin J, Hsieh YH, Cui J, Damera K, Dai C, Chaudhary AS, Zhang H, Yang H, Cao N, Jiang C, Vaara M, Wang B, Tai PC. Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram-Negative Bacteria. ChemMedChem 2016; 11:2511-2521. [PMID: 27753464 PMCID: PMC5189635 DOI: 10.1002/cmdc.201600421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Indexed: 11/07/2022]
Abstract
With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Krishna Damera
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chaofeng Dai
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Arpana S. Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Nannan Cao
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Martti Vaara
- Division of Clinical Microbiology, Helsinki University Hospital, FI-00029 HUSLAB, Helsinki, Finland, and Northern Antibiotics Ltd, FI-00720, Helsinki, Finland
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
6
|
Cui J, Jin J, Chaudhary AS, Hsieh YH, Zhang H, Dai C, Damera K, Chen W, Tai PC, Wang B. Design, Synthesis and Evaluation of Triazole-Pyrimidine Analogues as SecA Inhibitors. ChemMedChem 2016; 11:43-56. [PMID: 26607404 PMCID: PMC4778717 DOI: 10.1002/cmdc.201500447] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 01/15/2023]
Abstract
SecA, a key component of the bacterial Sec-dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA-21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure-activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA-dependent protein-conducting channel activity and protein translocation activity at low- to sub-micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin-resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug-affinity-responsive target stability and protein pull-down assays are consistent with SecA as a target for these compounds.
Collapse
Affiliation(s)
- Jianmei Cui
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | | | - Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Chaofeng Dai
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Krishna Damera
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Weixuan Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA.
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
7
|
Crowther GJ, Weller SM, Jones JC, Weaver T, Fan E, Van Voorhis WC, Rosen H. The Bacterial Sec Pathway of Protein Export: Screening and Follow-Up. ACTA ACUST UNITED AC 2015; 20:921-6. [PMID: 25987586 DOI: 10.1177/1087057115587458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
Most noncytoplasmic bacterial proteins are exported through the SecYEG channel in the cytoplasmic membrane. This channel and its associated proteins, collectively referred to as the Sec pathway, have strong appeal as a possible antibiotic drug target, yet progress toward new drugs targeting this pathway has been slow, perhaps due partly to many researchers' focus on a single component, the SecA ATPase. Here we report on a pathway-based screen in which beta-galactosidase (β-gal) activity is trapped in the cytoplasm of Escherichia coli cells if translocation through SecYEG is impaired. Several hit compounds passed a counterscreen distinguishing between β-gal overexpression and impaired β-gal export. However, the most extensively characterized hit gave limited E. coli growth inhibition (EC(50) ≥ 400 µM), and growth inhibition could not be unambiguously linked to the compound's effect on the Sec pathway. Our study and others underscore the challenges of finding potent druglike hits against this otherwise promising drug target.
Collapse
Affiliation(s)
| | - Sara M Weller
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jackson C Jones
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tatiana Weaver
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Henry Rosen
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Hsieh YH, Zou J, Jin JS, Yang H, Chen Y, Jiang C, Yang J, Tai PC. Monitoring channel activities of proteoliposomes with SecA and Cx26 gap junction in single oocytes. Anal Biochem 2015; 480:58-66. [PMID: 25862083 DOI: 10.1016/j.ab.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Establishing recordable channels in membranes of oocytes formed by expressing exogenous complementary DNA (cDNA) or messenger RNA (mRNA) has contributed greatly to understanding the molecular mechanisms of channel functions. Here, we report the extension of this semi-physiological system for monitoring the channel activity of preassembled membrane proteins in single cell oocytes by injecting reconstituted proteoliposomes along with substrates or regulatory molecules. We build on the observation that SecA from various bacteria forms active protein-conducting channels with injection of proteoliposomes, protein precursors, and ATP-Mg(2+). Such activity was enhanced by reconstituted SecYEG-SecDF•YajC liposome complexes that could be monitored easily and efficiently, providing correlation of in vitro and intact cell functionality. In addition, inserting reconstituted gap junction Cx26 liposomes into the oocytes allowed the demonstration of intracellular/extracellular Ca(2+)-regulated hemi-channel activities. The channel activities can be detected rapidly after injection, can be monitored for various effectors, and are dependent on specific exogenous lipid compositions. This simple and effective functional system with low endogenous channel activity should have broad applications for monitoring the specific channel activities of complex interactions of purified membrane proteins with their effectors and regulatory molecules.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Juan Zou
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Yanyi Chen
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Yang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
9
|
Hsieh YH, Huang YJ, Jin JS, Yu L, Yang H, Jiang C, Wang B, Tai PC. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities. Biochem Biophys Res Commun 2014; 454:308-12. [PMID: 25450394 DOI: 10.1016/j.bbrc.2014.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes.
Collapse
Affiliation(s)
- Ying-Hsin Hsieh
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Ying-Ju Huang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Jin-Shan Jin
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Liyan Yu
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Hsiuchin Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Chun Jiang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Binghe Wang
- Department of Chemistry, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States
| | - Phang C Tai
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
10
|
Singh R, Kraft C, Jaiswal R, Sejwal K, Kasaragod VB, Kuper J, Bürger J, Mielke T, Luirink J, Bhushan S. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. J Biol Chem 2014; 289:7190-7199. [PMID: 24443566 DOI: 10.1074/jbc.m113.506634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is an ATP-dependent molecular motor pumping secretory and outer membrane proteins across the cytoplasmic membrane in bacteria. SecA associates with the protein-conducting channel, the heterotrimeric SecYEG complex, in a so-called posttranslational manner. A recent study further showed binding of a monomeric state of SecA to the ribosome. However, the true oligomeric state of SecA remains controversial because SecA can also form functional dimers, and high-resolution crystal structures exist for both the monomer and the dimer. Here we present the cryo-electron microscopy structures of Escherichia coli SecA bound to the ribosome. We show that not only a monomeric SecA binds to the ribosome but also that two copies of SecA can be observed that form an elongated dimer. Two copies of SecA completely surround the tunnel exit, providing a unique environment to the nascent polypeptides emerging from the ribosome. We identified the N-terminal helix of SecA required for a stable association with the ribosome. The structures indicate a possible function of the dimeric form of SecA at the ribosome.
Collapse
Affiliation(s)
- Rajkumar Singh
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Christian Kraft
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Rahul Jaiswal
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Kushal Sejwal
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany
| | - Jörg Bürger
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Ziegelstrasse 5-8, 10117 Berlin, Germany
| | - Thorsten Mielke
- UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Ziegelstrasse 5-8, 10117 Berlin, Germany
| | - Joen Luirink
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Shashi Bhushan
- Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Str. 2, 97078 Würzburg, Germany; Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
11
|
You Z, Liao M, Zhang H, Yang H, Pan X, Houghton JE, Sui SF, Tai PC. Phospholipids induce conformational changes of SecA to form membrane-specific domains: AFM structures and implication on protein-conducting channels. PLoS One 2013; 8:e72560. [PMID: 23977317 PMCID: PMC3745498 DOI: 10.1371/journal.pone.0072560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/12/2013] [Indexed: 11/23/2022] Open
Abstract
SecA, an essential component of the Sec machinery, exists in a soluble and a membrane form in Escherichia coli. Previous studies have shown that the soluble SecA transforms into pore structures when it interacts with liposomes, and integrates into membranes containing SecYEG in two forms: SecAS and SecAM; the latter exemplified by two tryptic membrane-specific domains, an N-terminal domain (N39) and a middle M48 domain (M48). The formation of these lipid-specific domains was further investigated. The N39 and M48 domains are induced only when SecA interacts with anionic liposomes. Additionally, the N-terminus, not the C-terminus of SecA is required for inducing such conformational changes. Proteolytic treatment and sequence analyses showed that liposome-embedded SecA yields the same M48 and N39 domains as does the membrane-embedded SecA. Studies with chemical extraction and resistance to trypsin have also shown that these proteoliposome-embedded SecA fragments exhibit the same stability and characteristics as their membrane-embedded SecA equivalents. Furthermore, the cloned lipid-specific domains N39 and M48, but not N68 or C34, are able to form partial, but imperfect ring-like structures when they interact with phospholipids. These ring-like structures are characteristic of a SecA pore-structure, suggesting that these domains contribute part of the SecA-dependent protein-conducting channel. We, therefore, propose a model in which SecA alone is capable of forming a lipid-specific, asymmetric dimer that is able to function as a viable protein-conducting channel in the membrane, without any requirement for SecYEG.
Collapse
Affiliation(s)
- Zhipeng You
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Meijiang Liao
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Hao Zhang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Hsiuchin Yang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Xijian Pan
- School of Life Sciences, Center for Structural Biology, Tsinghua University, Beijing, China
| | - John E. Houghton
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
| | - Sen-fang Sui
- School of Life Sciences, Center for Structural Biology, Tsinghua University, Beijing, China
| | - Phang C. Tai
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhang H, Hsieh YH, Lin BR, Yu L, Yang H, Jiang C, Sui SF, Tai PC. Specificity of SecYEG for PhoA precursors and SecA homologs on SecA protein-conducting channels. Biochem Biophys Res Commun 2013; 437:212-216. [PMID: 23791875 DOI: 10.1016/j.bbrc.2013.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022]
Abstract
Previous studies showed that Escherichia coli membranes depleted of SecYEG are capable of translocating certain precursor proteins, but not other precursors such as pPhoA, indicating a differential requirement for SecYEG. In this study, we examined the role of SecYEG in pPhoA translocation using a purified reconstituted SecA-liposomes system. We found that translocation of pPhoA, in contrast to that of pOmpA, requires the presence of purified SecYEG. A differential specificity of the SecYEG was also revealed in its interaction with SecA: EcSecYEG did not enhance SecA-mediated pOmpA translocation by purified SecA either from Pseudomonas aeruginosa or Bacillus subtilis. Neither was SecYEG required for eliciting ion channel activity, which could be opened by unfolded pPhoA or unfolded PhoA. Addition of the SecYEG complex did restore the specificity of signal peptide recognition in the ion-channel activity. We concluded that SecYEG confers specificity in interacting with protein precursors and SecAs.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Bor-Ruei Lin
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Liyan Yu
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| | - Sen-Fang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Phang C Tai
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
13
|
Yang CK, Lu CD, Tai PC. Differential expression of secretion machinery during bacterial growth: SecY and SecF decrease while SecA increases during transition from exponential phase to stationary phase. Curr Microbiol 2013; 67:682-7. [PMID: 23852076 DOI: 10.1007/s00284-013-0421-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
Transcription of many house-keeping genes, including secY and some other sec genes, decreases in the transition from the exponential phase to the stationary phase (feast to famine) in Bacillus subtilis. Unexpectedly and in contradiction to earlier reports, enhanced transcription was observed for another group of sec genes, including secA which codes for an essential ATPase for protein secretion. Consistent with the transcription data, the SecA protein of B. subtilis increases significantly in the stationary phase. Immunoblot analyses of Sec proteins during the transition in Escherichia coli also revealed the pronounced decreases of SecY and SecF and the increase of SecA, resulting in drastic increases of SecA/SecY and SecA/SecF ratios from exponential to stationary phases. The differential expression of Sec proteins in the stationary phase suggests the possibility of specific physiological functions.
Collapse
Affiliation(s)
- Chun-Kai Yang
- Department of Biology, Center of Biotechnology and Drug Design, Georgia State University, 592 PSC, 161 Jesse Hill Jr. Road, Atlanta, GA, 30303, USA
| | | | | |
Collapse
|
14
|
Cui J, Jin J, Hsieh YH, Yang H, Ke B, Damera K, Tai PC, Wang B. Design, Synthesis and Biological Evaluation of Rose Bengal Analogues as SecA Inhibitors. ChemMedChem 2013; 8:1384-93. [DOI: 10.1002/cmdc.201300216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 11/06/2022]
|
15
|
Hsieh YH, Zhang H, Wang H, Yang H, Jiang C, Sui SF, Tai PC. Reconstitution of functionally efficient SecA-dependent protein-conducting channels: transformation of low-affinity SecA-liposome channels to high-affinity SecA-SecYEG-SecDF·YajC channels. Biochem Biophys Res Commun 2013; 431:388-92. [PMID: 23337498 DOI: 10.1016/j.bbrc.2013.01.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
Abstract
Previous work showed that SecA alone can promote protein translocation and ion-channel activity in liposomes, and that SecYEG increases efficiency as well as signal peptide specificity. We now report that SecDF·YajC further increases translocation and ion-channel activity. These activities of reconstituted SecA-SecYEG-SecDF·YajC-liposome are almost the same as those of native membranes, indicating the transformation of reconstituted functional high-affinity protein-conducting channels from the low-affinity SecA-channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology and Center of Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|