1
|
CryoEM reconstructions of membrane proteins solved in several amphipathic solvents, nanodisc, amphipol and detergents, yield amphipathic belts of similar sizes corresponding to a common ordered solvent layer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183693. [PMID: 34271006 DOI: 10.1016/j.bbamem.2021.183693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
To maintain membrane proteins soluble in aqueous solution, amphipathic compounds are used to shield the hydrophobic patch of their membrane insertion, which forms a belt around the protein. This amphipathic belt is seldom looked at due to the difficulty to visualize it. Cryo-EM is now offering this possibility, where belts are visible in 3D reconstructions. We investigated membrane proteins solved in nanodiscs, amphipols or detergents to analyze whether the nature of the amphipathic compound influences the belt size in 3D reconstructions. We identified belt boundaries in map-density distributions and measured distances for every reconstruction. We showed that all the belts create on average similar reconstructions, whether they originate from the same protein, or from protein from different shapes and structures. There is no difference among detergents or types of nanodisc used. These observations illustrate that the belt observed in 3D reconstructions corresponds to the minimum ordered layer around membrane proteins.
Collapse
|
2
|
Zampieri V, Hilpert C, Garnier M, Gestin Y, Delolme S, Martin J, Falson P, Launay G, Chaptal V. The Det.Belt Server: A Tool to Visualize and Estimate Amphipathic Solvent Belts around Membrane Proteins. MEMBRANES 2021; 11:459. [PMID: 34206634 PMCID: PMC8307592 DOI: 10.3390/membranes11070459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022]
Abstract
Detergents wrap around membrane proteins to form a belt covering the hydrophobic part of the protein serving for membrane insertion and interaction with lipids. The number of detergent monomers forming this belt is usually unknown to investigators, unless dedicated detergent quantification is undertaken, which for many projects is difficult to setup. Yet, having an approximate knowledge of the amount of detergent forming the belt is extremely useful, to better grasp the protein of interest in interaction with its direct environment rather than picturing the membrane protein "naked". We created the Det.Belt server to dress up membrane proteins and represent in 3D the bulk made by detergent molecules wrapping in a belt. Many detergents are included in a database, allowing investigators to screen in silico the effect of different detergents around their membrane protein. The input number of detergents is changeable with fast recomputation of the belt for interactive usage. Metrics representing the belt are readily available together with scripts to render quality 3D images for publication. The Det.Belt server is a tool for biochemists to better grasp their sample.
Collapse
Affiliation(s)
- Veronica Zampieri
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, CEDEX 9, 38042 Grenoble, France;
| | - Cécile Hilpert
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Mélanie Garnier
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Yannick Gestin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Sébastien Delolme
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Juliette Martin
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Pierre Falson
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Guillaume Launay
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, IBCP, 7 Passage du Vercors, 69367 Lyon, France; (C.H.); (M.G.); (Y.G.); (S.D.); (J.M.); (P.F.)
| |
Collapse
|
3
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
4
|
Tifrea DF, Pal S, le Bon C, Cocco MJ, Zoonens M, de la Maza LM. Improved protection against Chlamydia muridarum using the native major outer membrane protein trapped in Resiquimod-carrying amphipols and effects in protection with addition of a Th1 (CpG-1826) and a Th2 (Montanide ISA 720) adjuvant. Vaccine 2020; 38:4412-4422. [PMID: 32386746 DOI: 10.1016/j.vaccine.2020.04.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/17/2020] [Accepted: 04/26/2020] [Indexed: 01/15/2023]
Abstract
A new vaccine formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) and amphipols was assessed in an intranasal (i.n.) challenge mouse model. nMOMP was trapped either in amphipol A8-35 (nMOMP/A8-35) or in A8-35 conjugated with Resiquimod (nMOMP/Resiq-A8-35), a TLR7/8 agonist added as adjuvant. The effects of free Resiquimod and/or additional adjuvants, Montanide ISA 720 (TLR independent) and CpG-1826 (TLR9 agonist), were also evaluated. Immunization with nMOMP/A8-35 alone administered i.n. was used as negative adjuvant-control group, whereas immunizations with C. muridarum elementary bodies (EBs) and MEM buffer, administered i.n., were used as positive and negative controls, respectively. Vaccinated mice were challenged i.n. with C. muridarum and changes in body weight, lungs weight and recovery of Chlamydia from the lungs were evaluated. All the experimental groups showed protection when compared with the negative control group. Resiquimod alone produced weak humoral and cellular immune responses, but both Montanide and CpG-1826 showed significant increases in both responses. The addition of CpG-1826 alone switched immune responses to be Th1-biased. The most robust protection was elicited in mice immunized with the three adjuvants and conjugated Resiquimod. Increased protection induced by the Resiquimod covalently linked to A8-35, in the presence of Montanide and CpG-1826 was established based on a set of parameters: (1) the ability of the antibodies to neutralize C. muridarum; (2) the increased proliferation of T-cells in vitro accompanied by higher production of IFN-γ, IL-6 and IL-17; (3) the decreased body weight loss over the 10 days after challenge; and (4) the number of IFUs recovered from the lungs at day 10 post challenge. In conclusion, a vaccine formulated with the C. muridarum nMOMP bound to amphipols conjugated with Resiquimod enhances protective immune responses that can be further improved by the addition of Montanide and CpG-1826.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Christel le Bon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, F-75005 Paris, France
| | - Melanie J Cocco
- Department of Molecular Biology and Biochemistry, Department of Pharmaceutical Sciences, 1218 Natural Sciences, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France; Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le développement de la recherche scientifique, F-75005 Paris, France.
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
5
|
Liu WS, Wang RR, Sun YZ, Li WY, Li HL, Liu CL, Ma Y, Wang RL. Exploring the effect of inhibitor AKB-9778 on VE-PTP by molecular docking and molecular dynamics simulation. J Cell Biochem 2019; 120:17015-17029. [PMID: 31125141 DOI: 10.1002/jcb.28963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 01/02/2023]
Abstract
Diabetic macular edema, also known as diabetic eye disease, is mainly caused by the overexpression of vascular endothelial protein tyrosine phosphatase (VE-PTP) at hypoxia/ischemic. AKB-9778 is a known VE-PTP inhibitor that can effectively interact with the active site of VE-PTP to inhibit the activity of VE-PTP. However, the binding pattern of VE-PTP with AKB-9778 and the dynamic implications of AKB-9778 on VE-PTP system at the molecular level are poorly understood. Through molecular docking, it was found that the AKB-9778 was docked well in the binding pocket of VE-PTP by the interactions of hydrogen bond and Van der Waals. Furthermore, after molecular dynamic simulations on VE-PTP system and VE-PTP AKB-9778 system, a series of postdynamic analyses found that the flexibility and conformation of the active site undergone an obvious transition after VE-PTP binding with AKB-9778. Moreover, by constructing the RIN, it was found that the different interactions in the active site were the detailed reasons for the conformational differences between these two systems. Thus, the finding here might provide a deeper understanding of AKB-9778 as VE-PTP Inhibitor.
Collapse
Affiliation(s)
- Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hong-Lian Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chi-Lu Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Wang RR, Ma Y, Du S, Li WY, Sun YZ, Zhou H, Wang RL. Exploring the reason for increased activity of SHP2 caused by D61Y mutation through molecular dynamics. Comput Biol Chem 2019; 78:133-143. [DOI: 10.1016/j.compbiolchem.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
|
7
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
8
|
Abstract
Which properties of the membrane environment are essential for the folding and oligomerization of transmembrane proteins? Because the lipids that surround membrane proteins in situ spontaneously organize into bilayers, it may seem intuitive that interactions with the bilayer provide both hydrophobic and topological constraints that help the protein to achieve a stable and functional three-dimensional structure. However, one may wonder whether folding is actually driven by the membrane environment or whether the folded state just reflects an adaptation of integral proteins to the medium in which they function. Also, apart from the overall transmembrane orientation, might the asymmetry inherent in biosynthesis processes cause proteins to fold to out-of-equilibrium, metastable topologies? Which of the features of a bilayer are essential for membrane protein folding, and which are not? To which extent do translocons dictate transmembrane topologies? Recent data show that many membrane proteins fold and oligomerize very efficiently in media that bear little similarity to a membrane, casting doubt on the essentiality of many bilayer constraints. In the following discussion, we argue that some of the features of bilayers may contribute to protein folding, stability and regulation, but they are not required for the basic three-dimensional structure to be achieved. This idea, if correct, would imply that evolution has steered membrane proteins toward an accommodation to biosynthetic pathways and a good fit into their environment, but that their folding is not driven by the latter or dictated by insertion apparatuses. In other words, the three-dimensional structure of membrane proteins is essentially determined by intramolecular interactions and not by bilayer constraints and insertion pathways. Implications are discussed.
Collapse
Affiliation(s)
- Jean-Luc Popot
- Centre National de la Recherche Scientifique/Université Paris-7 UMR 7099 , Institut de Biologie Physico-Chimique (FRC 550), 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University , Box 208114, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
9
|
Giusti F, Kessler P, Hansen RW, Della Pia EA, Le Bon C, Mourier G, Popot JL, Martinez KL, Zoonens M. Synthesis of a Polyhistidine-bearing Amphipol and its Use for Immobilizing Membrane Proteins. Biomacromolecules 2015; 16:3751-61. [DOI: 10.1021/acs.biomac.5b01010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fabrice Giusti
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Pascal Kessler
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Randi Westh Hansen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Eduardo A. Della Pia
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Christel Le Bon
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Gilles Mourier
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Jean-Luc Popot
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Karen L. Martinez
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Manuela Zoonens
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| |
Collapse
|
10
|
Calabrese AN, Watkinson TG, Henderson PJF, Radford SE, Ashcroft AE. Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal Chem 2014; 87:1118-26. [PMID: 25495802 PMCID: PMC4636139 DOI: 10.1021/ac5037022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology and ‡School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys 2014; 564:327-43. [PMID: 25449655 DOI: 10.1016/j.abb.2014.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
Abstract
Amphipols (APols) are a family of amphipathic polymers designed to keep transmembrane proteins (TMPs) soluble in aqueous solutions in the absence of detergent. APols have proven remarkably efficient at (i) stabilizing TMPs, as compared to detergent solutions, and (ii) folding them from a denatured state to a native, functional one. The underlying physical-chemical mechanisms are discussed.
Collapse
|
12
|
Sverzhinsky A, Qian S, Yang L, Allaire M, Moraes I, Ma D, Chung JW, Zoonens M, Popot JL, Coulton JW. Amphipol-Trapped ExbB–ExbD Membrane Protein Complex from Escherichia coli: A Biochemical and Structural Case Study. J Membr Biol 2014; 247:1005-18. [DOI: 10.1007/s00232-014-9678-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023]
|
13
|
Le Bon C, Popot JL, Giusti F. Labeling and functionalizing amphipols for biological applications. J Membr Biol 2014; 247:797-814. [PMID: 24696186 PMCID: PMC4185061 DOI: 10.1007/s00232-014-9655-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/07/2014] [Indexed: 12/19/2022]
Abstract
Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes.
Collapse
Affiliation(s)
- Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), CNRS/Université Paris 7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | |
Collapse
|
14
|
How Amphipols Embed Membrane Proteins: Global Solvent Accessibility and Interaction with a Flexible Protein Terminus. J Membr Biol 2014; 247:965-70. [DOI: 10.1007/s00232-014-9657-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
|
15
|
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.
Collapse
Affiliation(s)
- Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Jean-Luc Popot
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| |
Collapse
|
16
|
Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes. J Membr Biol 2014; 247:1031-41. [DOI: 10.1007/s00232-014-9712-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
|
17
|
Polovinkin V, Balandin T, Volkov O, Round E, Borshchevskiy V, Utrobin P, von Stetten D, Royant A, Willbold D, Arzumanyan G, Chupin V, Popot JL, Gordeliy V. Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35. J Membr Biol 2014; 247:971-80. [DOI: 10.1007/s00232-014-9701-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
|
18
|
High-Resolution Structure of a Membrane Protein Transferred from Amphipol to a Lipidic Mesophase. J Membr Biol 2014; 247:997-1004. [DOI: 10.1007/s00232-014-9700-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
19
|
Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study. J Membr Biol 2014; 247:897-908. [DOI: 10.1007/s00232-014-9725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
|
20
|
Solution Behavior and Crystallization of Cytochrome bc
1 in the Presence of Amphipols. J Membr Biol 2014; 247:981-96. [DOI: 10.1007/s00232-014-9694-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/26/2014] [Indexed: 12/28/2022]
|
21
|
Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valerio-Lepiniec M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot JL, Picard M, Minard P. Amphipol-mediated screening of molecular orthoses specific for membrane protein targets. J Membr Biol 2014; 247:925-40. [PMID: 25086771 DOI: 10.1007/s00232-014-9707-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed αReps, for "artificial alpha repeat protein") have been recently described. The stabilization and immobilization of MPs in a functional state are an absolute prerequisite for the screening of binders that recognize specifically their native conformation. We present here a general procedure for the selection of αReps specific of any MP. It relies on the use of biotinylated amphipols, which act as a universal "Velcro" to stabilize, and immobilize MP targets onto streptavidin-coated solid supports, thus doing away with the need to tag the protein itself.
Collapse
Affiliation(s)
- Yann Ferrandez
- Laboratoire de Modélisation et Ingénierie des Protéines, IBBMC UMR 8619, CNRS/Université Paris Sud, 91405, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Opačić M, Giusti F, Popot JL, Broos J. Isolation of Escherichia coli mannitol permease, EIImtl, trapped in amphipol A8-35 and fluorescein-labeled A8-35. J Membr Biol 2014; 247:1019-30. [PMID: 24952466 DOI: 10.1007/s00232-014-9691-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 12/15/2022]
Abstract
Amphipols (APols) are short amphipathic polymers that keep integral membrane proteins water-soluble while stabilizing them as compared to detergent solutions. In the present work, we have carried out functional and structural studies of a membrane transporter that had not been characterized in APol-trapped form yet, namely EII(mtl), a dimeric mannitol permease from the inner membrane of Escherichia coli. A tryptophan-less and dozens of single-tryptophan (Trp) mutants of this transporter are available, making it possible to study the environment of specific locations in the protein. With few exceptions, the single-Trp mutants show a high mannitol-phosphorylation activity when in membranes, but, as variance with wild-type EII(mtl), some of them lose most of their activity upon solubilization by neutral (PEG- or maltoside-based) detergents. Here, we present a protocol to isolate these detergent-sensitive mutants in active form using APol A8-35. Trapping with A8-35 keeps EII(mtl) soluble and functional in the absence of detergent. The specific phosphorylation activity of an APol-trapped Trp-less EII(mtl) mutant was found to be ~3× higher than the activity of the same protein in dodecylmaltoside. The preparations are suitable both for functional and for fluorescence spectroscopy studies. A fluorescein-labeled version of A8-35 has been synthesized and characterized. Exploratory studies were conducted to examine the environment of specific Trp locations in the transmembrane domain of EII(mtl) using Trp fluorescence quenching by water-soluble quenchers and by the fluorescein-labeled APol. This approach has the potential to provide information on the transmembrane topology of MPs.
Collapse
Affiliation(s)
- Milena Opačić
- Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique, CNRS FRC 550, 13 rue Pierre-et-Marie Curie, 75005, Paris, France
| | | | | | | |
Collapse
|
23
|
Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J Membr Biol 2014; 247:1053-65. [PMID: 24942817 DOI: 10.1007/s00232-014-9693-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
Chlamydia trachomatis is a major bacterial pathogen throughout the world. Although antibiotic therapy can be implemented in the case of early detection, a majority of the infections are asymptomatic, requiring the development of preventive measures. Efforts have focused on the production of a vaccine using the C. trachomatis major outer membrane protein (MOMP). MOMP is purified in its native (n) trimeric form using the zwitterionic detergent Z3-14, but its stability in detergent solutions is limited. Amphipols (APols) are synthetic polymers that can stabilize membrane proteins (MPs) in detergent-free aqueous solutions. Preservation of protein structure and optimization of exposure of the most effective antigenic regions can avoid vaccination with misfolded, poorly protective protein. Previously, we showed that APols maintain nMOMP secondary structure and that nMOMP/APol vaccine formulations elicit better protection than formulations using either recombinant or nMOMP solubilized in Z3-14. To achieve a greater understanding of the structural behavior and stability of nMOMP in APols, we have used several spectroscopic techniques to characterize its secondary structure (circular dichroism), tertiary and quaternary structures (immunochemistry and gel electrophoresis) and aggregation state (light scattering) as a function of temperature and time. We have also recorded NMR spectra of (15)N-labeled nMOMP and find that the exposed loops are detectable in APols but not in detergent. Our analyses show that APols protect nMOMP much better than Z3-14 against denaturation due to continuous heating, repeated freeze/thaw cycles, or extended storage at room temperature. These results indicate that APols can help improve MP-based vaccine formulations.
Collapse
|
24
|
Planchard N, Point É, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet É, Zoonens M, Popot JL, Catoire LJ. The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Membr Biol 2014; 247:827-42. [PMID: 24676477 DOI: 10.1007/s00232-014-9654-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023]
Abstract
Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.
Collapse
Affiliation(s)
- Noelya Planchard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Institut de Biologie Physico-Chimique (FRC 550), UMR 7099, CNRS, Université Paris 7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot JL. Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol 2014; 247:909-24. [PMID: 24652511 DOI: 10.1007/s00232-014-9656-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022]
Abstract
Amphipols are short amphipathic polymers that can substitute for detergents at the hydrophobic surface of membrane proteins (MPs), keeping them soluble in the absence of detergents while stabilizing them. The most widely used amphipol, known as A8-35, is comprised of a polyacrylic acid (PAA) main chain grafted with octylamine and isopropylamine. Among its many applications, A8-35 has proven particularly useful for solution-state NMR studies of MPs, for which it can be desirable to eliminate signals originating from the protons of the surfactant. In the present work, we describe the synthesis and properties of perdeuterated A8-35 (perDAPol). Perdeuterated PAA was obtained by radical polymerization of deuterated acrylic acid. It was subsequently grafted with deuterated amines, yielding perDAPol. The number-average molar mass of hydrogenated and perDAPol, ~4 and ~5 kDa, respectively, was deduced from that of their PAA precursors, determined by size exclusion chromatography in tetrahydrofuran following permethylation. Electrospray ionization-ion mobility spectrometry-mass spectrometry measurements show the molar mass and distribution of the two APols to be very similar. Upon neutron scattering, the contrast match point of perDAPol is found to be ~120% D2O. In (1)H-(1)H nuclear overhauser effect NMR spectra, its contribution is reduced to ~6% of that of hydrogenated A8-35, making it suitable for extended uses in NMR spectroscopy. PerDAPol ought to also be of use for inelastic neutron scattering studies of the dynamics of APol-trapped MPs, as well as small-angle neutron scattering and analytical ultracentrifugation.
Collapse
Affiliation(s)
- Fabrice Giusti
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique and Université Paris-7, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|