1
|
Scott H, Martin PE, Graham SV. Modulation of connexin 43 in viral infections. Tumour Virus Res 2024; 18:200296. [PMID: 39522757 PMCID: PMC11607658 DOI: 10.1016/j.tvr.2024.200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Connexins are essential for intercellular communication through gap junctions and the maintenance of cellular and tissue homeostasis. Connexin 43 (Cx43) is the most ubiquitously expressed connexin. As well as regulating homeostasis, Cx43 hemichannels and gap junctions play important roles in inflammation and the immune response. This, coupled with a range of non-channel functions performed by Cx43 makes it an attractive target for viruses. Recently, several groups have begun to explore the relationship between Cx43 and viral infection, with a diverse array of viruses being found to alter Cx43 hemichannels/gap junctions. Importantly, this includes several small DNA tumour viruses, which may target Cx43 to promote tumorigenesis. This review focuses on the ability of selected RNA/DNA viruses and retroviruses to either positively or negatively regulate Cx43 hemichannels and gap junctions in order to carry out their lifecycles. The role of Cx43 regulation by tumour viruses is also discussed in relation to tumour progression.
Collapse
Affiliation(s)
- Harry Scott
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| | - Patricia E Martin
- Department of Biological and Biomedical Science, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| |
Collapse
|
2
|
Muñoz-Ballester C, Leitzel O, Golf S, Phillips CM, Zeitz MJ, Pandit R, Smyth JW, Lamouille S, Robel S. Astrocytic connexin43 phosphorylation contributes to seizure susceptibility after mild Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623104. [PMID: 39605358 PMCID: PMC11601309 DOI: 10.1101/2024.11.12.623104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Astrocytes play a crucial role in maintaining brain homeostasis through functional gap junctions (GJs) primarily formed by connexin43 (Cx43). These GJs facilitate electrical and metabolic coupling between astrocytes, allowing the passage of ions, glucose, and metabolites. Dysregulation of Cx43 has been implicated in various pathologies, including traumatic brain injury (TBI) and acquired epilepsy. We previously identified a subset of atypical astrocytes after mild TBI that exhibit reduced Cx43 expression and coupling and are correlated with the development of spontaneous seizures. Given that mild TBI affects millions globally and can lead to long-term complications, including post-traumatic epilepsy, understanding the molecular events post-TBI is critical for developing therapeutic strategies. In the present study, we assessed the heterogeneity of Cx43 protein expression after mild TBI. In accordance with our previous findings, a subset of astrocytes lost Cx43 expression. As previously reported after TBI, we also found a significant increase in total Cx43 protein expression after mild TBI, predominantly in the soluble form, suggesting that while junctional Cx43 protein levels remained stable, hemichannels and cytoplasmic Cx43 were increased. We then investigated the phosphorylation of Cx43 at serine 368 after TBI, which is known to influence GJ assembly and function. Phosphorylation of Cx43 at serine 368 is elevated following TBI and Cx43S368A mutant mice, lacking this phosphorylation, exhibited reduced susceptibility to seizures induced by pentylenetetrazol (PTZ). These findings suggest that TBI-induced Cx43 phosphorylation enhances seizure susceptibility, while inhibiting this modification presents a potential therapeutic avenue for mitigating neuronal hyperexcitability and seizure development.
Collapse
Affiliation(s)
- Carmen Muñoz-Ballester
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - Owen Leitzel
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - Samantha Golf
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - Chelsea M Phillips
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
| | - Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
| | - Rahul Pandit
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
| | - James W. Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
- Department of Biological Sciences, College of Science, Virginia
Tech, Blacksburg, 24061, VA
- Virginia Tech Carilion School of Medicine, Roanoke, 24016,
VA
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion,
Roanoke, 24016, VA
- Department of Biological Sciences, College of Science, Virginia
Tech, Blacksburg, 24061, VA
- Virginia Tech Carilion School of Medicine, Roanoke, 24016,
VA
| | - Stefanie Robel
- Cell, Developmental and Integrative Biology Department,
University of Alabama at Birmingham, Birmingham, 21353, AL
- Department of Physical Medicine and Rehabilitation, University of
Alabama at Birmingham, Birmingham, 35212, AL
| |
Collapse
|
3
|
Alvear TF, Farias-Pasten A, Vergara SA, Prieto-Villalobos J, Silva-Contreras A, Fuenzalida FA, Quintanilla RA, Orellana JA. Hemichannels contribute to mitochondrial Ca 2+ and morphology alterations evoked by ethanol in astrocytes. Front Cell Dev Biol 2024; 12:1434381. [PMID: 39129788 PMCID: PMC11310047 DOI: 10.3389/fcell.2024.1434381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Alcohol, a toxic and psychoactive substance with addictive properties, severely impacts life quality, leading to significant health, societal, and economic consequences. Its rapid passage across the blood-brain barrier directly affects different brain cells, including astrocytes. Our recent findings revealed the involvement of pannexin-1 (Panx1) and connexin-43 (Cx43) hemichannels in ethanol-induced astrocyte dysfunction and death. However, whether ethanol influences mitochondrial function and morphology in astrocytes, and the potential role of hemichannels in this process remains poorly understood. Here, we found that ethanol reduced basal mitochondrial Ca2+ but exacerbated thapsigargin-induced mitochondrial Ca2+ dynamics in a concentration-dependent manner, as evidenced by Rhod-2 time-lapse recordings. Similarly, ethanol-treated astrocytes displayed increased mitochondrial superoxide production, as indicated by MitoSox labeling. These effects coincided with reduced mitochondrial membrane potential and increased mitochondrial fragmentation, as determined by MitoRed CMXRos and MitoGreen quantification, respectively. Crucially, inhibiting both Cx43 and Panx1 hemichannels effectively prevented all ethanol-induced mitochondrial abnormalities in astrocytes. We speculate that exacerbated hemichannel activity evoked by ethanol may impair intracellular Ca2+ homeostasis, stressing mitochondrial Ca2+ with potentially damaging consequences for mitochondrial fusion and fission dynamics and astroglial bioenergetics.
Collapse
Affiliation(s)
- Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arantza Farias-Pasten
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio A. Vergara
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Silva-Contreras
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando A. Fuenzalida
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Gómez GI, García-Rodríguez C, Marillán JE, Vergara SA, Alvear TF, Farias-Pasten A, Sáez JC, Retamal MA, Rovegno M, Ortiz FC, Orellana JA. Acute activation of hemichannels by ethanol leads to Ca 2+-dependent gliotransmitter release in astrocytes. Front Cell Dev Biol 2024; 12:1422978. [PMID: 38974144 PMCID: PMC11224458 DOI: 10.3389/fcell.2024.1422978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Multiple studies have demonstrated that acute ethanol consumption alters brain function and cognition. Nevertheless, the mechanisms underlying this phenomenon remain poorly understood. Astrocyte-mediated gliotransmission is crucial for hippocampal plasticity, and recently, the opening of hemichannels has been found to play a relevant role in this process. Hemichannels are plasma membrane channels composed of six connexins or seven pannexins, respectively, that oligomerize around a central pore. They serve as ionic and molecular exchange conduits between the cytoplasm and extracellular milieu, allowing the release of various paracrine substances, such as ATP, D-serine, and glutamate, and the entry of ions and other substances, such as Ca2+ and glucose. The persistent and exacerbated opening of hemichannels has been associated with the pathogenesis and progression of several brain diseases for at least three mechanisms. The uncontrolled activity of these channels could favor the collapse of ionic gradients and osmotic balance, the release of toxic levels of ATP or glutamate, cell swelling and plasma membrane breakdown and intracellular Ca2+ overload. Here, we evaluated whether acute ethanol exposure affects the activity of astrocyte hemichannels and the possible repercussions of this phenomenon on cytoplasmatic Ca2+ signaling and gliotransmitter release. Acute ethanol exposure triggered the rapid activation of connexin43 and pannexin1 hemichannels in astrocytes, as measured by time-lapse recordings of ethidium uptake. This heightened activity derived from a rapid rise in [Ca2+]i linked to extracellular Ca2+ influx and IP3-evoked Ca2+ release from intracellular Ca2+ stores. Relevantly, the acute ethanol-induced activation of hemichannels contributed to a persistent secondary increase in [Ca2+]i. The [Ca2+]i-dependent activation of hemichannels elicited by ethanol caused the increased release of ATP and glutamate in astroglial cultures and brain slices. Our findings offer fresh perspectives on the potential mechanisms behind acute alcohol-induced brain abnormalities and propose targeting connexin43 and pannexin1 hemichannels in astrocytes as a promising avenue to prevent deleterious consequences of alcohol consumption.
Collapse
Affiliation(s)
- Gonzalo I. Gómez
- Faculty of Health Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia García-Rodríguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jesús E. Marillán
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio A. Vergara
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F. Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Arantza Farias-Pasten
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cancer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Tichauer JE, Lira M, Cerpa W, Orellana JA, Sáez JC, Rovegno M. Inhibition of astroglial hemichannels prevents synaptic transmission decline during spreading depression. Biol Res 2024; 57:39. [PMID: 38867288 PMCID: PMC11167948 DOI: 10.1186/s40659-024-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Lucero CM, Navarro L, Barros-Osorio C, Cáceres-Conejeros P, Orellana JA, Gómez GI. Activation of Pannexin-1 channels causes cell dysfunction and damage in mesangial cells derived from angiotensin II-exposed mice. Front Cell Dev Biol 2024; 12:1387234. [PMID: 38660621 PMCID: PMC11041381 DOI: 10.3389/fcell.2024.1387234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.
Collapse
Affiliation(s)
- Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Laura Navarro
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián Barros-Osorio
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Cáceres-Conejeros
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
7
|
Gómez GI, Alvear TF, Roa DA, Farias-Pasten A, Vergara SA, Mellado LA, Martinez-Araya CJ, Prieto-Villalobos J, García-Rodríguez C, Sánchez N, Sáez JC, Ortíz FC, Orellana JA. Cx43 hemichannels and panx1 channels contribute to ethanol-induced astrocyte dysfunction and damage. Biol Res 2024; 57:15. [PMID: 38576018 PMCID: PMC10996276 DOI: 10.1186/s40659-024-00493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1β and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.
Collapse
Affiliation(s)
- Gonzalo I Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Daniela A Roa
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Arantza Farias-Pasten
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Sergio A Vergara
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Luis A Mellado
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Claudio J Martinez-Araya
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile
| | - Claudia García-Rodríguez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Fernando C Ortíz
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Mechanisms of Myelin Formation and Repair Laboratory, Chacabuco 675, of. 212, Santiago, 8350347, Chile.
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, 8330024, Chile.
| |
Collapse
|
8
|
Nardin C, Mammano F. Measurement of Ca 2+ Uptake Through Connexin Hemichannels. Methods Mol Biol 2024; 2801:97-109. [PMID: 38578416 DOI: 10.1007/978-1-0716-3842-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Increasing evidence points to deregulated flux of ionized calcium (Ca2+) mediated by hyperactive mutant connexin (Cx) hemichannels (HCs) as a common gain-of-function etiopathogenetic mechanism for several diseases, ranging from skin disorders to nervous system defects. Furthermore, the opening of nonmutated Cx HCs is associated with an impressive list of widespread diseases including, but not limited to, ischemia/stroke, Alzheimer's disease, and epilepsy. HC inhibitors are attracting a growing attention due to their therapeutic potential for numerous pathologies. This chapter describes a quantitative method to measure Ca2+ uptake though HCs expressed in cultured cells. The assay we developed can be used to probe HC activity as wells as to test HC inhibitors. Furthermore, with minor changes it can be easily adapted to high-throughput high-content platforms and/or primary cells and microtissues.
Collapse
Affiliation(s)
- Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy
- , Genoa, Italy
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, Rome, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Acosta FM, Riquelme MA, Gu S, Jiang JX. Evaluation of Connexin Hemichannel Activity In Vivo. Methods Mol Biol 2024; 2801:111-124. [PMID: 38578417 PMCID: PMC11610261 DOI: 10.1007/978-1-0716-3842-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Connexin hemichannels (Cx HCs) are hexameric structures at the cell plasma membrane, whose function as membrane transport proteins allows for the passive flow of small hydrophilic molecules and ions (≤1 kDa) between the cytosol and the extracellular environment. Activation of Cx HCs is highly dependent on pathological conditions. HC activity provokes changes in the microenvironment, inducing the dissemination of signaling molecules in both an autocrine and paracrine manner. Given the elicitation of a variety of signaling pathways, and assortment of Cx species and dispersion throughout the body, Cx HCs have been implicated in a range of processes such as cell proliferation, differentiation, cell death, and tissue modeling and remodeling. While studying the expression and localization of Cx HCs can be done using traditional laboratory techniques, such as immunoblot analysis, measuring the functionality/activity of the HCs requires a more explicit methodology and is essential for determining Cx-mediated physiological changes. The study of Cx HC function/activity has focused mainly on in vitro measurements through electrophysiological characterization or, more commonly, using HC-permeable dye uptake studies. Here, we describe the use of dye uptake to measure Cx HC activity in vivo using mechanically stimulated osteocytic Cx43 HCs with Evans blue dye as our model.
Collapse
Affiliation(s)
- Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
10
|
Prieto-Villalobos J, Lucero CM, Rovegno M, Gómez GI, Retamal MA, Orellana JA. SARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs intracellular Ca 2+ dynamics. Biol Res 2023; 56:56. [PMID: 37876016 PMCID: PMC10598968 DOI: 10.1186/s40659-023-00468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels. RESULTS We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP. CONCLUSIONS We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.
Collapse
Affiliation(s)
- Juan Prieto-Villalobos
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Claudia M Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Mauricio A Retamal
- Programa de Comunicación Celular en Cancer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
11
|
Lillo MA, Muñoz M, Rhana P, Gaul-Muller K, Quan J, Shirokova N, Xie LH, Santana LF, Fraidenraich D, Contreras JE. Remodeled connexin 43 hemichannels alter cardiac excitability and promote arrhythmias. J Gen Physiol 2023; 155:e202213150. [PMID: 37191672 PMCID: PMC10192603 DOI: 10.1085/jgp.202213150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Connexin-43 (Cx43) is the most abundant protein forming gap junction channels (GJCs) in cardiac ventricles. In multiple cardiac pathologies, including hypertrophy and heart failure, Cx43 is found remodeled at the lateral side of the intercalated discs of ventricular cardiomyocytes. Remodeling of Cx43 has been long linked to spontaneous ventricular arrhythmia, yet the mechanisms by which arrhythmias develop are still debated. Using a model of dystrophic cardiomyopathy, we previously showed that remodeled Cx43 function as aberrant hemichannels (non-forming GJCs) that alter cardiomyocyte excitability and, consequently, promote arrhythmias. Here, we aim to evaluate if opening of remodeled Cx43 can serve as a general mechanism to alter cardiac excitability independent of cellular dysfunction associated with a particular cardiomyopathy. To address this issue, we used a genetically modified Cx43 knock-in mouse (S3A) that promotes cardiac remodeling of Cx43 protein without apparent cardiac dysfunction. Importantly, when S3A mice were subjected to cardiac stress using the β-adrenergic agonist isoproterenol (Iso), they displayed acute and severe arrhythmias, which were not observed in WT mice. Pretreatment of S3A mice with the Cx43 hemichannel blocker, Gap19, prevented Iso-induced abnormal electrocardiographic behavior. At the cellular level, when compared with WT, Iso-treated S3A cardiomyocytes showed increased membrane permeability, greater plasma membrane depolarization, and Ca2+ overload, which likely caused prolonged action potentials, delayed after depolarizations, and triggered activity. All these cellular dysfunctions were also prevented by Cx43 hemichannel blockers. Our results support the notion that opening of remodeled Cx43 hemichannels, regardless of the type of cardiomyopathy, is sufficient to mediate cardiac-stress-induced arrhythmogenicity.
Collapse
Affiliation(s)
- Mauricio A. Lillo
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Manuel Muñoz
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Paula Rhana
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Kelli Gaul-Muller
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Jonathan Quan
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Luis Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Jorge E. Contreras
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ, USA
- Department of Physiology and Membrane Biology, University of California, Davis. Davis, CA, USA
| |
Collapse
|
12
|
Peres C, Sellitto C, Nardin C, Putti S, Orsini T, Di Pietro C, Marazziti D, Vitiello A, Calistri A, Rigamonti M, Scavizzi F, Raspa M, Zonta F, Yang G, White TW, Mammano F. Antibody gene transfer treatment drastically improves epidermal pathology in a keratitis ichthyosis deafness syndrome model using male mice. EBioMedicine 2023; 89:104453. [PMID: 36736132 PMCID: PMC9926223 DOI: 10.1016/j.ebiom.2023.104453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Keratitis ichthyosis deafness (KID) syndrome is a rare disorder caused by hemichannel (HC) activating gain-of-function mutations in the GJB2 gene encoding connexin (Cx) 26, for which there is no cure, or current treatments based upon the mechanism of disease causation. METHODS We applied Adeno Associated Virus (AAV) mediated mAb gene transfer (AAVmAb) to treat the epidermal features of KID syndrome with a well-characterized HC blocking antibody using male mice of a murine model that replicates the skin pathology of the human disease. FINDINGS We demonstrate that in vivo AAVmAb treatment significantly reduced the size and thickness of KID lesions, in addition to blocking activity of mutant HCs in the epidermis in vivo. We also show that AAVmAb treatment eliminated abnormal keratinocyte proliferation and enlarged cell size, decreased apoptosis, and restored the normal distribution of keratin expression. INTERPRETATION Our findings reinforce the critical role played by increased HC activity in the skin pathology associated with KID syndrome. They also underscore the clinical potential of anti-HC mAbs coupled with genetic based delivery systems for treating the underlying mechanistic basis of this disorder. Inhibition of HC activity is an ideal therapeutic target in KID syndrome, and the genetic delivery of mAbs targeted against mutant HCs could form the basis of new therapeutic interventions to treat this incurable disease. FUNDING Fondazione Telethon grant GGP19148 and University of Padova grant Prot. BIRD187130 to FM; Foundation for Ichthyosis and Related Skin Types (FIRST) and National Institutes of Health grant EY 026911 to TWW.
Collapse
Affiliation(s)
- Chiara Peres
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Caterina Sellitto
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA
| | - Chiara Nardin
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Daniela Marazziti
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | | | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, T5-147, Basic Science Tower; Stony Brook, NY, 11794-8661, USA.
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology, Italian National Research Council, 00015 Monterotondo, Rome, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131, Padova, Italy.
| |
Collapse
|
13
|
Abbott AC, García IE, Villanelo F, Flores-Muñoz C, Ceriani R, Maripillán J, Novoa-Molina J, Figueroa-Cares C, Pérez-Acle T, Sáez JC, Sánchez HA, Martínez AD. Expression of KID syndromic mutation Cx26S17F produces hyperactive hemichannels in supporting cells of the organ of Corti. Front Cell Dev Biol 2023; 10:1071202. [PMID: 36699003 PMCID: PMC9868548 DOI: 10.3389/fcell.2022.1071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.
Collapse
Affiliation(s)
- Ana C. Abbott
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar, Chile
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile,Centro de Investigaciones en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tomas Pérez-Acle
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| |
Collapse
|
14
|
Himelman E, Nouet J, Lillo MA, Chong A, Zhou D, Wehrens XHT, Rodney GG, Xie LH, Shirokova N, Contreras JE, Fraidenraich D. A microtubule-connexin-43 regulatory link suppresses arrhythmias and cardiac fibrosis in Duchenne muscular dystrophy mice. Am J Physiol Heart Circ Physiol 2022; 323:H983-H995. [PMID: 36206047 PMCID: PMC9639757 DOI: 10.1152/ajpheart.00179.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Dilated cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), an inherited degenerative disease of the cardiac and skeletal muscle caused by absence of the protein dystrophin. We showed one hallmark of DMD cardiomyopathy is the dysregulation of cardiac gap junction channel protein connexin-43 (Cx43). Proper Cx43 localization and function at the cardiac intercalated disc (ID) is regulated by post-translational phosphorylation of Cx43-carboxy-terminus residues S325/S328/S330 (pS-Cx43). Concurrently, Cx43 traffics along microtubules (MTs) for targeted delivery to the ID. In DMD hearts, absence of dystrophin results in a hyperdensified and disorganized MT cytoskeleton, yet the link with pS-Cx43 remains unaddressed. To gain insight into the relationship between MTs and pS-Cx43, DMD mice (mdx) and pS-Cx43-deficient (mdxS3A) mice were treated with an inhibitor of MT polymerization, colchicine (Colch). Colch treatment protected mdx, not mdxS3A mice, against Cx43 remodeling, improved MT directionality, and enhanced pS-Cx43/tubulin interaction. Likewise, severe arrhythmias were prevented in isoproterenol-stressed mdx, not mdxS3A mice. Furthermore, MT directionality was improved in pS-Cx43-mimicking mdx (mdxS3E). Mdxutr+/- and mdxutr+/-S3A mice, lacking one copy of dystrophin homolog utrophin, displayed enhanced cardiac fibrosis and reduced lifespan compared with mdxutr+/-S3E; and Colch treatment corrected cardiac fibrosis in mdxutr+/- but not mdxutr+/-S3A. Collectively, the data suggest that improved MT directionality reduces Cx43 remodeling and that pS-Cx43 is necessary and sufficient to regulate MT organization, which plays crucial role in correcting cardiac dysfunction in DMD mice. Thus, identification of novel organizational mechanisms acting on pS-Cx43-MT will help develop novel cardioprotective therapies for DMD cardiomyopathy.NEW & NOTEWORTHY We found that colchicine administration to Cx43-phospho-deficient dystrophic mice fails to protect against Cx43 remodeling. Conversely, Cx43-phospho-mimic dystrophic mice display a normalized MT network. We envision a bidirectional regulation whereby correction of the dystrophic MTs leads to correction of Cx43 remodeling, which in turn leads to further correction of the MTs. Our findings suggest a link between phospho-Cx43 and MTs that provides strong foundations for novel therapeutics in DMD cardiomyopathy.
Collapse
Affiliation(s)
- Eric Himelman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Julie Nouet
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Alexander Chong
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Delong Zhou
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Medicine, Neuroscience, and Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Medicine, Neuroscience, and Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| |
Collapse
|
15
|
The Bioactive Phenolic Agents Diaryl Ether CVB2-61 and Diarylheptanoid CVB4-57 as Connexin Hemichannel Blockers. Pharmaceuticals (Basel) 2022; 15:ph15101173. [PMID: 36297285 PMCID: PMC9611528 DOI: 10.3390/ph15101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammation mediators enhance the activity of connexin (Cx) hemichannels, especially in the epithelial and endothelial tissues. As potential release routes for injury signals, such as (oligo)nucleotides, Cx hemichannels may contribute to long-lasting inflammation. Specific inhibition of Cx hemichannels may therefore be a mode of prevention and treatment of long-lasting, chronic sterile inflammation. The activity of Cx hemichannels was analysed in N2A and HeLa cells transfected with human Cx26 and Cx46 as well as in Calu-3 cells, using dye uptake as functional assay. Moreover, the possible impacts of the bioactive phenolic agents CVB2-61 and CVB4-57 on the barrier function of epithelial cells was analysed using Calu-3 cells. Both agents inhibited the dye uptake in N2A cells expressing Cx26 (>5 µM) and Cx46 (>20 µM). In Calu-3 cells, CVB2-61 and CVB4-57 reversibly inhibited the dye uptake at concentrations as low as 5 µM, without affecting the gap junction communication and barrier function, even at concentrations of 20 µM. While CVB2-61 or CVB4-57 maintained a reduced dye uptake in Calu-3 cells, an enhancement of the dye uptake in response to the stimulation of adenosine signalling was still observed after removal of the agents. The report shows that CVB2-61 and CVB4-57 reversibly block Cx hemichannels. Deciphering the mechanisms of the interactions of these agents with Cx hemichannels could allow further development of phenolic compounds to target Cx hemichannels for better and safer treatment of pathologies that involve Cx hemichannels.
Collapse
|
16
|
A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels. Int J Mol Sci 2022; 23:ijms23137337. [PMID: 35806342 PMCID: PMC9266989 DOI: 10.3390/ijms23137337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.
Collapse
|
17
|
Nardin C, Peres C, Putti S, Orsini T, Colussi C, Mazzarda F, Raspa M, Scavizzi F, Salvatore AM, Chiani F, Tettey-Matey A, Kuang Y, Yang G, Retamal MA, Mammano F. Connexin Hemichannel Activation by S-Nitrosoglutathione Synergizes Strongly with Photodynamic Therapy Potentiating Anti-Tumor Bystander Killing. Cancers (Basel) 2021; 13:cancers13205062. [PMID: 34680212 PMCID: PMC8533914 DOI: 10.3390/cancers13205062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bystander effects depend on direct cell-cell communication and/or paracrine signaling mediated by the release of soluble factors into the extracellular environment and may greatly influence therapy outcome. Although the limited data available suggest a role for intercellular gap junction channels, far less is known about the role of connexin hemichannels. Here, we investigated bystander effects induced by photodynamic therapy in syngeneic murine melanoma models in vivo. We determined that (i) photoactivation of a photosensitizer triggered calcium-dependent cell death pathways in both irradiated and bystander tumor cells; (ii) hemichannel activity and adenosine triphosphate release were key factors for the induction of bystander cell death; and (iii) bystander cell killing and antitumor response elicited by photodynamic therapy were greatly enhanced by combination treatment with S-nitrosoglutathione, which promoted hemichannel opening in these experimental conditions. Therefore, these findings in a preclinical model have important translational potential. Abstract In this study, we used B16-F10 cells grown in the dorsal skinfold chamber (DSC) preparation that allowed us to gain optical access to the processes triggered by photodynamic therapy (PDT). Partial irradiation of a photosensitized melanoma triggered cell death in non-irradiated tumor cells. Multiphoton intravital microscopy with genetically encoded fluorescence indicators revealed that bystander cell death was mediated by paracrine signaling due to adenosine triphosphate (ATP) release from connexin (Cx) hemichannels (HCs). Intercellular calcium (Ca2+) waves propagated from irradiated to bystander cells promoting intracellular Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria and rapid activation of apoptotic pathways. Combination treatment with S-nitrosoglutathione (GSNO), an endogenous nitric oxide (NO) donor that biases HCs towards the open state, greatly potentiated anti-tumor bystander killing via enhanced Ca2+ signaling, leading to a significant reduction of post-irradiation tumor mass. Our results demonstrate that HCs can be exploited to dramatically increase cytotoxic bystander effects and reveal a previously unappreciated role for HCs in tumor eradication promoted by PDT.
Collapse
Affiliation(s)
- Chiara Nardin
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Chiara Peres
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Sabrina Putti
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Claudia Colussi
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI)-CNR, 00168 Rome, Italy;
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Flavia Mazzarda
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Anna Maria Salvatore
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Francesco Chiani
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Abraham Tettey-Matey
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
| | - Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (Y.K.); (G.Y.)
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; (Y.K.); (G.Y.)
| | - Mauricio A. Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago 7780272, Chile;
| | - Fabio Mammano
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Rome, Italy; (C.N.); (C.P.); (S.P.); (T.O.); (F.M.); (M.R.); (F.S.); (A.M.S.); (F.C.); (A.T.-M.)
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
18
|
A physiologic rise in cytoplasmic calcium ion signal increases pannexin1 channel activity via a C-terminus phosphorylation by CaMKII. Proc Natl Acad Sci U S A 2021; 118:2108967118. [PMID: 34301850 DOI: 10.1073/pnas.2108967118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.
Collapse
|
19
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
20
|
A method for assessing ionic and molecular permeation in connexin hemichannels. Methods Enzymol 2021; 654:271-293. [PMID: 34120717 DOI: 10.1016/bs.mie.2021.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Connexin hemichannels are permeable to both atomic ions and small molecules. Yet, they have different selectivity for ions and signaling molecules critical for biological functions. Activity of connexin hemichannels in living cells is commonly evaluated by methods that include electrophysiology and fluorescence-based approaches. Although less common, luminescence and radioactivity-based uptake/release assays have been also successfully used to determine selectivity and permeability to different molecules. The current methods, however, have important technical and quantitative limitations that make them unsuitable for simultaneously evaluating ionic and molecular permeability using different stimuli that control channel gating (e.g., voltage or extracellular Ca2+). To address this, we have recently designed a novel methodology that combines two-electrode voltage clamp (TEVC) and dye uptake assays in translucent Xenopus oocytes. This method allows for the evaluation of molecular transport kinetics in connexin hemichannels, and its utility can also be extended to other large pore channels, such as those formed by pannexin and CALHM. In this article, we describe step by step the protocol to perform the TEVC/Dye uptake assay.
Collapse
|
21
|
Potter JA, Price GW, Cliff CL, Williams BM, Hills CE, Squires PE. Carboxyfluorescein Dye Uptake to Measure Connexin-mediated Hemichannel Activity in Cultured Cells. Bio Protoc 2021; 11:e3901. [PMID: 33732788 DOI: 10.21769/bioprotoc.3901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins are membrane bound proteins that facilitate direct and local paracrine mediated cell-to-cell communication through their ability to oligomerise into hexameric hemichannels. When neighbouring channels align, they form gap-junctions that provide a direct route for information transfer between cells. In contrast to intact gap junctions, which typically open under physiological conditions, undocked hemichannels have a low open probability and mainly open in response to injury. Hemichannels permit the release of small molecules and ions (approximately 1kDa) into the local intercellular environment, and excessive expression/activity has been linked to a number of disease conditions. Carboxyfluorescein dye uptake measures functional expression of hemichannels, where increased hemichannel activity/function reflects increased loading. The technique relies on the uptake of a membrane-impermeable fluorescent tracer through open hemichannels, and can be used to compare channel activity between cell monolayers cultured under different conditions, e.g. control versus disease. Other techniques, such as biotinylation and electrophysiology can measure cell surface expression and hemichannel open probability respectively, however, carboxyfluorescein uptake provides a simple, rapid and cost-effective method to determine hemichannel activity in vitro in multiple cell types. Graphic abstract: Using dye uptake to measure hemichannel activity.
Collapse
Affiliation(s)
- Joe A Potter
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Gareth W Price
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Bethany M Williams
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
22
|
Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.
Collapse
|
23
|
López X, Escamilla R, Fernández P, Duarte Y, González-Nilo F, Palacios-Prado N, Martinez AD, Sáez JC. Stretch-Induced Activation of Pannexin 1 Channels Can Be Prevented by PKA-Dependent Phosphorylation. Int J Mol Sci 2020; 21:ijms21239180. [PMID: 33276429 PMCID: PMC7731223 DOI: 10.3390/ijms21239180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity-measured by changes in DAPI uptake-of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water-lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit.
Collapse
Affiliation(s)
- Ximena López
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| | - Rosalba Escamilla
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Paola Fernández
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Yorley Duarte
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Fernando González-Nilo
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Nicolás Palacios-Prado
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Agustín D. Martinez
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
| | - Juan C. Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Facultad de Ciencias, Instituto de Neurociencias and Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile; (R.E.); (P.F.); (Y.D.); (F.G.-N.); (A.D.M.)
- Correspondence: (X.L.); (J.C.S.); Tel.: +56-2-26862862 (X.L.); +56-32-2508040 (J.C.S.)
| |
Collapse
|
24
|
Soleilhac E, Comte M, da Costa A, Barette C, Picoli C, Mortier M, Aubry L, Mouthon F, Fauvarque MO, Charvériat M. Quantitative Automated Assays in Living Cells to Screen for Inhibitors of Hemichannel Function. SLAS DISCOVERY 2020; 26:420-427. [PMID: 32914684 DOI: 10.1177/2472555220954388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In vertebrates, intercellular communication is largely mediated by connexins (Cx), a family of structurally related transmembrane proteins that assemble to form hemichannels (HCs) at the plasma membrane. HCs are upregulated in different brain disorders and represent innovative therapeutic targets. Identifying modulators of Cx-based HCs is of great interest to better understand their function and define new treatments. In this study, we developed automated versions of two different cell-based assays to identify new pharmacological modulators of Cx43-HCs. As HCs remain mostly closed under physiological conditions in cell culture, depletion of extracellular Ca2+ was used to increase the probability of opening of HCs. The first assay follows the incorporation of a fluorescent dye, Yo-Pro, by real-time imaging, while the second is based on the quenching of a fluorescent protein, YFPQL, by iodide after iodide uptake. These assays were then used to screen a collection of 2242 approved drugs and compounds under development. This study led to the identification of 11 candidate hits blocking Cx43-HC, active in the two assays, with 5 drugs active on HC but not on gap junction (GJ) activities. To our knowledge, this is the first screening on HC activity and our results suggest the potential of a new use of already approved drugs in central nervous system disorders with HC impairments.
Collapse
Affiliation(s)
| | - Marjorie Comte
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Caroline Barette
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Magda Mortier
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | - Laurence Aubry
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | | | | |
Collapse
|
25
|
Sáez JC, Vargas AA, Hernández DE, Ortiz FC, Giaume C, Orellana JA. Permeation of Molecules through Astroglial Connexin 43 Hemichannels Is Modulated by Cytokines with Parameters Depending on the Permeant Species. Int J Mol Sci 2020; 21:ijms21113970. [PMID: 32492823 PMCID: PMC7312936 DOI: 10.3390/ijms21113970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent studies indicate that connexin hemichannels do not act as freely permeable non-selective pores, but they select permeants in an isoform-specific manner with cooperative, competitive and saturable kinetics. The aim of this study was to investigate whether the treatment with a mixture of IL-1β plus TNF-α, a well-known pro-inflammatory condition that activates astroglial connexin 43 (Cx43) hemichannels, could alter their permeability to molecules. We found that IL-1β plus TNF-α left-shifted the dye uptake rate vs. dye concentration relationship for Etd and 2-NBDG, but the opposite took place for DAPI or YO-PRO-1, whereas no alterations were observed for Prd. The latter modifications were accompanied of changes in Kd (Etd, DAPI, YO-PRO-1 or 2-NBDG) and Hill coefficients (Etd and YO-PRO-1), but not in alterations of Vmax. We speculate that IL-1β plus TNF-α may distinctively affect the binding sites to permeants in astroglial Cx43 hemichannels rather than their number in the cell surface. Alternatively, IL-1β plus TNF-α could induce the production of endogenous permeants that may favor or compete for in the pore-lining residues of Cx43 hemichannels. Future studies shall elucidate whether the differential ionic/molecule permeation of Cx43 hemichannels in astrocytes could impact their communication with neurons in the normal and inflamed nervous system.
Collapse
Affiliation(s)
- Juan C. Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Aníbal A. Vargas
- Instituto de Ciencias de la Salud, Universidad de O′Higgins, Rancagua 2820000, Chile;
| | - Diego E. Hernández
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (J.C.S.); (D.E.H.)
| | - Fernando C. Ortiz
- Mechanisms on Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75005 Paris, France;
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Correspondence: ; Tel.: +56-2-968399128
| |
Collapse
|
26
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Interferon-γ and high glucose-induced opening of Cx43 hemichannels causes endothelial cell dysfunction and damage. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118720. [PMID: 32302669 DOI: 10.1016/j.bbamcr.2020.118720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
Both IFN-γ or high glucose have been linked to systemic inflammatory imbalance with serious repercussions not only for endothelial function but also for the formation of the atherosclerotic plaque. Although the uncontrolled opening of connexin hemichannels underpins the progression of various diseases, whether they are implicated in endothelial cell dysfunction and damage evoked by IFN-γ plus high glucose remains to be fully elucidated. In this study, by using live cell imaging and biochemical approaches, we demonstrate that IFN-γ plus high glucose augment endothelial connexin43 hemichannel activity, resulting in the increase of ATP release, ATP-mediated Ca2+ dynamics and production of nitric oxide and superoxide anion, as well as impaired insulin-mediated uptake and intercellular diffusion of glucose and cell survival. Based on our results, we propose that connexin 43 hemichannel inhibition could serve as a new approach for tackling the activation of detrimental signaling resulting in endothelial cell dysfunction and death caused by inflammatory mediators during atherosclerosis secondary to diabetes mellitus.
Collapse
|
28
|
HIV gp120 Protein Increases the Function of Connexin 43 Hemichannels and Pannexin-1 Channels in Astrocytes: Repercussions on Astroglial Function. Int J Mol Sci 2020; 21:ijms21072503. [PMID: 32260308 PMCID: PMC7178136 DOI: 10.3390/ijms21072503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1β/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.
Collapse
|
29
|
Lillo MA, Himelman E, Shirokova N, Xie LH, Fraidenraich D, Contreras JE. S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice. JCI Insight 2019; 4:130091. [PMID: 31751316 DOI: 10.1172/jci.insight.130091] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023] Open
Abstract
Patients with Duchenne muscular dystrophy (DMD) commonly present with severe ventricular arrhythmias that contribute to heart failure. Arrhythmias and lethality are also consistently observed in adult Dmdmdx mice, a mouse model of DMD, after acute β-adrenergic stimulation. These pathological features were previously linked to aberrant expression and remodeling of the cardiac gap junction protein connexin43 (Cx43). Here, we report that remodeled Cx43 protein forms Cx43 hemichannels in the lateral membrane of Dmdmdx cardiomyocytes and that the β-adrenergic agonist isoproterenol (Iso) aberrantly activates these hemichannels. Block of Cx43 hemichannels or a reduction in Cx43 levels (using Dmdmdx Cx43+/- mice) prevents the abnormal increase in membrane permeability, plasma membrane depolarization, and Iso-evoked electrical activity in these cells. Additionally, Iso treatment promotes nitric oxide (NO) production and S-nitrosylation of Cx43 hemichannels in Dmdmdx heart. Importantly, inhibition of NO production prevents arrhythmias evoked by Iso. We found that NO directly activates Cx43 hemichannels by S-nitrosylation of cysteine at position 271. Our results demonstrate that opening of remodeled and S-nitrosylated Cx43 hemichannels plays a key role in the development of arrhythmias in DMD mice and that these channels may serve as therapeutic targets to prevent fatal arrhythmias in patients with DMD .
Collapse
Affiliation(s)
| | - Eric Himelman
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | |
Collapse
|
30
|
Chávez CE, Oyarzún JE, Avendaño BC, Mellado LA, Inostroza CA, Alvear TF, Orellana JA. The Opening of Connexin 43 Hemichannels Alters Hippocampal Astrocyte Function and Neuronal Survival in Prenatally LPS-Exposed Adult Offspring. Front Cell Neurosci 2019; 13:460. [PMID: 31680871 PMCID: PMC6797550 DOI: 10.3389/fncel.2019.00460] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023] Open
Abstract
Clinical evidence has revealed that children born from mothers exposed to viral and bacterial pathogens during pregnancy are more likely to suffer various neurological disorders including schizophrenia, autism bipolar disorder, major depression, epilepsy, and cerebral palsy. Despite that most research has centered on the impact of prenatal inflammation in neurons and microglia, the potential modifications of astrocytes and neuron-astrocyte communication have received less scrutiny. Here, we evaluated whether prenatally LPS-exposed offspring display alterations in the opening of astrocyte hemichannels and pannexons in the hippocampus, together with changes in neuroinflammation, intracellular Ca2+ and nitric oxide (NO) signaling, gliotransmitter release, cell arborization, and neuronal survival. Ethidium uptake recordings revealed that prenatal LPS exposure enhances the opening of astrocyte Cx43 hemichannels and Panx1 channels in the hippocampus of adult offspring mice. This enhanced channel activity occurred by a mechanism involving a microglia-dependent production of IL-1β/TNF-α and the stimulation of p38 MAP kinase/iNOS/[Ca2+]i-mediated signaling and purinergic/glutamatergic pathways. Noteworthy, the activity of Cx43 hemichannels affected the release of glutamate, [Ca2+]i handling, and morphology of astrocytes, whereas also disturbed neuronal function, including the dendritic arbor and spine density, as well as survival. We speculate that excitotoxic levels of glutamate triggered by the activation of Cx43 hemichannels may contribute to hippocampal neurotoxicity and damage in prenatally LPS-exposed offspring. Therefore, the understanding of how astrocyte-neuron crosstalk is an auspicious avenue toward the development of broad treatments for several neurological disorders observed in children born to women who had a severe infection during gestation.
Collapse
Affiliation(s)
- Carolina E Chávez
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzún
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz C Avendaño
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Mellado
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla A Inostroza
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Facultad de Medicina, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
31
|
Díaz EF, Labra VC, Alvear TF, Mellado LA, Inostroza CA, Oyarzún JE, Salgado N, Quintanilla RA, Orellana JA. Connexin 43 hemichannels and pannexin-1 channels contribute to the α-synuclein-induced dysfunction and death of astrocytes. Glia 2019; 67:1598-1619. [PMID: 31033038 DOI: 10.1002/glia.23631] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
Diverse studies have suggested that cytoplasmic inclusions of misfolded α-synuclein in neuronal and glial cells are main pathological features of different α-synucleinopathies, including Parkinson's disease and dementia with Lewy bodies. Up to now, most studies have focused on the effects of α-synuclein on neurons, whereas the possible alterations of astrocyte functions and neuron-glia crosstalk have received minor attention. Recent evidence indicates that cellular signaling mediated by hemichannels and pannexons is critical for astroglial function and dysfunction. These channels constitute a diffusional route of communication between the cytosol and the extracellular space and during pathological scenarios they may lead to homeostatic disturbances linked to the pathogenesis and progression of different diseases. Here, we found that α-synuclein enhances the opening of connexin 43 (Cx43) hemichannels and pannexin-1 (Panx1) channels in mouse cortical astrocytes. This response was linked to the activation of cytokines, the p38 MAP kinase, the inducible nitric oxide synthase, cyclooxygenase 2, intracellular free Ca2+ concentration ([Ca2+ ]i ), and purinergic and glutamatergic signaling. Relevantly, the α-synuclein-induced opening of hemichannels and pannexons resulted in alterations in [Ca2+ ]i dynamics, nitric oxide (NO) production, gliotransmitter release, mitochondrial morphology, and astrocyte survival. We propose that α-synuclein-mediated opening of astroglial Cx43 hemichannels and Panx1 channels might constitute a novel mechanism involved in the pathogenesis and progression of α-synucleinopathies.
Collapse
Affiliation(s)
- Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tanhia F Alvear
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Mellado
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla A Inostroza
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan E Oyarzún
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Salgado
- Unidad de Microscopía Avanzada UC, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Escuela de Medicina, Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Escuela de Medicina, Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
32
|
Sáez JC, Contreras-Duarte S, Gómez GI, Labra VC, Santibañez CA, Gajardo-Gómez R, Avendaño BC, Díaz EF, Montero TD, Velarde V, Orellana JA. Connexin 43 Hemichannel Activity Promoted by Pro-Inflammatory Cytokines and High Glucose Alters Endothelial Cell Function. Front Immunol 2018; 9:1899. [PMID: 30158937 PMCID: PMC6104120 DOI: 10.3389/fimmu.2018.01899] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The present work was done to elucidate whether hemichannels of a cell line derived from endothelial cells are affected by pro-inflammatory conditions (high glucose and IL-1β/TNF-α) known to lead to vascular dysfunction. We used EAhy 926 cells treated with high glucose and IL-1β/TNF-α. The hemichannel activity was evaluated with the dye uptake method and was abrogated with selective inhibitors or knocking down of hemichannel protein subunits with siRNA. Western blot analysis, cell surface biotinylation, and confocal microscopy were used to evaluate total and plasma membrane amounts of specific proteins and their cellular distribution, respectively. Changes in intracellular Ca2+ and nitric oxide (NO) signals were estimated by measuring FURA-2 and DAF-FM probes, respectively. High glucose concentration was found to elevate dye uptake, a response that was enhanced by IL-1β/TNF-α. High glucose plus IL-1β/TNF-α-induced dye uptake was abrogated by connexin 43 (Cx43) but not pannexin1 knockdown. Furthermore, Cx43 hemichannel activity was associated with enhanced ATP release and activation of p38 MAPK, inducible NO synthase, COX2, PGE2 receptor EP1, and P2X7/P2Y1 receptors. Inhibition of the above pathways prevented completely the increase in Cx43 hemichannel activity of cells treated high glucose and IL-1β/TNF-α. Both synthetic and endogenous cannabinoids (CBs) also prevented the increment in Cx43 hemichannel opening, as well as the subsequent generation and release of ATP and NO induced by pro-inflammatory conditions. The counteracting action of CBs also was extended to other endothelial alterations evoked by IL-1β/TNF-α and high glucose, including increased ATP-dependent Ca2+ dynamics and insulin-induced NO production. Finally, inhibition of Cx43 hemichannels also prevented the ATP release from endothelial cells treated with IL-1β/TNF-α and high glucose. Therefore, we propose that reduction of hemichannel activity could represent a strategy against the activation of deleterious pathways that lead to endothelial dysfunction and possibly cell damage evoked by high glucose and pro-inflammatory conditions during cardiovascular diseases.
Collapse
Affiliation(s)
- Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Susana Contreras-Duarte
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile.,Departamento de Ginecología y Obstetricia, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A Santibañez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz C Avendaño
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trinidad D Montero
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victoria Velarde
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
33
|
Wang J, Jackson DG, Dahl G. Cationic control of Panx1 channel function. Am J Physiol Cell Physiol 2018; 315:C279-C289. [PMID: 29719168 DOI: 10.1152/ajpcell.00303.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sequence and predicted membrane topology of pannexin1 (Panx1) places it in the family of gap junction proteins. However, rather than forming gap junction channels, Panx1 forms channels in the nonjunctional membrane. Panx1 operates in two distinct open states, depending on the mode of stimulation. The exclusively voltage-gated channel has a small conductance (<100 pS) and is highly selective for the flux of chloride ions. The Panx1 channel activated by various physiological stimuli or by increased concentrations of extracellular potassium ions has a large conductance (~500 pS, however, with multiple, long-lasting subconductance states) and is nonselectively permeable to small molecules, including ATP. To test whether the two open conformations also differ pharmacologically, the effects of di-and trivalent cations on the two Panx1 channel conformations were investigated. The rationale for this venture was that, under certain experimental conditions, ATP release from cells can be inhibited by multivalent cations, yet the literature indicates that the ATP release channel Panx1 is not affected by these ions. Consistent with previous reports, the Panx1 channel was not activated by removal of extracellular Ca2+ and the currents through the voltage-activated channel were not altered by Ca2+, Zn2+, Ba2+, or Gd3+. In contrast, the Panx1 channel activated to the large channel conformation by extracellular K+, osmotic stress, or low oxygen was inhibited by the multivalent cations in a dose-dependent way. Thus, monovalent cations activated the Panx1 channel from the closed state to the "large" conformation, while di- and trivalent cations exclusively inhibited this large channel conformation.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - David George Jackson
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine , Miami, Florida
| |
Collapse
|
34
|
Walrave L, Pierre A, Albertini G, Aourz N, De Bundel D, Van Eeckhaut A, Vinken M, Giaume C, Leybaert L, Smolders I. Inhibition of astroglial connexin43 hemichannels with TAT-Gap19 exerts anticonvulsant effects in rodents. Glia 2018; 66:1788-1804. [PMID: 29683209 DOI: 10.1002/glia.23341] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
Abstract
Accumulating evidence shows a key function for astrocytic connexin43 (Cx43) signaling in epilepsy. However, the lack of experimental distinction between Cx43 gap junction channels (GJCs) and hemichannels (HCs) has impeded the identification of the exact contribution of either channel configurations to epilepsy. We therefore investigated whether TAT-Gap19, a Cx mimetic peptide that inhibits Cx43 HCs but not the corresponding Cx43 GJCs, influences experimentally induced seizures in rodents. Dye uptake experiments in acute hippocampal slices of mice demonstrated that astroglial Cx43 HCs open in response to the chemoconvulsant pilocarpine and this was inhibited by TAT-Gap19. In vivo, pilocarpine-induced seizures as well as the accompanying increase in D-serine microdialysate levels were suppressed by Cx43 HC inhibition. Moreover, the anticonvulsant action of TAT-Gap19 was reversed by exogenous D-serine administration, suggesting that Cx43 HC inhibition protects against seizures by lowering extracellular D-serine levels. The anticonvulsive properties of Cx43 HC inhibition were further confirmed in electrical seizure mouse models, i.e. an acute 6 Hertz (Hz) model of refractory seizures and a chronic 6 Hz corneal kindling model. Collectively, these results indicate that Cx43 HCs play a role in seizures and underscore their potential as a novel and druggable target in epilepsy treatment.
Collapse
Affiliation(s)
- Laura Walrave
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Anouk Pierre
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris, 75005, France
| | - Luc Leybaert
- Physiology group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
35
|
Verselis VK. Connexin hemichannels and cochlear function. Neurosci Lett 2017; 695:40-45. [PMID: 28917982 DOI: 10.1016/j.neulet.2017.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 01/01/2023]
Abstract
Connexins play vital roles in hearing, including promoting cochlear development and sustaining auditory function in the mature cochlea. Mutations in connexins expressed in the cochlear epithelium, Cx26 and Cx30, cause sensorineural deafness and in the case of Cx26, is one of the most common causes of non-syndromic, hereditary deafness. Connexins function as gap junction channels and as hemichannels, which mediate intercellular and transmembrane signaling, respectively. Both channel configurations can play important, but very different roles in the cochlea. The potential roles connexin hemichannels can play are discussed both in normal cochlear function and in promoting pathogenesis that can lead to hearing loss.
Collapse
Affiliation(s)
- Vytas K Verselis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
36
|
Role of astrocyte connexin hemichannels in cortical spreading depression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:216-223. [PMID: 28864364 DOI: 10.1016/j.bbamem.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
Abstract
Cortical spreading depression (CSD) is an intriguing phenomenon consisting of massive slow brain depolarizations that affects neurons and glial cells. It has been recognized since 1944, but its pathogenesis has only been uncovered during the last decade. Acute brain injuries can be further complicated by CSD in >50% of severe cases. This phenomenon is repetitive and produces a metabolic overload that increments secondary damage. Propagation of CSD is known to be linked to excitotoxicity, but the mechanisms associated with its initiation remain less understood. It has been shown that CSD can be initiated by increases in extracellular [K+] ([K+]e), and animal models use high [K+]e to promote CSD. Connexin hemichannel activity increases due to high [K+]e and low extracellular [Ca2+], conditions that occur after brain injury. Moreover, glial cell gap junction channels are fundamental in controlling extracellular medium composition, particularly in maintaining normal extracellular glutamate and K+ concentrations through "spatial buffering". However, the role of astrocytic gap junctions under tissue stress can change to damage spread in the acute damage zone whereas the reduced communication in adjacent zone would reduce cell dead propagation. Here, we review the main findings associated with CSD, and discuss the possible involvement of astrocytic connexin-based channels in secondary damage propagation. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
37
|
Yi C, Ezan P, Fernández P, Schmitt J, Sáez JC, Giaume C, Koulakoff A. Inhibition of glial hemichannels by boldine treatment reduces neuronal suffering in a murine model of Alzheimer's disease. Glia 2017; 65:1607-1625. [PMID: 28703353 DOI: 10.1002/glia.23182] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
Abstract
The contribution of reactive gliosis to the pathological phenotype of Alzheimer's disease (AD) opened the way for therapeutic strategies targeting glial cells instead of neurons. In such context, connexin hemichannels were proposed recently as potential targets since neuronal suffering is alleviated when connexin expression is genetically suppressed in astrocytes of a murine model of AD. Here, we show that boldine, an alkaloid from the boldo tree, inhibited hemichannel activity in astrocytes and microglia without affecting gap junctional communication in culture and acute hippocampal slices. Long-term oral administration of boldine in AD mice prevented the increase in glial hemichannel activity, astrocytic Ca2+ signal, ATP and glutamate release and alleviated hippocampal neuronal suffering. These findings highlight the important pathological role of hemichannels in AD mice. The neuroprotective effect of boldine treatment might provide the basis for future pharmacological strategies that target glial hemichannels to reduce neuronal damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenju Yi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Paola Fernández
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Julien Schmitt
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neurosciences Paris Seine, Institut de Biologie Paris Seine (NPS-IBPS), Cerebellum Navigation and Memory team (CeZaMe), Paris, 75005, France
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Annette Koulakoff
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, 75005, France
| |
Collapse
|
38
|
Multiple and complex influences of connexins and pannexins on cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28625689 DOI: 10.1016/j.bbamem.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell death is a fundamental process for organogenesis, immunity and cell renewal. During the last decades a broad range of molecular tools were identified as important players for several different cell death pathways (apoptosis, pyroptosis, necrosis, autosis…). Aside from these direct regulators of cell death programs, several lines of evidence proposed connexins and pannexins as potent effectors of cell death. In the present review we discussed the potential roles played by connexins, pannexins and innexins in the different cell death programs at different scales from gap junction intercellular communication to protein-protein interactions. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|