1
|
Churchill NW, Graham SJ, Schweizer TA. Perfusion Imaging of Traumatic Brain Injury. Neuroimaging Clin N Am 2023; 33:315-324. [PMID: 36965948 DOI: 10.1016/j.nic.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The mechanisms for regulating cerebral blood flow (CBF) are highly sensitive to traumatic brain injury (TBI). The perfusion imaging technique may be used to assess CBF and identify perfusion abnormalities following a TBI. Studies have identified CBF disturbances across the injury severity spectrum and correlations with both acute and long-term indices of clinical outcome. Although not yet widely used in the clinical context, this is an important area of ongoing research.
Collapse
Affiliation(s)
- Nathan W Churchill
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Physics Department, Toronto Metropolitan University, 60 St George St, Toronto, ON M5S 1A7, Canada.
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, ON M5G 1L7, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Wellness Way, Toronto, ON M4N 3M5, Canada; Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Faculty of Medicine (Neurosurgery), University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Syndrome of the trephined: clinical spectrum, risk factors, and impact of cranioplasty on neurologic recovery in a prospective cohort. Neurosurg Rev 2021; 45:1431-1443. [PMID: 34618250 PMCID: PMC8976790 DOI: 10.1007/s10143-021-01655-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023]
Abstract
Syndrome of the trephined (SoT) is an underrecognized complication after decompressive craniectomy. We aimed to investigate SoT incidence, clinical spectrum, risk factors, and the impact of the cranioplasty on neurologic recovery. Patients undergoing a large craniectomy (> 80 cm2) and cranioplasty were prospectively evaluated using modified Rankin score (mRS), cognitive (attention/processing speed, executive function, language, visuospatial), motor (Motricity Index, Jamar dynamometer, postural score, gait assessment), and radiologic evaluation within four days before and after a cranioplasty. The primary outcome was SoT, diagnosed when a neurologic improvement was observed after the cranioplasty. The secondary outcome was a good neurologic outcome (mRS 0–3) 4 days and 90 days after the cranioplasty. Logistic regression models were used to evaluate the risk factors for SoT and the impact of cranioplasty timing on neurologic recovery. We enrolled 40 patients with a large craniectomy; 26 (65%) developed SoT and improved after the cranioplasty. Brain trauma, hemorrhagic lesions, and shifting of brain structures were associated with SoT. After cranioplasty, a shift towards a good outcome was observed within 4 days (p = 0.025) and persisted at 90 days (p = 0.005). Increasing delay to cranioplasty was associated with decreased odds of improvement when adjusting for age and baseline disability (odds ratio 0.96; 95% CI, 0.93–0.99, p = 0.012). In conclusion, SoT is frequent after craniectomy and interferes with neurologic recovery. High suspicion of SoT should be exercised in patients who fail to progress or have a previous trauma, hemorrhage, or shifting of brain structures. Performing the cranioplasty earlier was associated with improved and quantifiable neurologic recovery.
Graphical abstract ![]()
Collapse
|
3
|
Alcock S, Batoo D, Ande SR, Grierson R, Essig M, Martin D, Trivedi A, Sinha N, Leeies M, Zeiler FA, Shankar JJS. Early diagnosis of mortality using admission CT perfusion in severe traumatic brain injury patients (ACT-TBI): protocol for a prospective cohort study. BMJ Open 2021; 11:e047305. [PMID: 34108167 PMCID: PMC8191612 DOI: 10.1136/bmjopen-2020-047305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Severe traumatic brain injury (TBI) is a catastrophic neurological condition with significant economic burden. Early in-hospital mortality (<48 hours) with severe TBI is estimated at 50%. Several clinical examinations exist to determine brain death; however, most are difficult to elicit in the acute setting in patients with severe TBI. Having a definitive assessment tool would help predict early in-hospital mortality in this population. CT perfusion (CTP) has shown promise diagnosing early in-hospital mortality in patients with severe TBI and other populations. The purpose of this study is to validate admission CTP features of brain death relative to the clinical examination outcome for characterizing early in-hospital mortality in patients with severe TBI. METHODS AND ANALYSIS The Early Diagnosis of Mortality using Admission CT Perfusion in Severe Traumatic Brain Injury Patients study, is a prospective cohort study in patients with severe TBI funded by a grant from the Canadian Institute of Health Research. Adults aged 18 or older, with evidence of a severe TBI (Glasgow Coma Scale score ≤8 before initial resuscitation) and, on mechanical ventilation at the time of imaging are eligible. Patients will undergo CTP at the time of first imaging on their hospital admission. Admission CTP compares with the reference standard of an accepted bedside clinical assessment for brainstem function. Deferred consent will be used. The primary outcome is a binary outcome of mortality (dead) or survival (not dead) in the first 48 hours of admission. The planned sample size for achieving a sensitivity of 75% and a specificity of 95% with a CI of ±5% is 200 patients. ETHICS AND DISSEMINATION This study has been approved by the University of Manitoba Health Research Ethics Board. The findings from our study will be disseminated through peer-reviewed journals and presentations at local rounds, national and international conferences. The public will be informed through forums at the end of the study. TRIAL REGISTRATION NUMBER NCT04318665.
Collapse
Affiliation(s)
- Susan Alcock
- Department of Radiology, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Divjeet Batoo
- Department of Radiology, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Sudharsana Rao Ande
- Department of Radiology, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Rob Grierson
- Department of Emergency Medicine, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Marco Essig
- Department of Radiology, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Douglas Martin
- Department of Emergency Medicine, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Anurag Trivedi
- Section of Neurology, Department of Internal Medicine, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Namita Sinha
- Section of Neuropathology, Department of Pathology, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Murdoch Leeies
- Department of Emergency Medicine & Section of Critical Care Medicine, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| | - Jai Jai Shiva Shankar
- Department of Radiology, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba Faculty of Health Sciences, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Avsenik J, Bajrović FF, Gradišek P, Kejžar N, Šurlan Popović K. Prognostic value of CT perfusion and permeability imaging in traumatic brain injury. J Trauma Acute Care Surg 2021; 90:484-491. [PMID: 33009337 DOI: 10.1097/ta.0000000000002964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Currently established prognostic models in traumatic brain injury (TBI) include noncontrast computed tomography (CT) which is insensitive to early perfusion alterations associated with secondary brain injury. Perfusion CT (PCT) on the other hand offers insight into early perfusion abnormalities. We hypothesized that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model. METHODS A prospective cohort study of consecutive 50 adult patients with head injury and Glasgow Coma Scale score of 12 or less was performed at a single Level 1 Trauma Centre. Perfusion CT was added to routine control CT 12 hours to 24 hours after admission. Region of interest analysis was performed in six major vascular territories on perfusion and permeability parametric maps. Glasgow Outcome Scale (GOS) was used 6 months later to categorize patients' functional outcomes to favorable (GOS score > 3) or unfavorable (GOS score ≤ 3). We defined core prognostic model, consisting of age, motor Glasgow Coma Scale score, pupillary reactivity, and CT Rotterdam Score. Next, we added perfusion and permeability data as predictors and compared updated models to the core model using cross-validated areas under the receiver operator curves (cv-AUC). RESULTS Significant advantage over core model was shown by the model, containing both mean cerebral extravascular-extracellular volume per unit of tissue volume and cerebral blood volume of the least perfused arterial territory in addition to core predictors (cv-AUC, 0.75; 95% confidence interval, 0.51-0.84 vs. 0.6; 95% confidence interval, 0.37-0.74). CONCLUSION The development of cerebral ischemia and traumatic cerebral edema constitutes the secondary brain injury and represents the target for therapeutic interventions. Our results suggest that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model in the setting of moderate and severe TBI. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
Affiliation(s)
- Jernej Avsenik
- From the Clinical Institute of Radiology (J.A., K.Š.P.), University Medical Centre Ljubljana; Department of Radiology (J.A., K.Š.P.), Faculty of Medicine, University of Ljubljana; Division of Neurology (F.F.B.), University Medical Centre Ljubljana; Institute of Pathophysiology (F.F.B.), Faculty of Medicine, University of Ljubljana; Clinical Department of Anaesthesiology and Intensive Therapy (P.G.), Centre for Intensive Therapy, University Medical Centre Ljubljana; Department of Anaesthesiology with Reanimatology (P.G.), Faculty of Medicine, University of Ljubljana and Institute for Biostatistics and Medical Informatics (N.K.), Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
5
|
Admission Perfusion CT for Classifying Early In-Hospital Mortality of Patients With Severe Traumatic Brain Injury: A Pilot Study. AJR Am J Roentgenol 2020; 214:872-876. [PMID: 31990213 DOI: 10.2214/ajr.19.21599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purposes of this study were to assess the feasibility and safety of perfusion CT of patients with severe traumatic brain injury (TBI) at hospital admission and to examine whether early in-hospital mortality could be characterized with perfusion CT (PCT). The hypothesis was that PCT can be used to characterize brain death, when present, in patients with severe TBI at hospital admission. SUBJECTS AND METHODS. In this prospective cohort pilot study, PCT was performed on patients with severe TBI at first imaging workup at hospital admission. PCT images were processed at the end of the study and assessed for features of brain death. The PCT features were then compared with the clinical outcome of in-hospital mortality. RESULTS. A total of 19 patients (13 men [68.4%]; six women [31.6%]; mean age, 36.4 years; median, 27.5 years) had a mean hospital stay longer than 1 month. No complications of PCT were found. In the first 48 hours after admission, four patients (21%) died. Admission PCT changes suggesting brainstem death were sensitive (75%) and specific (100%) and had high positive (100%) and negative (93.75%) predictive value for correct classification early in-hospital mortality. CONCLUSION. Admission PCT of patients with severe TBI was feasible and safe. Admission PCT findings helped in correctly classifying early in-hospital mortality in the first 48 hours of hospital admission.
Collapse
|
6
|
Smith LGF, Milliron E, Ho ML, Hu HH, Rusin J, Leonard J, Sribnick EA. Advanced neuroimaging in traumatic brain injury: an overview. Neurosurg Focus 2019; 47:E17. [PMID: 32364704 DOI: 10.3171/2019.9.focus19652] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is a common condition with many potential acute and chronic neurological consequences. Standard initial radiographic evaluation includes noncontrast head CT scanning to rapidly evaluate for pathology that might require intervention. The availability of fast, relatively inexpensive CT imaging has fundamentally changed the clinician's ability to noninvasively visualize neuroanatomy. However, in the context of TBI, limitations of head CT without contrast include poor prognostic ability, inability to analyze cerebral perfusion status, and poor visualization of underlying posttraumatic changes to brain parenchyma. Here, the authors review emerging advanced imaging for evaluation of both acute and chronic TBI and include QuickBrain MRI as an initial imaging modality. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI, MR arterial spin labeling, and perfusion CT are reviewed as methods for examining cerebral blood flow following TBI. The authors evaluate MR-based diffusion tensor imaging and functional MRI for prognostication of recovery post-TBI. Finally, MR elastography, MR spectroscopy, and convolutional neural networks are examined as future tools in TBI management. Many imaging technologies are being developed and studied in TBI, and some of these may hold promise in improving the understanding and management of TBI. ABBREVIATIONS ASL = arterial spin labeling; CNN = convolutional neural network; CTP = perfusion CT; DAI = diffuse axonal injury; DMN = default mode network; DOC = disorders of consciousness; DTI = diffusion tensor imaging; FA = fractional anisotropy; fMRI = functional MRI; GCS = Glasgow Coma Scale; MD = mean diffusivity; MRE = MR elastography; MRS = MR spectroscopy; mTBI = mild TBI; NAA = N-acetylaspartate; SWI = susceptibility-weighted imaging; TBI = traumatic brain injury; UHF = ultra-high field.
Collapse
Affiliation(s)
| | - Eric Milliron
- 2The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus; and
| | | | | | | | - Jeffrey Leonard
- 1Department of Neurological Surgery and.,4Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Eric A Sribnick
- 1Department of Neurological Surgery and.,4Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
7
|
Cooper S, Bendinelli C, Bivard A, Parsons M, Balogh ZJ. When a Slice Is Not Enough! Comparison of Whole-Brain versus Standard Limited-Slice Perfusion Computed Tomography in Patients with Severe Traumatic Brain Injury. J Clin Med 2019; 8:jcm8050701. [PMID: 31108945 PMCID: PMC6571909 DOI: 10.3390/jcm8050701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
Introduction: Cerebral perfusion computed tomography (PCT) provides crucial information in acute stroke and has an increasing role in traumatic brain injury (TBI) management. Most studies on TBI patients utilize 64-slice scanners, which are limited to four brain slices (limited-brain PCT, LBPCT). Newer 320-slice scanners depict the whole brain perfusion status (WBPCT). We aimed to identify the additional information gained with WBPCT when compared to LBPCT. Patients and methods: Forty-nine patients with severe TBI were investigated within 48 h from admission with WBPCT. Findings from LBPCT were compared with findings from WBPCT. Results: A perfusion abnormality was identified in 39 (80%) and 37 (76%) patients by WBPCT and LBPCT, respectively (p = 0.8). There were 90 and 68 perfusion abnormalities identified by WBPCT and LBPCT, respectively (p < 0.001). In the 39 patients with a perfusion abnormality detected by WBPCT, 15 (38%) had further perfusion abnormalities outside the LBPCT area of coverage. Thirty-six (92%) patients had a larger perfusion abnormality upon WBPCT compared with LBPCT. Additional information gained showed some statistically significant correlation with clinical outcome. Conclusions: In severe TBI patients, WBPCT provides extra information compared to LBPC. The limitations of LBPCT should be considered when evaluating studies reporting on PCT findings and their association with outcomes.
Collapse
Affiliation(s)
- Shannon Cooper
- Department of Traumatology, John Hunter Hospital, Newcastle 2300, Australia.
| | - Cino Bendinelli
- Department of Traumatology, John Hunter Hospital, Newcastle 2300, Australia.
- Faculty of Medicine, University of Newcastle, Newcastle 2300, Australia.
| | - Andrew Bivard
- Department of Neurology, Royal Melbourne Hospital, Victoria 3050, Australia.
- Faculty of Medicine, University of Melbourne, Melbourne 3050, Australia.
| | - Mark Parsons
- Department of Neurology, Royal Melbourne Hospital, Victoria 3050, Australia.
- Faculty of Medicine, University of Melbourne, Melbourne 3050, Australia.
| | - Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital, Newcastle 2300, Australia.
- Faculty of Medicine, University of Newcastle, Newcastle 2300, Australia.
| |
Collapse
|
8
|
Douglas DB, Ro T, Toffoli T, Krawchuk B, Muldermans J, Gullo J, Dulberger A, Anderson AE, Douglas PK, Wintermark M. Neuroimaging of Traumatic Brain Injury. Med Sci (Basel) 2018; 7:E2. [PMID: 30577545 PMCID: PMC6358760 DOI: 10.3390/medsci7010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
The purpose of this article is to review conventional and advanced neuroimaging techniques performed in the setting of traumatic brain injury (TBI). The primary goal for the treatment of patients with suspected TBI is to prevent secondary injury. In the setting of a moderate to severe TBI, the most appropriate initial neuroimaging examination is a noncontrast head computed tomography (CT), which can reveal life-threatening injuries and direct emergent neurosurgical intervention. We will focus much of the article on advanced neuroimaging techniques including perfusion imaging and diffusion tensor imaging and discuss their potentials and challenges. We believe that advanced neuroimaging techniques may improve the accuracy of diagnosis of TBI and improve management of TBI.
Collapse
Affiliation(s)
- David B Douglas
- Department of Neuroradiology, Stanford University, Palo Alto, CA 94301, USA.
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Tae Ro
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Thomas Toffoli
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Bennet Krawchuk
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Jonathan Muldermans
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - James Gullo
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Adam Dulberger
- Department of Radiology, David Grant Medical Center, Travis AFB, CA 94535, USA.
| | - Ariana E Anderson
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095, USA.
| | - Pamela K Douglas
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA 90095, USA.
- Institute for Simulation and Training, University of Central Florida, Orlando, FL 32816, USA.
| | - Max Wintermark
- Department of Neuroradiology, Stanford University, Palo Alto, CA 94301, USA.
| |
Collapse
|
9
|
|
10
|
Bendinelli C, Cooper S, Evans T, Bivard A, Pacey D, Parson M, Balogh ZJ. Perfusion Abnormalities are Frequently Detected by Early CT Perfusion and Predict Unfavourable Outcome Following Severe Traumatic Brain Injury. World J Surg 2018; 41:2512-2520. [PMID: 28455815 DOI: 10.1007/s00268-017-4030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In patients with severe traumatic brain injury (TBI), early CT perfusion (CTP) provides additional information beyond the non-contrast CT (NCCT) and may alter clinical management. We hypothesized that this information may prognosticate functional outcome. METHODS Five-year prospective observational study was performed in a level-1 trauma centre on consecutive severe TBI patients. CTP (obtained in conjunction with first routine NCCT) was interpreted as: abnormal, area of altered perfusion more extensive than on NCCT, and the presence of ischaemia. Six months Glasgow Outcome Scale-Extended of four or less was considered an unfavourable outcome. Logistic regression analysis of CTP findings and core variables [preintubation Glasgow Coma Scale (GCS), Rotterdam score, base deficit, age] was conducted using Bayesian model averaging to identify the best predicting model for unfavourable outcome. RESULTS Fifty patients were investigated with CTP (one excluded for the absence of TBI) [male: 80%, median age: 35 (23-55), prehospital intubation: 7 (14.2%); median GCS: 5 (3-7); median injury severity score: 29 (20-36); median head and neck abbreviated injury scale: 4 (4-5); median days in ICU: 10 (5-15)]. Thirty (50.8%) patients had an unfavourable outcome. GCS was a moderate predictor of unfavourable outcome (AUC = 0.74), while CTP variables showed greater predictive ability (AUC for abnormal CTP = 0.92; AUC for area of altered perfusion more extensive than NCCT = 0.83; AUC for the presence of ischaemia = 0.81). CONCLUSION Following severe TBI, CTP performed at the time of the first follow-up NCCT, is a non-invasive and extremely valuable tool for early outcome prediction. The potential impact on management and its cost effectiveness deserves to be evaluated in large-scale studies. LEVEL OF EVIDENCE III Prospective study.
Collapse
Affiliation(s)
- Cino Bendinelli
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Shannon Cooper
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Tiffany Evans
- Clinical Research Design, Information Technology and Statistical Support, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew Bivard
- Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Dianne Pacey
- Department of Rehabilitation, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Mark Parson
- Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
11
|
Management and outcome of moderate head trauma: our experience. ROMANIAN NEUROSURGERY 2018. [DOI: 10.2478/romneu-2018-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractObjective: The aim of this study is to follow up patients with moderate head trauma who were admitted to Mansoura University Hospital in the period from 1 Dec. 2015 to 30 Jul. 2016 until discharge and determine the outcome of head trauma.Material and Methods:This prospective study were conducted on all patients with moderate head trauma admitted to Mansoura Emergency Hospital during the period from 1 Dec. 2015 to 30 Jul. 2016 with exclude Polytrauma, bleeding disorders, severe liver and kidney disease patients.Results: In this study, we correlated different risk factors with management and with outcome. Management may be surgical or conservative and outcome may be alive or dead. We have 60 patients with 17 cases (28.3%) were treated surgically and 43 cases (71.6%) were treated conservatively. According to outcome 36 cases (60%) were alive and 24 cases (40%) died, all cases managed in ICU. According to sex, 10 cases (17%) were female and 50 cases were male (83%) with statistically nonsignificant effect on outcome (P = 0.7) and management (P =0.7). road traffic accidents is most common cause of injury with 33 cases (55%), and Cause of injury had statistically significant effect on management (P = 0.02) and statistically non-significant effect on outcome (p = 0.4). GCS on admission had no statistically significant effect on management (P=0.8) and outcome (P=0.1) with mean of 10.1±1.2 and GCS on discharge had no statistically significant effect on management (P=0.6).Conclusion: There were significant effect of age of patients, systemic diseases (such as DM, HTN, chronic kidney diseases, and chronic liver diseases), type of lesions (especially SDH, SAH), and serum electrolytes (especially serum Sodium) on outcome which determined by GCS at discharge, length of hospital stay, and the state of the patient at discharge.
Collapse
|
12
|
Douglas DB, Chaudhari R, Zhao JM, Gullo J, Kirkland J, Douglas PK, Wolin E, Walroth J, Wintermark M. Perfusion Imaging in Acute Traumatic Brain Injury. Neuroimaging Clin N Am 2018; 28:55-65. [PMID: 29157853 PMCID: PMC7890940 DOI: 10.1016/j.nic.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a significant problem worldwide and neuroimaging plays a critical role in diagnosis and management. Recently, perfusion neuroimaging techniques have been explored in TBI to determine and characterize potential perfusion neuroimaging biomarkers to aid in diagnosis, treatment, and prognosis. In this article, computed tomography (CT) bolus perfusion, MR imaging bolus perfusion, MR imaging arterial spin labeling perfusion, and xenon CT are reviewed with a focus on their applications in acute TBI. Future research directions are also discussed.
Collapse
Affiliation(s)
- David B Douglas
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA; Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Ruchir Chaudhari
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA
| | - Jason M Zhao
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - James Gullo
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Jared Kirkland
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Pamela K Douglas
- Institute for Simulation and Training, University of Central Florida, 3100 Technology Parkway, Orlando, FL 32826, USA
| | - Ely Wolin
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - James Walroth
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Max Wintermark
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA.
| |
Collapse
|
13
|
Honda M, Ichibayashi R, Yokomuro H, Yoshihara K, Masuda H, Haga D, Seiki Y, Kudoh C, Kishi T. Early Cerebral Circulation Disturbance in Patients Suffering from Severe Traumatic Brain Injury (TBI): A Xenon CT and Perfusion CT Study. Neurol Med Chir (Tokyo) 2016; 56:501-9. [PMID: 27356957 PMCID: PMC4987450 DOI: 10.2176/nmc.oa.2015-0341] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). Ischemia is a common and deleterious secondary injury following TBI. Detecting early ischemia in TBI patients is important to prevent further advancement and deterioration of the brain tissue. The purpose of this study was to clarify the cerebral circulatory disturbance during the early phase and whether it can be used to predict patient outcome. A total of 90 patients with TBI underwent a xenon-computed tomography (Xe-CT) and subsequently perfusion CT to evaluate the cerebral circulation on days 1–3. We measured CBF using Xe-CT and mean transit time (MTT: the width between two inflection points [maximum upward slope and maximum downward slope from inflow to outflow of the contrast agent]) using perfusion CT and calculated the cerebral blood volume (CBV) using the AZ-7000W98 computer system. The relationships of the hemodynamic parameters CBF, MTT, and CBV to the Glasgow Coma Scale (GCS) score and the Glasgow Outcome Scale (GOS) score were examined. There were no significant differences in CBF, MTT, and CBV among GCS3–4, GCS5–6, and GCS7–8 groups. The patients with a favorable outcome (GR and MD) had significantly higher CBF and lower MTT than those with an unfavorable one (SD, VS, or D). The discriminant analysis of these parameters could predict patient outcome with a probability of 70.6%. During the early phase, CBF reduction and MTT prolongation might influence the clinical outcome of TBI. These parameters are helpful for evaluating the severity of cerebral circulatory disturbance and predicting the outcome of TBI patients.
Collapse
Affiliation(s)
- Mitsuru Honda
- Department of Critical Care Center, Toho University Medical Center Omori Hospital
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Godoy DA, Rubiano A, Rabinstein AA, Bullock R, Sahuquillo J. Moderate Traumatic Brain Injury: The Grey Zone of Neurotrauma. Neurocrit Care 2016; 25:306-19. [DOI: 10.1007/s12028-016-0253-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Amyot F, Arciniegas DB, Brazaitis MP, Curley KC, Diaz-Arrastia R, Gandjbakhche A, Herscovitch P, Hinds SR, Manley GT, Pacifico A, Razumovsky A, Riley J, Salzer W, Shih R, Smirniotopoulos JG, Stocker D. A Review of the Effectiveness of Neuroimaging Modalities for the Detection of Traumatic Brain Injury. J Neurotrauma 2015; 32:1693-721. [PMID: 26176603 PMCID: PMC4651019 DOI: 10.1089/neu.2013.3306] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) in the United States was 3.5 million cases in 2009, according to the Centers for Disease Control and Prevention. It is a contributing factor in 30.5% of injury-related deaths among civilians. Additionally, since 2000, more than 260,000 service members were diagnosed with TBI, with the vast majority classified as mild or concussive (76%). The objective assessment of TBI via imaging is a critical research gap, both in the military and civilian communities. In 2011, the Department of Defense (DoD) prepared a congressional report summarizing the effectiveness of seven neuroimaging modalities (computed tomography [CT], magnetic resonance imaging [MRI], transcranial Doppler [TCD], positron emission tomography, single photon emission computed tomography, electrophysiologic techniques [magnetoencephalography and electroencephalography], and functional near-infrared spectroscopy) to assess the spectrum of TBI from concussion to coma. For this report, neuroimaging experts identified the most relevant peer-reviewed publications and assessed the quality of the literature for each of these imaging technique in the clinical and research settings. Although CT, MRI, and TCD were determined to be the most useful modalities in the clinical setting, no single imaging modality proved sufficient for all patients due to the heterogeneity of TBI. All imaging modalities reviewed demonstrated the potential to emerge as part of future clinical care. This paper describes and updates the results of the DoD report and also expands on the use of angiography in patients with TBI.
Collapse
Affiliation(s)
- Franck Amyot
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David B. Arciniegas
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Baylor College of Medicine, Houston, Texas
- Brain Injury Research, TIRR Memorial Hermann, Houston, Texas
| | | | - Kenneth C. Curley
- Combat Casualty Care Directorate (RAD2), U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Amir Gandjbakhche
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Sidney R. Hinds
- Defense and Veterans Brain Injury Center, Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Silver Spring, Maryland
| | - Geoffrey T. Manley
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Anthony Pacifico
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | | | - Jason Riley
- Queens University, Kingston, Ontario, Canada
- ArcheOptix Inc., Picton, Ontario, Canada
| | - Wanda Salzer
- Congressionally Directed Medical Research Programs, Fort Detrick, Maryland
| | - Robert Shih
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - James G. Smirniotopoulos
- Department of Radiology, Neurology, and Biomedical Informatics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Derek Stocker
- Walter Reed National Military Medical Center, Bethesda, Maryland
| |
Collapse
|
17
|
Delay-sensitive and delay-insensitive deconvolution perfusion-CT: similar ischemic core and penumbra volumes if appropriate threshold selected for each. Neuroradiology 2015; 57:573-81. [DOI: 10.1007/s00234-015-1507-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/25/2015] [Indexed: 11/30/2022]
|
18
|
Van Der Naalt J. Resting functional imaging tools (MRS, SPECT, PET and PCT). HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:295-308. [PMID: 25702224 DOI: 10.1016/b978-0-444-52892-6.00019-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined.
Collapse
Affiliation(s)
- J Van Der Naalt
- Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands.
| |
Collapse
|
19
|
Wintermark M, Sanelli PC, Anzai Y, Tsiouris AJ, Whitlow CT. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques. AJNR Am J Neuroradiol 2014; 36:E1-E11. [PMID: 25424870 DOI: 10.3174/ajnr.a4181] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SUMMARY Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge.
Collapse
Affiliation(s)
- M Wintermark
- From the Division of Neuroradiology (M.W.), Stanford University, Palo Alto, California
| | - P C Sanelli
- Department of Radiology (P.C.S.), North Shore-LIJ Health System, Manhasset, New York
| | - Y Anzai
- Department of Radiology (Y.A.), University of Washington, Seattle, Washington
| | - A J Tsiouris
- Department of Radiology (A.J.T.), Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York
| | - C T Whitlow
- Department of Radiology and Translational Science Institute (C.T.W.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
20
|
Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol 2014; 5:114. [PMID: 25071702 PMCID: PMC4083561 DOI: 10.3389/fneur.2014.00114] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.
Collapse
Affiliation(s)
- Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University , Uppsala , Sweden ; Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Henrik Engquist
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University , Uppsala , Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University , Uppsala , Sweden
| |
Collapse
|
21
|
Sarubbo S, Latini F, Ceruti S, Chieregato A, d'Esterre C, Lee TY, Cavallo M, Fainardi E. Temporal changes in CT perfusion values before and after cranioplasty in patients without symptoms related to external decompression: a pilot study. Neuroradiology 2014; 56:237-43. [PMID: 24430116 DOI: 10.1007/s00234-014-1318-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/03/2014] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Little is known about hemodynamic disturbances affecting cerebral hemispheres in traumatic brain injury (TBI) after cranioplasty. METHODS We prospectively investigated six stable TBI patients who underwent cranioplasty more than 90 days after effective decompressive craniectomy. Computerized tomography perfusion (CTP) studies and evaluation of clinical outcome were performed for each patient before cranioplasty and at 7 days and 3 months after surgery. Cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) were measured in multiple cortical circular regions positioned in cranioplasty-treated and contralateral hemispheres. RESULTS Neither complications associated with cranioplasty nor changes in outcome were observed. On the treated side, CBF and CBV values were higher before and 7 days after cranioplasty than at 3 months after surgery, whereas MTT values were lower at 7 days than at 3 months after surgical treatment. CONCLUSIONS Our results indicate that cortical perfusion progressively declines in the cranioplasty treated hemisphere but remains stable in the contralateral hemisphere after surgery and suggest that CTP can represent a promising tool for a longitudinal analysis of hemodynamic abnormalities occurring in TBI patients after cranioplasty. In addition, these data imply a possible role of cranioplasty in restoring flow to meet the prevailing metabolic demand.
Collapse
Affiliation(s)
- Silvio Sarubbo
- Neurosurgery Unit, Department of Neurosciences, "S. Chiara" Hospital, APSS Trento, Trento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang APH, Tsai JC, Kuo LT, Lee CW, Lai HS, Tsai LK, Huang SJ, Chen CM, Chen YS, Chuang HY, Wintermark M. Clinical application of perfusion computed tomography in neurosurgery. J Neurosurg 2013; 120:473-88. [PMID: 24266541 DOI: 10.3171/2013.10.jns13103] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECT Currently, perfusion CT (PCT) is a valuable imaging technique that has been successfully applied to the clinical management of patients with ischemic stroke and aneurysmal subarachnoid hemorrhage (SAH). However, recent literature and the authors' experience have shown that PCT has many more important clinical applications in a variety of neurosurgical conditions. Therefore, the authors share their experiences of its application in various diseases of the cerebrovascular, neurotraumatology, and neurooncology fields and review the pertinent literature regarding expanding PCT applications for neurosurgical conditions, including pitfalls and future developments. METHODS A pertinent literature search was conducted of English-language articles describing original research, case series, and case reports from 1990 to 2011 involving PCT and with relevance and applicability to neurosurgical disorders. RESULTS In the cerebrovascular field, PCT is already in use as a diagnostic tool for patients suspected of having an ischemic stroke. Perfusion CT can be used to identify and define the extent of the infarct core and ischemic penumbra core, and thus aid patient selection for acute reperfusion therapy. For patients with aneurysmal SAH, PCT provides assessment of early brain injury, cerebral ischemia, and infarction, in addition to vasospasm. It may also be used to aid case selection for aggressive treatment of patients with poor SAH grade. In terms of oncological applications, PCT can be used as an imaging biomarker to assess angiogenesis and response to antiangiogenetic treatments, differentiate between glioma grades, and distinguish recurrent tumor from radiation necrosis. In the setting of traumatic brain injury, PCT can detect and delineate contusions at an early stage. In patients with mild head injury, PCT results have been shown to correlate with the severity and duration of postconcussion syndrome. In patients with moderate or severe head injury, PCT results have been shown to correlate with patients' functional outcome. CONCLUSIONS Perfusion CT provides quantitative and qualitative data that can add diagnostic and prognostic value in a number of neurosurgical disorders, and also help with clinical decision making. With emerging new technical developments in PCT, such as characterization of blood-brain barrier permeability and whole-brain PCT, this technique is expected to provide more and more insight into the pathophysiology of many neurosurgical conditions.
Collapse
|
23
|
Bendinelli C, Bivard A, Nebauer S, Parsons MW, Balogh ZJ. Brain CT perfusion provides additional useful information in severe traumatic brain injury. Injury 2013; 44:1208-12. [PMID: 23642628 DOI: 10.1016/j.injury.2013.03.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/10/2013] [Accepted: 03/29/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND The role of brain CT perfusion (CTP) imaging in severe traumatic brain injury (STBI) is unclear. We hypothesised that in STBI early CTP may provide additional information beyond the non contrast CT (NCCT). METHODS Subset analysis of an ongoing prospective observational study on trauma patients with STBI who did not require craniectomy and deteriorated or failed to improve neurologically during the first 48h from trauma. Subsequently to follow-up NCCT, a CTP was obtained. Additional findings were defined as an area of altered perfusion on CTP larger than the abnormal area detected by the simultaneous NCCT. Patients who had additional finding (A-CTP) were compared with patients who did not have additional findings (NA-CTP). RESULTS Study population was 30 patients [male: 90%, mean age: 38.6 (SD 16.9), blunt trauma: 100%; prehospital intubation: 6 (20%); lowest GCS before intubation: 5.1 (SD 2.0); mean ISS: 30.5 (SD 8.3); mean head and neck AIS: 4.4 (SD 0.8). Days in ICU: 10.2 (SD 6.3). Intracranial pressure (ICP) monitored in 12 (40%). Mean highest ICP in mmHg: 30.1 (SD14.1). There were five (17%) deaths. Findings of NCCT: primarily diffuse axonal injury (DAI) pattern in seven (23%), primarily haematoma in ten (33%), and primarily intracerebral contusion in nine (30%). CTP was performed 24.9 (SD 13) hours from trauma. There were 18 (60%) patients in the A-CTP group and 12 (40.0%) in NA-CTP. The A-CTP group was older (41.7 (SD16.9) vs 27.7 (SD 12.8): P<0.02) and showed on admission NCCT presence of cerebral contusion and absence of DAI. The degree of hypoperfusion was found to be severe enough to be in the ischaemic range in eight patients (27%). CTP altered clinical management in three patients (10%), who were diagnosed with massive and unsurvivable strokes despite minimal changes on NCCT. CONCLUSION When compared to NCCT, CTP provided additional diagnostic information in 60% of patients with STBI. CTP altered clinical management in 10% of patients.
Collapse
|
24
|
Early cerebral circulation disturbance in patients suffering from different types of severe traumatic brain injury: a xenon CT and perfusion CT study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:259-63. [PMID: 23564144 DOI: 10.1007/978-3-7091-1434-6_49] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is widely known to cause dynamic changes in cerebral blood flow (CBF). In particular, secondary brain insults have been reported to decrease CBF. The purpose of this study was to clarify the cerebral circulation in different types of TBI. METHODS Sixty-nine patients with TBI were divided into four groups, the subdural hematoma group, the contusion/intracerebral hematoma group, the diffuse axonal injury group, and the diffuse brain swelling group. In these patients, we simultaneously performed Xe-CT and perfusion CT to evaluate the cerebral circulation on post-injury days 1-3. We measured CBF using Xe-CT and mean transit time using perfusion CT and calculated the cerebral blood volume using the AZ-7000 W98 computer system. RESULTS There were no significant differences in the Glasgow Coma Scale score on arrival or the Glasgow Outcome Scale score between the groups. The patients who had suffered focal TBI displayed more significant cerebral circulation disturbances than those that had suffered diffuse TBI. We were able to evaluate the cerebral circulation of TBI patients using these parameters. CONCLUSION Moderate hypothermia therapy, which decreases CBF, the cerebral metabolic rate oxygen consumption (CMRO2), and intracranial pressure might be effective against the types of TBI accompanied by cerebral circulation disturbance. We have to use all possible measures including hypothermia therapy to treat severe TBI patients according to the type of TBI that they have suffered.
Collapse
|
25
|
Traumatic cerebral contusion: pathobiology and critical aspects. ROMANIAN NEUROSURGERY 2013. [DOI: 10.2478/romneu-2013-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTraumatic brain injury is a major cause of mortality in developed countries. Cerebral parenchymal injury is evidenced by a significant percentage of patients. The most important structural lesion of the brain is the cerebral contusion, which is a complex and dynamic area, a result of the primary lesion and which is associated with ischemic and inflammatory phenomena that need to be known by the neurosurgeon. We present a review of the most important aspects of brain contusion.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a leading cause of death and long-term cognitive and behavioral dysfunction in children and young adults, yet effective treatments are lacking, in part because critical aspects of TBI neurobiology and natural history are not understood. We review recent advances in neuroimaging and discuss how they are helping to address these fundamental gaps. RECENT FINDINGS Novel imaging methods provide detailed information on how TBI affects anatomical integrity (diffusion tensor imaging; voxel-based morphometry; susceptibility-weighted imaging, magnetization transfer imaging), metabolic activity (magnetic resonance spectroscopy), perfusion (positron emission tomography, perfusion computed tomography, perfusion magnetic resonance), and patterns of functional activation (functional magnetic resonance imaging). Individually and collectively, these methods can significantly enhance TBI diagnosis and outcome prediction. SUMMARY Refinements in neuroimaging offer a window into the complex neuroanatomical and neurophysiological disturbances induced by TBI. Research is needed to understand how these alterations evolve with time and in response to therapeutic interventions.
Collapse
|
27
|
Carter E, Coles JP. Imaging in the diagnosis and prognosis of traumatic brain injury. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2012; 6:541-554. [PMID: 23480836 DOI: 10.1517/17530059.2012.707188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Improved understanding of the impact of head injury and the extent and development of neuronal loss and cognitive dysfunction could lead to improved therapy and outcome for patients. AREAS COVERED This paper reviews the currently available imaging techniques and defines their role in the diagnosis, management and prediction of outcome following traumatic brain injury. These imaging techniques provide delineation of the structural, physiological and functional derangements that result following acute injury, and map their development and association with late functional deficits. Imaging tools also have a role in defining the pathophysiological mechanisms responsible for further neuronal loss following the primary injury. Finally, this paper provides an overview of the role of functional imaging in classifying unresponsive coma and defining functional reorganisation of the brain following injury. EXPERT OPINION Brain imaging is of key importance in TBI management, enabling efficient and accurate diagnoses to be made, informing management decisions and contributing to prognostication. Developments in imaging techniques promise to improve understanding of the structural and functional derangements, improve management and guide the development and implementation of novel neuroprotective strategies following head injury.
Collapse
Affiliation(s)
- Eleanor Carter
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital , Cambridge, CB2 0AA , UK +01223 217889 ; +01223 217887 ;
| | | |
Collapse
|
28
|
Hunter JV, Wilde EA, Tong KA, Holshouser BA. Emerging imaging tools for use with traumatic brain injury research. J Neurotrauma 2012; 29:654-71. [PMID: 21787167 PMCID: PMC3289847 DOI: 10.1089/neu.2011.1906] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.
Collapse
Affiliation(s)
- Jill V Hunter
- Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
29
|
Metting Z, Rödiger LA, de Jong BM, Stewart RE, Kremer BP, van der Naalt J. Acute cerebral perfusion CT abnormalities associated with posttraumatic amnesia in mild head injury. J Neurotrauma 2011; 27:2183-9. [PMID: 20939700 DOI: 10.1089/neu.2010.1395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Posttraumatic amnesia (PTA) is a common symptom following traumatic brain injury. Although this transient memory deficit implies specific impairment of higher brain function, the actual pathophysiology of PTA is not well understood. The aim of this study was to assess regional cerebral hemodynamics with perfusion computed tomography (CT) in patients during PTA following mild head injury compared to patients with resolved PTA. A total of 74 patients with mild head injury without structural abnormalities on a non-contrast CT scan were included and compared to 25 healthy controls. Two patient groups were defined: (1) a PTA group that was scanned during the episode of PTA (n = 34), and (2) a post-PTA group scanned after resolution of PTA (n = 40). The PTA group had significantly reduced cerebral blood flow (CBF) in the frontal grey matter (41.78 [SD 7.4] versus 44.44 [SD 6.2] mL • 100 g⁻¹ • min⁻¹, p = 0.023), and caudate nucleus (44.59 [SD 6.2] versus 47.85 [SD 7.7] mL • 100 g⁻¹ • min⁻¹, p = 0.021), compared to the post-PTA group. Thus in patients with mild head injury, PTA is associated with cerebral perfusion abnormalities in specific cortical and subcortical regions.
Collapse
Affiliation(s)
- Zwany Metting
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
Orrison WW, Snyder KV, Hopkins LN, Roach CJ, Ringdahl EN, Nazir R, Hanson EH. Whole-brain dynamic CT angiography and perfusion imaging. Clin Radiol 2011; 66:566-74. [PMID: 21371698 DOI: 10.1016/j.crad.2010.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 11/16/2022]
Abstract
The availability of whole brain computed tomography (CT) perfusion has expanded the opportunities for analysing the haemodynamic parameters associated with varied neurological conditions. Examples demonstrating the clinical utility of whole-brain CT perfusion imaging in selected acute and chronic ischaemic arterial neurovascular conditions are presented. Whole-brain CT perfusion enables the detection and focused haemodynamic analyses of acute and chronic arterial conditions in the central nervous system without the limitation of partial anatomical coverage of the brain.
Collapse
Affiliation(s)
- W W Orrison
- CHW Nevada Imaging Company, Nevada Imaging Centers, Spring Valley, Las Vegas, NV, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Worldwide, an estimated 10 million people are affected annually by traumatic brain injury (TBI). More than 5 million Americans currently live with long-term disability as a result of TBI and more than 1.5 million individuals sustain a new TBI each year. It has been predicted that TBI will become the third leading cause of death and disability in the world by the year 2020. This article outlines the classification of TBI, details the types of lesions encountered, and discusses the various imaging modalities available for the evaluation of TBI.
Collapse
Affiliation(s)
- Alisa D Gean
- Department of Radiology, University of California, San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | | |
Collapse
|
32
|
Mette D, Strunk R, Zuccarello M. Cerebral Blood Flow Measurement in Neurosurgery. Transl Stroke Res 2011; 2:152-8. [DOI: 10.1007/s12975-010-0064-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 11/30/2022]
|
33
|
Haacke EM, Duhaime AC, Gean AD, Riedy G, Wintermark M, Mukherjee P, Brody DL, DeGraba T, Duncan TD, Elovic E, Hurley R, Latour L, Smirniotopoulos JG, Smith DH. Common data elements in radiologic imaging of traumatic brain injury. J Magn Reson Imaging 2011; 32:516-43. [PMID: 20815050 DOI: 10.1002/jmri.22259] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Traumatic brain injury (TBI) has a poorly understood pathology. Patients suffer from a variety of physical and cognitive effects that worsen as the type of trauma worsens. Some noninvasive insights into the pathophysiology of TBI are possible using magnetic resonance imaging (MRI), computed tomography (CT), and many other forms of imaging as well. A recent workshop was convened to evaluate the common data elements (CDEs) that cut across the imaging field and given the charge to review the contributions of the various imaging modalities to TBI and to prepare an overview of the various clinical manifestations of TBI and their interpretation. Technical details regarding state-of-the-art protocols for both MRI and CT are also presented with the hope of guiding current and future research efforts as to what is possible in the field. Stress was also placed on the potential to create a database of CDEs as a means to best record information from a given patient from the reading of the images.
Collapse
Affiliation(s)
- E Mark Haacke
- Department of Radiology and Biomedical Engineering, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Metting Z, Rödiger LA, Stewart RE, Oudkerk M, De Keyser J, van der Naalt J. Perfusion computed tomography in the acute phase of mild head injury: Regional dysfunction and prognostic value. Ann Neurol 2009; 66:809-16. [DOI: 10.1002/ana.21785] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Stevens RD, Pustavoitau A, van Zijl P. The Role of Imaging in Acute Brain Injury. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|