1
|
Higgins AJ, Flynn AJ, Marconnet A, Musgrove LJ, Postis VLG, Lippiat JD, Chung CW, Ceska T, Zoonens M, Sobott F, Muench SP. Cycloalkane-modified amphiphilic polymers provide direct extraction of membrane proteins for CryoEM analysis. Commun Biol 2021; 4:1337. [PMID: 34824357 PMCID: PMC8617058 DOI: 10.1038/s42003-021-02834-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Collapse
Affiliation(s)
- Anna J Higgins
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex J Flynn
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anaïs Marconnet
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France
| | - Laura J Musgrove
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Vincent L G Postis
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Chun-Wa Chung
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | | | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005, Paris, France.
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le dévelopement de la recherche scientifique, F-75005, Paris, France.
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
3
|
Marconnet A, Michon B, Le Bon C, Giusti F, Tribet C, Zoonens M. Solubilization and Stabilization of Membrane Proteins by Cycloalkane-Modified Amphiphilic Polymers. Biomacromolecules 2020; 21:3459-3467. [DOI: 10.1021/acs.biomac.0c00929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anaïs Marconnet
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Baptiste Michon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Christel Le Bon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Fabrice Giusti
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| |
Collapse
|
4
|
Celia H, Noinaj N, Buchanan SK. Structure and Stoichiometry of the Ton Molecular Motor. Int J Mol Sci 2020; 21:E375. [PMID: 31936081 PMCID: PMC7014051 DOI: 10.3390/ijms21020375] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The Ton complex is a molecular motor that uses the proton gradient at the inner membrane of Gram-negative bacteria to generate force and movement, which are transmitted to transporters at the outer membrane, allowing the entry of nutrients into the periplasmic space. Despite decades of investigation and the recent flurry of structures being reported by X-ray crystallography and cryoEM, the mode of action of the Ton molecular motor has remained elusive, and the precise stoichiometry of its subunits is still a matter of debate. This review summarizes the latest findings on the Ton system by presenting the recently reported structures and related reports on the stoichiometry of the fully assembled complex.
Collapse
Affiliation(s)
- Herve Celia
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA;
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| |
Collapse
|
5
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
6
|
Midtgaard SR, Darwish TA, Pedersen MC, Huda P, Larsen AH, Jensen GV, Kynde SAR, Skar‐Gislinge N, Nielsen AJZ, Olesen C, Blaise M, Dorosz JJ, Thorsen TS, Venskutonytė R, Krintel C, Møller JV, Frielinghaus H, Gilbert EP, Martel A, Kastrup JS, Jensen PE, Nissen P, Arleth L. Invisible detergents for structure determination of membrane proteins by small‐angle neutron scattering. FEBS J 2017; 285:357-371. [DOI: 10.1111/febs.14345] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Søren Roi Midtgaard
- Structural Biophysics X‐ray and Neutron Science The Niels Bohr Institute University of Copenhagen Denmark
| | - Tamim A. Darwish
- National Deuteration Facility Australian Nuclear Science and Technology Organization Lucas Heights Australia
| | - Martin Cramer Pedersen
- Structural Biophysics X‐ray and Neutron Science The Niels Bohr Institute University of Copenhagen Denmark
- Department of Applied Mathematics Research School of Physics and Engineering Australian National University Canberra Australia
| | - Pie Huda
- Structural Biophysics X‐ray and Neutron Science The Niels Bohr Institute University of Copenhagen Denmark
| | - Andreas Haahr Larsen
- Structural Biophysics X‐ray and Neutron Science The Niels Bohr Institute University of Copenhagen Denmark
| | - Grethe Vestergaard Jensen
- Structural Biophysics X‐ray and Neutron Science The Niels Bohr Institute University of Copenhagen Denmark
| | | | - Nicholas Skar‐Gislinge
- Structural Biophysics X‐ray and Neutron Science The Niels Bohr Institute University of Copenhagen Denmark
| | | | - Claus Olesen
- Department of Biomedicine Aarhus University Denmark
| | - Mickael Blaise
- Institut de Recherche en Infectiologie de Montpellier CNRS Université de Montpellier France
- Centre for Carbohydrate Recognition and Signaling Department of Molecular Biology Aarhus University Denmark
| | - Jerzy Józef Dorosz
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Thor Seneca Thorsen
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Raminta Venskutonytė
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Christian Krintel
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Jesper V. Møller
- Department of Biomedicine Aarhus University Denmark
- Department of Molecular Biology and Genetics Centre for Membrane Pumps in Cells and Disease – PUMPkin Danish National Research Foundation Aarhus University Denmark
| | | | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering Australian Nuclear Science and Technology Organization Lucas Heights Australia
| | | | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences University of Copenhagen Denmark
| | - Poul Erik Jensen
- Copenhagen Plant Science Center University of Copenhagen Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics Centre for Membrane Pumps in Cells and Disease – PUMPkin Danish National Research Foundation Aarhus University Denmark
- DANDRITE Nordic‐EMBL Partnership for Molecular Medicine Aarhus University Denmark
| | - Lise Arleth
- Structural Biophysics X‐ray and Neutron Science The Niels Bohr Institute University of Copenhagen Denmark
| |
Collapse
|
7
|
Gabel F. Applications of SANS to Study Membrane Protein Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:201-214. [DOI: 10.1007/978-981-10-6038-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle. J Bacteriol 2015; 197:3433-45. [PMID: 26283773 DOI: 10.1128/jb.00484-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport across the outer membrane for nutrients that are too large, too scarce, or too important for diffusion-limited transport. A proton gradient across the cytoplasmic membrane is converted by a multiprotein complex into mechanical energy that drives high-affinity active transport across the outer membrane. This system is also of interest since one of its uses in pathogenic bacteria is for competition with the host for the essential element iron. Understanding the mechanism of the TonB system will allow design of antibiotics targeting iron acquisition.
Collapse
|
9
|
Sverzhinsky A, Chung JW, Deme JC, Fabre L, Levey KT, Plesa M, Carter DM, Lypaczewski P, Coulton JW. Membrane Protein Complex ExbB4-ExbD1-TonB1 from Escherichia coli Demonstrates Conformational Plasticity. J Bacteriol 2015; 197:1873-85. [PMID: 25802296 PMCID: PMC4420915 DOI: 10.1128/jb.00069-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Iron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-tagged exbB-exbD and S-tagged tonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB from Escherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB₄-ExbD₂ complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB₄-ExbD₁-TonB₁. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB₄-ExbD₁-TonB₁. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization. IMPORTANCE Receptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and ExbD, the Ton system links the PMF to OM transport. Blocking iron uptake by targeting a vital nanomachine holds promise in therapeutics. Despite much research, the stoichiometry, structural arrangement, and molecular mechanism of the CM-embedded ExbB-ExbD-TonB complex remain unreported. Here we demonstrate in vitro evidence of ExbB₄-ExbD₁-TonB₁ complexes. Using 3D EM, we reconstructed the complex in three conformational states that show variable ExbD-TonB heterodimerization. Our structural observations form the basis of a model for TonB-mediated iron acquisition.
Collapse
Affiliation(s)
| | - Jacqueline W Chung
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Justin C Deme
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Kristian T Levey
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria Plesa
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David M Carter
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys 2014; 564:327-43. [PMID: 25449655 DOI: 10.1016/j.abb.2014.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
Abstract
Amphipols (APols) are a family of amphipathic polymers designed to keep transmembrane proteins (TMPs) soluble in aqueous solutions in the absence of detergent. APols have proven remarkably efficient at (i) stabilizing TMPs, as compared to detergent solutions, and (ii) folding them from a denatured state to a native, functional one. The underlying physical-chemical mechanisms are discussed.
Collapse
|
11
|
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.
Collapse
Affiliation(s)
- Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Jean-Luc Popot
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| |
Collapse
|
12
|
Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot JL. Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol 2014; 247:909-24. [PMID: 24652511 DOI: 10.1007/s00232-014-9656-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022]
Abstract
Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, ~4 and ~5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be ~120% D2O. In (1)H-(1)H nuclear overhauser effect NMR spectra, its contribution is reduced to ~6% of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.
Collapse
Affiliation(s)
- Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique and Université Paris-7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|