1
|
Liu C, Ye Y, Guo Y, Zhou Y, Zhu Y, Liu X, Xu J, Zheng H, Liang D, Wang H. Wave-CAIPI Multiparameter MR Imaging in Neurology. NMR IN BIOMEDICINE 2025; 38:e5322. [PMID: 39873209 DOI: 10.1002/nbm.5322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow. This method facilitates the synthesis of multiple qualitative contrast-weighted images and relaxometric parametric maps. A single WAMP scan generates multiple contrast-weighted images and relaxometric parametric maps, including PD-weighted (PDW), T1-weighted (T1W), T2*-weighted (T2W), adjusted T1-weighted (aT1W), susceptibility-weighted imaging (SWI), B1t map, T1 map, T2/R2* map, PD map, and quantitative susceptibility mapping (QSM). Both phantom and in vivo experiments have demonstrated that the proposed method can achieve high image quality and quantification accuracy even at high acceleration factors of 4 and 9. The experiments have confirmed that the rapid single scan method can be effectively applied in clinical neurology, serving as a valuable diagnostic tool for conditions such as pediatric tuberous sclerosis complex (TSC)-related epilepsy, adult Parkinson's disease, and suspected stroke patient. The WAMP method holds substantial potential for advancing multiparametric MR imaging in clinical neurology, promising significant improvements in both diagnostic speed and accuracy.
Collapse
Affiliation(s)
- Congcong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yongquan Ye
- United Imaging Healthcare, Houston, Texas, USA
| | - Yifan Guo
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yihang Zhou
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- United Imaging Healthcare, Houston, Texas, USA
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haifeng Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Chang YS, Tsai MJ, Hsieh CY, Sung SF. Characteristics and risk of stroke in emergency department patients with acute dizziness. Heliyon 2024; 10:e30953. [PMID: 38770312 PMCID: PMC11103531 DOI: 10.1016/j.heliyon.2024.e30953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Background Acute dizziness is a common symptom in the emergency department (ED), with strokes accounting for 3 %-5 % of cases. We investigated the risk of stroke in ED patients with acute dizziness and compared stroke characteristics diagnosed during and after the ED visit. Methods We identified adult patients with acute dizziness, vertigo, or imbalance using a hospital research-based database. Patients with abdominal or flank pain were used as the comparison group. Patients with dizziness were 1:1 matched to comparison patients. Each patient was traced for up to one year until being hospitalized for a stroke. Results Out of the 24,266 eligible patients, 589 (2.4 %) were hospitalized for stroke during the ED visit. For the remaining 23,677 patients, the risk of stroke at 7, 30, 90, and 365 days after ED discharge was 0.40 %, 0.52 %, 0.71 %, and 1.25 % respectively. Patients with dizziness had a higher risk of stroke compared to the comparison group at 7, 30, 90, and 365 days. The risk ratios decreased from 5.69 (95 % confidence interval [CI], 3.34-9.68) to 2.03 (95 % CI, 1.65-2.49). Compared to patients hospitalized for stroke during the ED visit, those hospitalized for stroke after the ED visit had greater stroke severity despite a lower initial triage acuity. Patients with early stroke (≤7 days) after ED discharge were less likely to have hypertension, diabetes, hyperlipidemia, and atrial fibrillation. They mostly experienced posterior circulation stroke. Patients with late stroke (>7 days) were older and less likely to have hypertension and hyperlipidemia but more likely to have a history of prior stroke and ischemic heart disease. Their strokes were mainly located in the anterior circulation territory. Conclusions The risk of stroke after ED discharge was higher in patients with dizziness than in the comparison group, with gradually decreasing risk ratios in the following year. Patients hospitalized for stroke during and after the ED visit had different profiles of vascular risk factors and clinical characteristics.
Collapse
Affiliation(s)
- Yu-Sung Chang
- Department of Otolaryngology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Ming-Jen Tsai
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Cheng-Yang Hsieh
- Department of Neurology, Tainan Sin Lau Hospital, Tainan, Taiwan
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Feng Sung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
- Department of Beauty & Health Care, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| |
Collapse
|
3
|
Yang TH, Su YY, Tsai CL, Lin KH, Lin WY, Sung SF. Magnetic resonance imaging-based deep learning imaging biomarker for predicting functional outcomes after acute ischemic stroke. Eur J Radiol 2024; 174:111405. [PMID: 38447430 DOI: 10.1016/j.ejrad.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Clinical risk scores are essential for predicting outcomes in stroke patients. The advancements in deep learning (DL) techniques provide opportunities to develop prediction applications using magnetic resonance (MR) images. We aimed to develop an MR-based DL imaging biomarker for predicting outcomes in acute ischemic stroke (AIS) and evaluate its additional benefit to current risk scores. METHOD This study included 3338 AIS patients. We trained a DL model using deep neural network architectures on MR images and radiomics to predict poor functional outcomes at three months post-stroke. The DL model generated a DL score, which served as the DL imaging biomarker. We compared the predictive performance of this biomarker to five risk scores on a holdout test set. Additionally, we assessed whether incorporating the imaging biomarker into the risk scores improved the predictive performance. RESULTS The DL imaging biomarker achieved an area under the receiver operating characteristic curve (AUC) of 0.788. The AUCs of the five studied risk scores were 0.789, 0.793, 0.804, 0.810, and 0.826, respectively. The imaging biomarker's predictive performance was comparable to four of the risk scores but inferior to one (p = 0.038). Adding the imaging biomarker to the risk scores improved the AUCs (p-values) to 0.831 (0.003), 0.825 (0.001), 0.834 (0.003), 0.836 (0.003), and 0.839 (0.177), respectively. The net reclassification improvement and integrated discrimination improvement indices also showed significant improvements (all p < 0.001). CONCLUSIONS Using DL techniques to create an MR-based imaging biomarker is feasible and enhances the predictive ability of current risk scores.
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Ying-Ying Su
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Chia-Ling Tsai
- Computer Science Department, Queens College, City University of New York, Flushing, NY, USA
| | - Kai-Hsuan Lin
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan
| | - Wei-Yang Lin
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi, Taiwan.
| | - Sheng-Feng Sung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Beauty & Health Care, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan.
| |
Collapse
|
4
|
Liu Z, He B, Wang X, Peng J, Sun Q, Luo C. Deep cortical microinfarction induced by femtosecond laser in mice: Long-term secondary pathological changes in corresponding superficial cortex. Neurosci Lett 2023; 802:137170. [PMID: 36898650 DOI: 10.1016/j.neulet.2023.137170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies have explored the clinical consequences of cortical microinfarction, mainly age-related cognitive decline. However, functional impairment of deep cortical microinfarction remains poorly understood. Based on anatomical knowledge and previous research, we infer that damage to the deep cortex may lead to cognitive deficits and communication impairment between the superficial cortex and thalamus. This study aimed to develop a new model of deep cortical microinfarction based on femtosecond laser ablation of a perforating artery. METHODS Twenty-eight mice were anesthetized with isoflurane, and a cranial window was thinned using a microdrill. Intensively focused femtosecond laser pulses were used to produce perforating arteriolar occlusions and ischemic brain damage was examined using histological analysis. RESULTS Occlusion of different perforating arteries induced different types of cortical microinfarctions. Blocking the perforating artery, which enters the cerebral cortex vertically and has no branches within 300 μm below, can result in deep cortical microinfarction. Moreover, this model showed neuronal loss and microglial activation in the lesions as well as dysplasia of nerve fibers and β-amyloid deposition in the corresponding superficial cortex. CONCLUSIONS We present here a new model of deep cortical microinfarction in mice, in which specific perforating arteries are selectively occluded by a femtosecond laser, and we preliminarily observe several long-term effects related to cognition. This animal model is helpful in investigating the pathophysiology of deep cerebral microinfarction. However, further clinical and experimental studies are required to explore deep cortical microinfarctions in greater molecular and physiological detail.
Collapse
Affiliation(s)
- Zhoujing Liu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou 510120, China
| | - Xuemin Wang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Jiamin Peng
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Qiaosong Sun
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| | - Chuanming Luo
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| |
Collapse
|
5
|
Chen H, Dai K, Zhong S, Zheng J, Zhang X, Yang S, Cao T, Wang C, Karasan E, Frydman L, Zhang Z. High-resolution multi-shot diffusion-weighted MRI combining markerless prospective motion correction and locally low-rank constrained reconstruction. Magn Reson Med 2023; 89:605-619. [PMID: 36198013 DOI: 10.1002/mrm.29468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/10/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Subject head motion is a major challenge in DWI, leading to image blurring, signal losses, and biases in the estimated diffusion parameters. Here, we investigate a combined application of prospective motion correction and spatial-angular locally low-rank constrained reconstruction to obtain robust, multi-shot, high-resolution diffusion-weighted MRI under substantial motion. METHODS Single-shot EPI with retrospective motion correction can mitigate motion artifacts and resolve any mismatching of gradient encoding orientations; however, it is limited by low spatial resolution and image distortions. Multi-shot acquisition strategies could achieve higher resolution and image fidelity but increase the vulnerability to motion artifacts and phase variations related to cardiac pulsations from shot to shot. We use prospective motion correction with optical markerless motion tracking to remove artifacts and reduce image blurring due to bulk motion, combined with locally low-rank regularization to correct for remaining artifacts due to shot-to-shot phase variations. RESULTS The approach was evaluated on healthy adult volunteers at 3 Tesla under different motion patterns. In multi-shot DWI, image blurring due to motion with 20 mm translations and 30° rotations was successfully removed by prospective motion correction, and aliasing artifacts caused by shot-to-shot phase variations were addressed by locally low-rank regularization. The ability of prospective motion correction to preserve the orientational information in DTI without requiring a reorientation of the b-matrix is highlighted. CONCLUSION The described technique is proved to hold valuable potential for mapping brain diffusivity and connectivity at high resolution for studies in subjects/cohorts where motion is common, including neonates, pediatrics, and patients with neurological disorders.
Collapse
Affiliation(s)
- Hao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ke Dai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Sijie Zhong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiaxu Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,United Imaging Healthcare, Shanghai, People's Republic of China
| | - Xinyue Zhang
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Shasha Yang
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Tuoyu Cao
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Chaohong Wang
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Ekin Karasan
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Seong D, Yi S, Han S, Lee J, Park S, Hwang YH, Kim J, Kim HK, Jeon M. Target ischemic stroke model creation method using photoacoustic microscopy with simultaneous vessel monitoring and dynamic photothrombosis induction. PHOTOACOUSTICS 2022; 27:100376. [PMID: 35734368 PMCID: PMC9207728 DOI: 10.1016/j.pacs.2022.100376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 06/02/2023]
Abstract
The ischemic stroke animal model evaluates the efficacy of reperfusion and neuroprotective strategies for ischemic injuries. Various conventional methods have been reported to induce the ischemic models; however, controlling specific neurological deficits, mortality rates, and the extent of the infarction is difficult as the size of the affected region is not precisely controlled. In this paper, we report a single laser-based localized target ischemic stroke model development method by simultaneous vessel monitoring and photothrombosis induction using photoacoustic microscopy (PAM), which has minimized the infarct size at precise location with high reproducibility. The proposed method has significantly reduced the infarcted region by illuminating the precise localization. The reproducibility and validity of suggested method have been demonstrated through repeated experiments and histological analyses. These results demonstrate that our method can provide the ischemic stroke model closest to the clinical pathology for brain ischemia research from inducement, occurrence mechanisms to the recovery process.
Collapse
Affiliation(s)
- Daewoon Seong
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Soojin Yi
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sangyeob Han
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Institute of Biomedical Engineering, School of Medicine, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Jaeyul Lee
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Sungjo Park
- Pohang Innotown Center, Pohang University of Science and Technology, Pohang 37673, the Republic of Korea
| | - Yang-Ha Hwang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| | - Hong Kyun Kim
- Bio-Medical Institute, Kyungpook National University Hospital, Daegu 41404, the Republic of Korea
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, the Republic of Korea
| |
Collapse
|
7
|
Nanotechnology assisted biomarker analysis to rehabilitate acute ischemic stroke patients by early detection. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Xu P, Guo L, Feng Y, Zhang X. [A diffusion-weighted image denoising algorithm using HOSVD combined with Rician noise corrected model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1400-1408. [PMID: 34658356 DOI: 10.12122/j.issn.1673-4254.2021.09.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To propose a novel diffusion-weighted (DW) image denoising algorithm based on HOSVD to improve the signal-to-noise ratio (SNR) of DW images and the accuracy of subsequent quantization parameters. METHODS This HOSVDbased denoising method incorporated the sparse constraint and noise-correction model. The signal expectations with Rician noise were integrated into the traditional HOSVD denoising framework for direct denoising of the DW images with Rician noise. HOSVD denoising was performed directly on each local DW image block to avoid the stripe artifacts. We compared the proposed method with 4 image denoising algorithms (LR + Edge, GL-HOSVD, BM3D and NLM) to verify the effect of the proposed method. RESULTS The experimental results showed that the proposed method effectively reduced the noise of DW images while preserving the image details and edge structure information. The proposed algorithm was significantly better than LR +Edge, BM3D and NLM in terms of quantitative metrics of PSNR, SSIM and FA-RMSE and in visual evaluation of denoising images and FA images. GL-HOSVD obtained good denoising results but introduced stripe artifacts at a high noise level during the denoising process. In contrast, the proposed method achieved good denoising results without causing stripe artifacts. CONCLUSION This HOSVD-based denoising method allows direct processing of DW images with Rician noise without introducing artifacts and can provide accurate quantitative parameters for diagnostic purposes.
Collapse
Affiliation(s)
- P Xu
- School of Biomedical Engineering//Guangdong Provincial Key Laboratory of Medical Image Processing//Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology//Center for Brain Science and Brain-Inspired Intelligence of Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou 510515, China
| | - L Guo
- School of Biomedical Engineering//Guangdong Provincial Key Laboratory of Medical Image Processing//Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology//Center for Brain Science and Brain-Inspired Intelligence of Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou 510515, China
| | - Y Feng
- School of Biomedical Engineering//Guangdong Provincial Key Laboratory of Medical Image Processing//Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology//Center for Brain Science and Brain-Inspired Intelligence of Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou 510515, China
| | - X Zhang
- School of Biomedical Engineering//Guangdong Provincial Key Laboratory of Medical Image Processing//Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology//Center for Brain Science and Brain-Inspired Intelligence of Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Dimov AV, Christoforidis GA, Saadat N, Liu MM, Jeong YI, Roth S, Niekrasz M, Carroll TJ. QSM in canine model of acute cerebral ischemia: A pilot study. Magn Reson Med 2021; 85:1602-1610. [PMID: 33034078 DOI: 10.1002/mrm.28498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/28/2020] [Accepted: 08/05/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE In the present study, we investigated the potential of QSM to assess the physiological state of cortical tissue in the middle cerebral artery occlusion canine model of a cerebral ischemia. METHODS Experiments were performed in 8 anesthetized canines. Gradient echo, perfusion, and DWI data of brains at normal and ischemic states were acquired. In the postprocessed susceptibility and quantitative cerebral blood flow maps, changes in values within the middle cerebral artery-fed cortical territories were quantified both on the ischemic and normal contralateral hemisphere side. RESULTS QSM values in critically ischemic tissue were significantly different from contralateral values-namely, susceptibility increase was observed in the cases in which cerebral perfusion was maintained above the threshold of neuronal death. Furthermore, the data indicates presence of a significant correlation between the changes in susceptibility values, cerebral perfusion, and the infarct volume and pial collateral scores. Additionally, our data suggests that difference in cortical susceptibility is prospectively indicative of the infarct growth rate. CONCLUSION In an experimental permanent middle cerebral artery occlusion model, QSM was shown to correlate with the functional parameters characterizing viability of ischemic tissue, thus warranting further research on its ability to provide complementary information during acute stroke MRI examinations in humans.
Collapse
Affiliation(s)
- Alexey V Dimov
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | | | - Niloufar Saadat
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Mira M Liu
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Yong I Jeong
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois, College of Medicine, Chicago, Illinois, USA
| | - Marek Niekrasz
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Timothy J Carroll
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Oren NC, Chang E, Yang CWY, Lee SK. Brain Diffusion Imaging Findings May Predict Clinical Outcome after Cardiac Arrest. J Neuroimaging 2019; 29:540-547. [PMID: 31107566 DOI: 10.1111/jon.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We aim to correlate the patterns of brain diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) map in post cardiac arrest (PCA) patients with clinical outcomes. METHODS Thirty-eight adult patients with PCA (mean age, 52.8 years; range 18-87 years) whose DWI obtained within 5 days of PCA were retrospectively reviewed. The visual DWI/ADC map categories include: Group 1: Normal; Group 2a: Mild [restricted diffusion (RD) < 1/3 cortical involvement (CI)]); Group 2b: Moderate (RD 1/3 > and < 2/3 CI); Group 2c: Severe (RD > 2/3 CI); and Group 3: Embolic (scattered, discrete foci of RD). Clinical outcomes were categorized according to cerebral performance categories (CPC) and modified Rankin scale (mRS). RESULTS The most common DWI/ADC map pattern was Group 1 (28.9%, n = 11). The incidence of other DWI patterns such as Group 2a, 2b, 2c, and 3 were 21% (n = 8), 10.5% (n = 4), 21% (n = 8), and 18.4% (n = 7), respectively. Twenty-seven patients (71%) were CPC-5/mRS-6 and died or were category CPC-4/mRS-5, and 4 patients were CPC-1/mRS 0-1 (10.5%). Interobserver agreement for visual classification of DWI/ADC map patterns was excellent (kappa = .8795). There was moderate positive correlation between clinical outcomes and visual DWI classification (r = .461, P = .00358). The positive predictive value of this qualitative classification on DWI/ADC in predicting a poor clinical outcome (CPC-4/mRS-5 and CPC-5/mRS-6) was 81.4 % in the presence of restricted diffusion. CONCLUSION Simple visual categorization system using DWI/ADC map may be helpful and practical in estimating the clinical outcome of PCA patients.
Collapse
Affiliation(s)
- Nisa Cem Oren
- Department of Radiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Edwina Chang
- Department of Radiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Carina Wei-Yee Yang
- Department of Radiology, The University of Chicago Medical Center, Chicago, Illinois
| | - Seon-Kyu Lee
- Montefiore Medical Center, Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
11
|
Saldien V, Schepens T, Van Loock K, Vermeersch G, Wildemeersch D, Van Hoof V, De Belder F, Bosmans J, Vercauteren M, Menovsky T. Rapid Ventricular Pacing for Neurovascular Surgery: A Study on Cardiac and Cerebral Effects. World Neurosurg 2018; 119:e71-e77. [DOI: 10.1016/j.wneu.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/30/2022]
|
12
|
Maekawa T, Hori M, Murata K, Feiweier T, Fukunaga I, Andica C, Hagiwara A, Kamagata K, Koshino S, Abe O, Aoki S. Changes in the ADC of diffusion-weighted MRI with the oscillating gradient spin-echo (OGSE) sequence due to differences in substrate viscosities. Jpn J Radiol 2018; 36:415-420. [DOI: 10.1007/s11604-018-0737-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022]
|
13
|
Vaas M, Deistung A, Reichenbach JR, Keller A, Kipar A, Klohs J. Vascular and Tissue Changes of Magnetic Susceptibility in the Mouse Brain After Transient Cerebral Ischemia. Transl Stroke Res 2017; 9:426-435. [PMID: 29177950 PMCID: PMC6061250 DOI: 10.1007/s12975-017-0591-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 12/04/2022]
Abstract
Quantitative susceptibility mapping (QSM) has been recently introduced as a novel MRI post-processing technique of gradient recalled echo (GRE) data. QSM is useful in depicting both brain anatomy and for detecting abnormalities. Its utility in the context of ischemic stroke has, however, not been extensively characterized so far. In this study, we explored the potential of QSM to characterize vascular and tissue changes in the transient middle cerebral artery occlusion (tMCAO) mouse model of cerebral ischemia. We acquired GRE data of mice brains at different time points after tMCAO, from which we computed QSM and MR frequency maps, and compared these maps with diffusion imaging and multi-slice multi-echo imaging data acquired in the same animals. Prominent vessels with increased magnetic susceptibility were visible surrounding the lesion on both frequency and magnetic susceptibility maps at all time points (mostly visible at > 12 h after reperfusion). Immunohistochemistry revealed the presence of compressed capillaries and dilated larger vessels, suggesting that the appearance of prominent vessels after reestablishment of reperfusion may serve compensatory purposes. In addition, on both contrast maps, tissue regions of decreased magnetic susceptibility were observed at 24 and 48 h after reperfusion that were distinctly different from the lesions seen on maps of the apparent diffusion coefficient and T2 relaxation time constant. Since QSM can be extracted as an add-on from GRE data and thus requires no additional acquisition time in the course of acute stroke MRI examination, it may provide unique and complementary information during the course of acute stroke MRI examinations.
Collapse
Affiliation(s)
- Markus Vaas
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07743, Jena, Germany.,Section of Experimental Neurology, Department of Neurology, Essen University Hospital, 45147, Essen, Germany.,Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, University Hospital Jena, 07743, Jena, Germany.,Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Annika Keller
- Division of Neurosurgery, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Anja Kipar
- Institute of Veterinary Pathology, University of Zurich, 8057, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Denoise diffusion-weighted images using higher-order singular value decomposition. Neuroimage 2017; 156:128-145. [PMID: 28416450 DOI: 10.1016/j.neuroimage.2017.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/22/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022] Open
Abstract
Noise usually affects the reliability of quantitative analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI), especially at high b-values and/or high spatial resolution. Higher-order singular value decomposition (HOSVD) has recently emerged as a simple, effective, and adaptive transform to exploit sparseness within multidimensional data. In particular, the patch-based HOSVD denoising has demonstrated superb performance when applied to T1-, T2-, and proton density-weighted MRI data. In this study, we aim to investigate the feasibility of denoising DW data using the HOSVD transform. With the low signal-to-noise ratio in typical DW data, the patch-based HOSVD denoising suffers from stripe artifacts in homogeneous regions because of the HOSVD bases learned from the noisy patches. To address this problem, we propose a novel denoising method. It first introduces a global HOSVD-based denoising as a prefiltering stage to guide the subsequent patch-based HOSVD denoising stage. The HOSVD bases from the patch groups in prefiltered images are then used to transform the noisy patch groups in original DW data. Experiments were performed using simulated and in vivo DW data. Results show that the proposed method significantly reduces stripe artifacts compared with conventional patch-based HOSVD denoising methods, and outperforms two state-of-the-art denoising methods in terms of denoising quality and diffusion parameters estimation.
Collapse
|
15
|
Pengyue Z, Tao G, Hongyun H, Liqiang Y, Yihao D. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed Pharmacother 2017; 90:69-76. [PMID: 28343073 DOI: 10.1016/j.biopha.2017.03.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022] Open
Abstract
Breviscapine is a flavonoid derived from a traditional Chinese herb Erigerin breviscapus (Vant.) Hand-Mazz, and has been extensively used in clinical treatment for cerebral stroke in China, but the underlying pharmacological mechanisms are still unclear. In present study, we investigated whether breviscapine could confer a neuroprotection against cerebral ischemia injury by targeting autophagy mechanisms. A cerebral stroke model in Sprague-Dawley rats was prepared by middle cerebral artery occlusion (MCAO), rats were then randomly divided into 5 groups: MCAO+Bre group, rats were treated with breviscapine; MCAO+Tat-Beclin-1 group, animals were administrated with specific autophagy inducer Tat-Beclin-1; MCAO+Bre+Tat-Beclin-1 group, rats were treated with both breviscapine and Tat-Beclin-1, MCAO+saline group, rats received the same volume of physiological saline, and Sham surgery group. The autophagy levels in infarct penumbra were evaluated by western blotting, real-time PCR and immunofluorescence 7days after the insult. Meanwhile, infarct volume, brain water content and neurological deficit score were assessed. The results illustrated that the infarct volume, brain water content and neurofunctional deficiency were significantly reduced by 7days of breviscapine treatment in MCAO+Bre group, compared with those in MCAO+saline group. Meanwhile, the western blotting, quantitative PCR and immunofluorescence showed that the autophagy in both neurons and astrocytes at the penumbra were markedly attenuated by breviscapine admininstration. Moreover, these pharmacological effects of breviscapine could be counteracted by autophagy inducer Tat-Beclin-1. Our study suggests that breviscapine can provide a neuroprotection against transient focal cerebral ischemia, and this biological function is associated with attenuating autophagy in both neurons and astrocytes.
Collapse
Affiliation(s)
- Zhang Pengyue
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Guo Tao
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - He Hongyun
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Liqiang
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Deng Yihao
- Department of morphology, Medical School, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
16
|
Lin Z, Guo Z, Qiu L, Yang W, Lin M. The applied research of MRI with ASSET-EPI-FLAIR combined with 3D TOF MRA sequences in the assessment of patients with acute cerebral infarction. Acta Radiol 2016; 57:1515-1523. [PMID: 26853685 DOI: 10.1177/0284185116628338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background To extend the time window for thrombolysis, reducing the time for diagnosis and detection of acute cerebral infarction seems to be warranted. Purpose To evaluate the feasibility of implementing an array spatial sensitivity technique (ASSET)-echo-planar imaging (EPI)-fluid attenuated inversion recovery (FLAIR) (AE-FLAIR) sequence into an acute cerebral infarction magnetic resonance (MR) evaluation protocol, and to assess the diagnostic value of AE-FLAIR combined with three-dimensional time-of-flight MR angiography (3D TOF MRA). Material and Methods A total of 100 patients (68 men, 32 women; age range, 44-82 years) with acute cerebral infarction, including 50 consecutive uncooperative and 50 cooperative patients, were evaluated with T1-weighted (T1W) imaging, T2-weighted (T2W) imaging, FLAIR, diffusion-weighted imaging (DWI), 3D TOF, EPI-FLAIR, and AE-FLAIR. Conventional FLAIR, EPI-FLAIR, and AE-FLAIR were assessed by two observers independently for image quality. The optimized group (AE-FLAIR and 3D TOF) and the control group (T1W imaging, T2W imaging, conventional FLAIR, DWI, and 3D TOF) were compared for evaluation time and diagnostic accuracy. Results One hundred and twenty-five lesions were detected and images having adequate diagnostic image quality were in 73% of conventional FLAIR, 62% of EPI-FLAIR, and 89% of AE-FLAIR. The detection time was 12 ± 1 min with 76% accuracy and 4 ± 0.5 min with 100% accuracy in the control and the optimized groups, respectively. Inter-observer agreements of κ = 0.78 and κ = 0.81 were for the optimized group and control group, respectively. Conclusion With reduced acquisition time and better image quality, AE-FLAIR combined with 3D TOF may be used as a rapid diagnosis tool in patients with acute cerebral infarction, especially in uncooperative patients.
Collapse
Affiliation(s)
- Zhichao Lin
- Department of Radiology, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Zexiong Guo
- Department of Urology, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Lin Qiu
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Wanyoug Yang
- Department of Radiology, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Mingxia Lin
- Department of Radiology, the First Affiliated Hospital of Jinan University, Guangzhou, PR China
| |
Collapse
|
17
|
Muir KW, Macrae IM. Neuroimaging as a Selection Tool and Endpoint in Clinical and Pre-clinical Trials. Transl Stroke Res 2016; 7:368-77. [PMID: 27543177 PMCID: PMC5014902 DOI: 10.1007/s12975-016-0487-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/19/2016] [Indexed: 12/03/2022]
Abstract
Standard imaging in acute stroke enables the exclusion of non-stroke structural CNS lesions and cerebral haemorrhage from clinical and pre-clinical ischaemic stroke trials. In this review, the potential benefit of imaging (e.g., angiography and penumbral imaging) as a translational tool for trial recruitment and the use of imaging endpoints are discussed for both clinical and pre-clinical stroke research. The addition of advanced imaging to identify a “responder” population leads to reduced sample size for any given effect size in phase 2 trials and is a potentially cost-efficient means of testing interventions. In pre-clinical studies, technical failures (failed or incomplete vessel occlusion, cerebral haemorrhage) can be excluded early and continuous multimodal imaging of the animal from stroke onset is feasible. Pre- and post-intervention repeat scans provide real time assessment of the intervention over the first 4–6 h. Negative aspects of advanced imaging in animal studies include increased time under general anaesthesia, and, as in clinical studies, a delay in starting the intervention. In clinical phase 3 trial designs, the negative aspects of advanced imaging in patient selection include higher exclusion rates, slower recruitment, overestimated effect size and longer acquisition times. Imaging may identify biological effects with smaller sample size and at earlier time points, compared to standard clinical assessments, and can be adjusted for baseline parameters. Mechanistic insights can be obtained. Pre-clinically, multimodal imaging can non-invasively generate data on a range of parameters, allowing the animal to be recovered for subsequent behavioural testing and/or the brain taken for further molecular or histological analysis.
Collapse
Affiliation(s)
- Keith W Muir
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - I Mhairi Macrae
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
18
|
Deng YH, He HY, Yang LQ, Zhang PY. Dynamic changes in neuronal autophagy and apoptosis in the ischemic penumbra following permanent ischemic stroke. Neural Regen Res 2016; 11:1108-1114. [PMID: 27630694 PMCID: PMC4994453 DOI: 10.4103/1673-5374.187045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
The temporal dynamics of neuronal autophagy and apoptosis in the ischemic penumbra following stroke remains unclear. Therefore, in this study, we investigated the dynamic changes in autophagy and apoptosis in the penumbra to provide insight into potential therapeutic targets for stroke. An adult Sprague-Dawley rat model of permanent ischemic stroke was prepared by middle cerebral artery occlusion. Neuronal autophagy and apoptosis in the penumbra post-ischemia were evaluated by western blot assay and immunofluorescence staining with antibodies against LC3-II and cleaved caspase-3, respectively. Levels of both LC3-II and cleaved caspase-3 in the penumbra gradually increased within 5 hours post-ischemia. Thereafter, levels of both proteins declined, especially LC3-II. The cerebral infarct volume increased slowly 1-4 hours after ischemia, but subsequently increased rapidly until 5 hours after ischemia. The severity of the neurological deficit was positively correlated with infarct volume. LC3-II and cleaved caspase-3 levels were high in the penumbra within 5 hours after ischemia, and after that, levels of these proteins decreased at different rates. LC3-II levels were reduced to a very low level, but cleaved caspase-3 levels remained high 72 hours after ischemia. These results indicate that there are temporal differences in the activation status of the autophagic and apoptotic pathways. This suggests that therapeutic targeting of these pathways should take into consideration their unique temporal dynamics.
Collapse
Affiliation(s)
- Yi-hao Deng
- Department of Human Anatomy and Histoembryology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Hong-yun He
- Department of Human Anatomy and Histoembryology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Li-qiang Yang
- Department of Human Anatomy and Histoembryology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Peng-yue Zhang
- Department of Human Anatomy and Histoembryology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| |
Collapse
|
19
|
Rosa M, De Lucia S, Rinaldi VE, Le Gal J, Desmarest M, Veropalumbo C, Romanello S, Titomanlio L. Paediatric arterial ischemic stroke: acute management, recent advances and remaining issues. Ital J Pediatr 2015; 41:95. [PMID: 26631262 PMCID: PMC4668709 DOI: 10.1186/s13052-015-0174-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/21/2015] [Indexed: 01/06/2023] Open
Abstract
Stroke is a rare disease in childhood with an estimated incidence of 1-6/100.000. It has an increasingly recognised impact on child mortality along with its outcomes and effects on quality of life of patients and their families. Clinical presentation and risk factors of paediatric stroke are different to those of adults therefore it can be considered as an independent nosological entity. The relative rarity, the age-related peculiarities and the variety of manifested symptoms makes the diagnosis of paediatric stroke extremely difficult and often delayed. History and clinical examination should investigate underlying diseases or predisposing factors and should take into account the potential territoriality of neurological deficits and the spectrum of differential diagnosis of acute neurological accidents in childhood. Neuroimaging (in particular diffusion weighted magnetic resonance) is the keystone for diagnosis of paediatric stroke and other investigations might be considered according to the clinical condition. Despite substantial advances in paediatric stroke research and clinical care, many unanswered questions remain concerning both its acute treatment and its secondary prevention and rehabilitation so that treatment recommendations are mainly extrapolated from studies on adult population. We have tried to summarize the pathophysiological and clinical characteristics of arterial ischemic stroke in children and the most recent international guidelines and practical directions on how to recognise and manage it in paediatric emergency.
Collapse
Affiliation(s)
- Margherita Rosa
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Silvana De Lucia
- Department of Paediatrics, Aldo Moro University of Bari, Bari, Italy.
| | | | - Julie Le Gal
- Paediatric Migraine & Neurovascular diseases Unit, Department of Paediatrics, Robert Debré Hospital, Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| | - Marie Desmarest
- Paediatric Migraine & Neurovascular diseases Unit, Department of Paediatrics, Robert Debré Hospital, Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| | - Claudio Veropalumbo
- Department of Translational Medicine-Section of Pediatrics, Federico II University, Naples, Italy.
| | - Silvia Romanello
- Paediatric Emergency Department, Robert Debré Hospital, Paris Diderot University, Sorbonne Paris Cité, Paris, France.
| | - Luigi Titomanlio
- Paediatric Migraine & Neurovascular diseases Unit, Department of Paediatrics, Robert Debré Hospital, Paris Diderot University, Sorbonne Paris Cité, Paris, France.
- Paediatric Emergency Department, Robert Debré Hospital, Paris Diderot University, Sorbonne Paris Cité, Paris, France.
- Pediatric Emergency Department, INSERM U-1141 AP-HP Robert Debré University Hospital, 48, Bld Sérurier, 75019, Paris, France.
| |
Collapse
|
20
|
Goodnough CL, Gao Y, Li X, Qutaish MQ, Goodnough LH, Molter J, Wilson D, Flask CA, Yu X. Lack of dystrophin results in abnormal cerebral diffusion and perfusion in vivo. Neuroimage 2014; 102 Pt 2:809-16. [PMID: 25213753 PMCID: PMC4320943 DOI: 10.1016/j.neuroimage.2014.08.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/08/2023] Open
Abstract
Dystrophin, the main component of the dystrophin–glycoprotein complex, plays an important role in maintaining the structural integrity of cells. It is also involved in the formation of the blood–brain barrier (BBB). To elucidate the impact of dystrophin disruption in vivo, we characterized changes in cerebral perfusion and diffusion in dystrophin-deficient mice (mdx) by magnetic resonance imaging (MRI). Arterial spin labeling (ASL) and diffusion-weighted MRI (DWI) studies were performed on 2-month-old and 10-month-old mdx mice and their age-matched wild-type controls (WT). The imaging results were correlated with Evan's blue extravasation and vascular density studies. The results show that dystrophin disruption significantly decreased the mean cerebral diffusivity in both 2-month-old (7.38± 0.30 × 10−4mm2/s) and 10-month-old (6.93 ± 0.53 × 10−4 mm2/s) mdx mice as compared to WT (8.49±0.24×10−4, 8.24±0.25× 10−4mm2/s, respectively). There was also an 18% decrease in cerebral perfusion in 10-month-old mdx mice as compared to WT, which was associated with enhanced arteriogenesis. The reduction in water diffusivity in mdx mice is likely due to an increase in cerebral edema or the existence of large molecules in the extracellular space from a leaky BBB. The observation of decreased perfusion in the setting of enhanced arteriogenesis may be caused by an increase of intracranial pressure from cerebral edema. This study demonstrates the defects in water handling at the BBB and consequently, abnormal perfusion associated with the absence of dystrophin.
Collapse
Affiliation(s)
- Candida L Goodnough
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ying Gao
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xin Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mohammed Q Qutaish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - L Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph Molter
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David Wilson
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chris A Flask
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xin Yu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Gumus K, Keating B, Poser BA, Armstrong B, Chang L, Maclaren J, Prieto T, Speck O, Zaitsev M, Ernst T. Prevention of motion-induced signal loss in diffusion-weighted echo-planar imaging by dynamic restoration of gradient moments. Magn Reson Med 2014; 71:2006-13. [PMID: 23821373 PMCID: PMC4420624 DOI: 10.1002/mrm.24857] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/10/2013] [Accepted: 06/05/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE Head motion is a significant problem in diffusion-weighted imaging as it may cause signal attenuation due to residual dephasing during strong diffusion encoding gradients even in single-shot acquisitions. Here, we present a new real-time method to prevent motion-induced signal loss in DWI of the brain. METHODS The method requires a fast motion tracking system (optical in the current implementation). Two alterations were made to a standard diffusion-weighted echo-planar imaging sequence: first, real-time motion correction ensures that slices are correctly aligned relative to the moving brain. Second, the tracking data are used to calculate the motion-induced gradient moment imbalance which occurs during the diffusion encoding periods, and a brief gradient blip is inserted immediately prior to the signal readout to restore the gradient moment balance. RESULTS Phantom experiments show that the direction as well as magnitude of the gradient moment imbalance affects the characteristics of unwanted signal attenuation. In human subjects, the addition of a moment-restoring blip prevented signal loss and improved the reproducibility and reliability of diffusion tensor measures even in the presence of substantial head movements. CONCLUSION The method presented can improve robustness for clinical routine scanning in populations that are prone to head movements, such as children and uncooperative adult patients.
Collapse
Affiliation(s)
- Kazim Gumus
- Department of Medicine, JABSOM, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian Keating
- Department of Medicine, JABSOM, University of Hawaii, Honolulu, Hawaii, USA
| | - Benedikt A. Poser
- Department of Medicine, JABSOM, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian Armstrong
- Department of Electrical Engineering and Computer Science, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA
| | - Linda Chang
- Department of Medicine, JABSOM, University of Hawaii, Honolulu, Hawaii, USA
| | - Julian Maclaren
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Thomas Prieto
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University, Magde burg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Maxim Zaitsev
- Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Thomas Ernst
- Department of Medicine, JABSOM, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
22
|
Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation. Proc Natl Acad Sci U S A 2014; 111:4608-13. [PMID: 24619090 DOI: 10.1073/pnas.1320223111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders.
Collapse
|
23
|
Canazza A, Minati L, Boffano C, Parati E, Binks S. Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol 2014; 5:19. [PMID: 24600434 PMCID: PMC3928567 DOI: 10.3389/fneur.2014.00019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/06/2014] [Indexed: 01/17/2023] Open
Abstract
Stroke continues to be a significant cause of death and disability worldwide. Although major advances have been made in the past decades in prevention, treatment, and rehabilitation, enormous challenges remain in the way of translating new therapeutic approaches from bench to bedside. Thrombolysis, while routinely used for ischemic stroke, is only a viable option within a narrow time window. Recently, progress in stem cell biology has opened up avenues to therapeutic strategies aimed at supporting and replacing neural cells in infarcted areas. Realistic experimental animal models are crucial to understand the mechanisms of neuronal survival following ischemic brain injury and to develop therapeutic interventions. Current studies on experimental stroke therapies evaluate the efficiency of neuroprotective agents and cell-based approaches using primarily rodent models of permanent or transient focal cerebral ischemia. In parallel, advancements in imaging techniques permit better mapping of the spatial-temporal evolution of the lesioned cortex and its functional responses. This review provides a condensed conceptual review of the state of the art of this field, from models and magnetic resonance imaging techniques through to stem cell therapies.
Collapse
Affiliation(s)
- Alessandra Canazza
- Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Ludovico Minati
- Scientific Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy ; Brighton and Sussex Medical School , Brighton , UK
| | - Carlo Boffano
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Eugenio Parati
- Cerebrovascular Diseases Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Sophie Binks
- Brighton and Sussex Medical School , Brighton , UK ; Brighton and Sussex University Hospitals NHS Trust , Brighton , UK
| |
Collapse
|
24
|
Stabile E, Esposito G. Operator’s Experience Is the Most Efficient Embolic Protection Device for Carotid Artery Stenting. Circ Cardiovasc Interv 2013; 6:496-7. [DOI: 10.1161/circinterventions.113.000814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eugenio Stabile
- From the Division of Cardiology, Department of Advanced Biomedical Sciences, University of Napoli “Federico II”, Napoli, Italy
| | - Giovanni Esposito
- From the Division of Cardiology, Department of Advanced Biomedical Sciences, University of Napoli “Federico II”, Napoli, Italy
| |
Collapse
|
25
|
Stille M, Smith EJ, Crum WR, Modo M. 3D reconstruction of 2D fluorescence histology images and registration with in vivo MR images: application in a rodent stroke model. J Neurosci Methods 2013; 219:27-40. [PMID: 23816399 DOI: 10.1016/j.jneumeth.2013.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023]
Abstract
To validate and add value to non-invasive imaging techniques, the corresponding histology is required to establish biological correlates. We present an efficient, semi-automated image-processing pipeline that uses immunohistochemically stained sections to reconstruct a 3D brain volume from 2D histological images before registering these with the corresponding 3D in vivo magnetic resonance images (MRI). A multistep registration procedure that first aligns the "global" volume by using the centre of mass and then applies a rigid and affine alignment based on signal intensities is described. This technique was applied to a training set of three rat brain volumes before being validated on three normal brains. Application of the approach to register "abnormal" images from a rat model of stroke allowed the neurobiological correlates of the variations in the hyper-intense MRI signal intensity caused by infarction to be investigated. For evaluation, the corresponding anatomical landmarks in MR and histology were defined to measure the registration accuracy. A registration error of 0.249 mm (approximately one in-plane voxel dimension) was evident in healthy rat brains and of 0.323 mm in a rodent model of stroke. The proposed reconstruction and registration pipeline allowed for the precise analysis of non-invasive MRI and corresponding microstructural histological features in 3D. We were thus able to interrogate histology to deduce the cause of MRI signal variations in the lesion cavity and the peri-infarct area.
Collapse
Affiliation(s)
- Maik Stille
- University of Lübeck, Institute for Medical Engineering, Lübeck 23562, Germany
| | | | | | | |
Collapse
|
26
|
Luchtmann M, Bernarding J, Beuing O, Kohl J, Bondar I, Skalej M, Firsching R. Controversies of Diffusion Weighted Imaging in the Diagnosis of Brain Death. J Neuroimaging 2013; 23:463-8. [DOI: 10.1111/jon.12033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/06/2013] [Accepted: 02/23/2013] [Indexed: 01/06/2023] Open
Affiliation(s)
- Michael Luchtmann
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg; Leipziger Str. 44 39120 Magdeburg
| | - Johannes Bernarding
- Institute of Biometry and Medical Informatics, Otto-von-Guericke-University Magdeburg; Leipziger Str. 44 39120 Magdeburg
| | - Oliver Beuing
- Institute of Neuroradiology, Otto-von-Guericke-University Magdeburg; Leipziger Str. 44 39120 Magdeburg
| | - Jana Kohl
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg; Leipziger Str. 44 39120 Magdeburg
| | - Imre Bondar
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg; Leipziger Str. 44 39120 Magdeburg
| | - Martin Skalej
- Institute of Neuroradiology, Otto-von-Guericke-University Magdeburg; Leipziger Str. 44 39120 Magdeburg
| | - Raimund Firsching
- Department of Neurosurgery, Otto-von-Guericke-University Magdeburg; Leipziger Str. 44 39120 Magdeburg
| |
Collapse
|
27
|
Titomanlio L, Zanin A, Sachs P, Khaled J, Elmaleh M, Blanc R, Piotin M. Pediatric ischemic stroke: acute management and areas of research. J Pediatr 2013; 162:227-35.e1. [PMID: 23153863 DOI: 10.1016/j.jpeds.2012.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 08/08/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Luigi Titomanlio
- Pediatric Emergency Department, APHP, Robert Debré Hospital, Paris Diderot University, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
28
|
Grinberg F, Ciobanu L, Farrher E, Shah NJ. Diffusion kurtosis imaging and log-normal distribution function imaging enhance the visualisation of lesions in animal stroke models. NMR IN BIOMEDICINE 2012; 25:1295-304. [PMID: 22461260 DOI: 10.1002/nbm.2802] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 02/22/2012] [Accepted: 02/29/2012] [Indexed: 05/16/2023]
Abstract
In this work, we report a case study of a stroke model in animals using two methods of quantification of the deviations from Gaussian behaviour: diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). The affected regions were predominantly in grey rather than in white matter. The parameter maps were constructed for metrics quantifying the apparent diffusivity (evaluated from conventional diffusion tensor imaging, DKI and LNDFI) and for those quantifying the degree of deviations (mean kurtosis and a parameter σ characterising the width of the distribution). We showed that both DKI and LNDFI were able to dramatically enhance the visualisation of ischaemic lesions in comparison with conventional methods. The largest relative change in the affected versus healthy regions was observed in the mean kurtosis values. The average changes in the mean kurtosis and σ values in the lesions were a factor of two to three larger than the relative changes observed in the mean diffusivity. In conclusion, the applied methods promise valuable perspectives in the assessment of stroke.
Collapse
Affiliation(s)
- Farida Grinberg
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH, Juelich, Germany.
| | | | | | | |
Collapse
|
29
|
Murray KN, Buggey HF, Denes A, Allan SM. Systemic immune activation shapes stroke outcome. Mol Cell Neurosci 2012; 53:14-25. [PMID: 23026562 DOI: 10.1016/j.mcn.2012.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023] Open
Abstract
Stroke is a major cause of morbidity and mortality, and activation of the immune system can impact on stroke outcome. Although the majority of research has focused on the role of the immune system after stroke there is increasing evidence to suggest that inflammation and immune activation prior to brain injury can influence stroke risk and outcome. With the high prevalence of co-morbidities in the Western world such as obesity, hypertension and diabetes, pre-existing chronic 'low-grade' systemic inflammation has become a customary characteristic of stroke pathophysiology that needs to be considered in the search for new therapies. The importance of the immune system in stroke has been demonstrated in a number of ways, both experimentally and in the clinical setting. This review will focus on the effect of immune activation arising from systemic inflammatory conditions and infection, how it affects the incidence and outcomes of stroke, and the possible underlying mechanisms involved. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Katie N Murray
- Faculty of Life Sciences, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
30
|
|
31
|
Prieto-Arribas R, Pascual-Garvi JM, González-Llanos F, Roda JM. How to repair an ischemic brain injury? Value of experimental models in search of answers. Neurologia 2012; 26:65-73. [PMID: 21163184 DOI: 10.1016/j.nrl.2010.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 05/21/2010] [Indexed: 12/28/2022] Open
Abstract
The major aim of experimental models of cerebral ischemia is to study the cerebral ischemic damage under controlled and reproducible conditions. Experimental studies have been fundamental in the establishment of new concepts regarding the mechanisms underlying the ischemic brain injury, such as the ischemic penumbra, the reperfusion injury, the cell death or the importance of the damage induced on mitochondria, glial cells and white matter. Disagreement between experimental and clinical studies regarding the benefit of drugs to reduce or restore the cerebral ischemic damage has created a growing controversy about the clinical value of the experimental models of cerebral ischemia. One of the major explanations for the failure of the clinical trials is the reductionist approach of most therapies, which are focused on the known effect of a single molecule within a specific pathway of ischemic damage. This philosophy contrasts to the complex morphological design of the cerebral tissue and the complex cellular and molecular physiopathology underlying the ischemic brain injury. We believe that the main objective of studies carried out in experimental models of cerebral ischemic injury must be a better understanding of the fundamental mechanisms underlying progression of the ischemic injury. Clinical trials should not be considered if the benefit obtained in experimental studies is limited or weak.
Collapse
|
32
|
Zheng W, Haacke EM, Webb SM, Nichol H. Imaging of stroke: a comparison between X-ray fluorescence and magnetic resonance imaging methods. Magn Reson Imaging 2012; 30:1416-23. [PMID: 22789844 DOI: 10.1016/j.mri.2012.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022]
Abstract
A dual imaging approach, combining magnetic resonance imaging to localize lesions and synchrotron rapid scanning X-ray fluorescence (XRF) mapping to localize and quantify calcium, iron and zinc was used to examine one case of recent stroke with hemorrhage and two cases of ischemia 3 and 7 years before death with the latter showing superficial necrosis. In hemorrhagic lesions, more Fe is found accompanied with less Zn. In chronic ischemic lesions, Fe, Zn and Ca are lower indicating that these elements are removed as the normal tissue dies and scar tissue forms. Both susceptibility and T2* maps were calculated to visualize iron in hemorrhages and validated by XRF Ca and Fe maps. The former was superior for imaging iron in hemorrhagic transformation and necrosis but did not capture ischemic lesions. In contrast, T2* could not differentiate Ca from Fe in necrotic tissue but did capture ischemic lesions, complementing the susceptibility mapping. The spatial localization, accurate quantitative data and elemental differentiation shown here could also be valuable for imaging other brain tissue damage with abnormal Ca and Fe content.
Collapse
Affiliation(s)
- Weili Zheng
- HUH-MR Research/Radiology, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
33
|
A novel embolic stroke model resembling lacunar infarction following proximal middle cerebral artery occlusion in beagle dogs. J Neurosci Methods 2012; 209:90-6. [PMID: 22722089 DOI: 10.1016/j.jneumeth.2012.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/06/2012] [Accepted: 06/10/2012] [Indexed: 11/23/2022]
Abstract
It is estimated that lacunar infarcts account for 25% of all ischemic strokes, but its exact etiology is still on debating. The existing controversies include whether the embolisms can indeed cause lacunar stroke in humans or animal models. We hypothesized that lacunar infarction can be induced by the proximal middle cerebral artery (MCA) segmental occlusion involving the orifices of lenticulostriate arteries in animal models, which have abundant distal cerebral collateral anastomosis. Our work here establishes a proximal MCA occlusion model using thrombi (autologous blood clots about 1.7 mm in diameter and 5 mm in length) in 8 beagle dogs, evaluates the progression of ischemic lesions at 30 min interval within 6 h after embolization using the diffusion weighted imaging (DWI), and discusses the potential mechanisms of lacunar infarction. Our results indicate that the left proximal MCAs can be successfully occluded in all dogs using interventional single-thrombus method. The small solitary or multiple ischemic lesions shown in DWI were observed in the deep brain area, with the mean detecting time of 1.21 ± 0.45 h using DWI and diameter of 6.62 ± 0.60mm in 6h-DWI after procedure. In conclusion, our method established an ischemic model which can recapitulate the radiologic and histologic changes in lacunar infarcts, suggesting that emboli can cause lacunar infarcts in animal model.
Collapse
|
34
|
Guzmán-de-Villoria J, Fernández-García P, Mateos-Pérez J, Desco M. Studying cerebral perfusion using magnetic susceptibility techniques: Technique and applications. RADIOLOGIA 2012. [DOI: 10.1016/j.rxeng.2011.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Neonatal ischemic brain injury: what every radiologist needs to know. Pediatr Radiol 2012; 42:606-19. [PMID: 22249600 DOI: 10.1007/s00247-011-2332-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/28/2011] [Accepted: 12/07/2011] [Indexed: 01/21/2023]
Abstract
We present a pictorial review of neonatal ischemic brain injury and look at its pathophysiology, imaging features and differential diagnoses from a radiologist's perspective. The concept of perinatal stroke is defined and its distinction from hypoxic-ischemic injury is emphasized. A brief review of recent imaging advances is included and a diagnostic approach to neonatal ischemic brain injury is suggested.
Collapse
|
36
|
Guzmán-de-Villoria J, Fernández-García P, Mateos-Pérez J, Desco M. Estudio de la perfusión cerebral mediante técnicas de susceptibilidad magnética: técnica y aplicaciones. RADIOLOGIA 2012; 54:208-20. [DOI: 10.1016/j.rx.2011.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/26/2011] [Accepted: 06/27/2011] [Indexed: 01/10/2023]
|
37
|
Sun PZ, Wang E, Cheung JS. Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI--correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. Neuroimage 2011; 60:1-6. [PMID: 22178815 DOI: 10.1016/j.neuroimage.2011.11.091] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/26/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022] Open
Abstract
Amide proton transfer (APT) MRI is sensitive to ischemic tissue acidosis and has been increasingly used as a research tool to investigate disrupted tissue metabolism during acute stroke. However, magnetization transfer asymmetry (MTR(asym)) analysis is often used for calculating APT contrast, which only provides pH-weighted images. In addition to pH-dependent APT contrast, in vivo MTR(asym) is subject to a baseline shift (ΔMTR'(asym)) attributable to the slightly asymmetric magnetization transfer (MT) effect. Additionally, APT contrast approximately scales with T(1) relaxation time. Tissue relaxation time may also affect the experimentally obtainable APT contrast via saturation efficiency and RF spillover effects. In this study, we acquired perfusion, diffusion, relaxation and pH-weighted APT MRI data, and spectroscopy (MRS) in an animal model of acute ischemic stroke. We modeled in vivo MTR(asym) as a superposition of pH-dependent APT contrast and a baseline shift ΔMTR'(asym) (i.e., MTR(asym)=APTR(pH)+ΔMTR'(asym)), and quantified tissue pH. We found pH of the contralateral normal tissue to be 7.03±0.05 and the ipsilateral ischemic tissue pH was 6.44±0.24, which correlated with tissue perfusion and diffusion rates. In summary, our study established an endogenous and quantitative pH imaging technique for improved characterization of ischemic tissue acidification and metabolism disruption.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
38
|
Cheung JS, Wang X, Zhe Sun P. Magnetic resonance characterization of ischemic tissue metabolism. Open Neuroimag J 2011; 5:66-73. [PMID: 22216079 PMCID: PMC3245409 DOI: 10.2174/1874440001105010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/23/2011] [Accepted: 03/13/2011] [Indexed: 11/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) and spectroscopy (MRS) are versatile diagnostic techniques capable of characterizing the complex stroke pathophysiology, and hold great promise for guiding stroke treatment. Particularly, tissue viability and salvageability are closely associated with its metabolic status. Upon ischemia, ischemic tissue metabolism is disrupted including altered metabolism of glucose and oxygen, elevated lactate production/accumulation, tissue acidification and eventually, adenosine triphosphate (ATP) depletion and energy failure. Whereas metabolism impairment during ischemic stroke is complex, it may be monitored non-invasively with magnetic resonance (MR)-based techniques. Our current article provides a concise overview of stroke pathology, conventional and emerging imaging and spectroscopy techniques, and data analysis tools for characterizing ischemic tissue damage.
Collapse
Affiliation(s)
- Jerry S Cheung
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
39
|
Sun PZ, Cheung JS, Wang E, Lo EH. Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke. J Cereb Blood Flow Metab 2011; 31:1743-50. [PMID: 21386856 PMCID: PMC3170940 DOI: 10.1038/jcbfm.2011.23] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ischemic tissue becomes acidic after initiation of anaerobic respiration, which may result in impaired tissue metabolism and, ultimately, in severe tissue damage. Although changes in the major cerebral metabolites can be studied using magnetic resonance (MR) spectroscopy (MRS)-based techniques, their spatiotemporal resolution is often not sufficient for routine examination of fast-evolving and heterogeneous acute stroke lesions. Recently, pH-weighted MR imaging (MRI) has been proposed as a means to assess tissue acidosis by probing the pH-dependent chemical exchange of amide protons from endogenous proteins and peptides. In this study, we characterized acute ischemic tissue damage using localized proton MRS and multiparametric imaging techniques that included perfusion, diffusion, pH, and relaxation MRI. Our study showed that pH-weighted MRI can detect ischemic lesions and strongly correlates with tissue lactate content measured by (1)H MRS, indicating lactic acidosis. Our results also confirmed the correlation between apparent diffusion coefficient and lactate; however, no significant relationship was found for perfusion, T(1), and T(2). In summary, our study showed that optimized endogenous pH-weighted MRI, by sensitizing to local tissue pH, remains a promising tool for providing a surrogate imaging marker of lactic acidosis and altered tissue metabolism, and augments conventional techniques for stroke diagnosis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
40
|
Rosso C, Colliot O, Valabrègue R, Crozier S, Dormont D, Lehéricy S, Samson Y. Tissue at risk in the deep middle cerebral artery territory is critical to stroke outcome. Neuroradiology 2011; 53:763-71. [DOI: 10.1007/s00234-011-0916-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
|
41
|
Kober T, Gruetter R, Krueger G. Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain. Neuroimage 2011; 59:389-98. [PMID: 21763773 DOI: 10.1016/j.neuroimage.2011.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/01/2011] [Accepted: 07/04/2011] [Indexed: 11/15/2022] Open
Abstract
Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.
Collapse
Affiliation(s)
- Tobias Kober
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, and Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | |
Collapse
|
42
|
Zecca C, Cereda C, Wetzel S, Tschuor S, Staedler C, Santini F, Nadarajah N, Bassetti CL, Gobbi C. Diffusion-weighted imaging in acute demyelinating myelopathy. Neuroradiology 2011; 54:573-8. [DOI: 10.1007/s00234-011-0907-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
|
43
|
Shang QL, Xiao EH, Zhou QC, Luo JG, Wu HJ. Pathological and MR-DWI study of the acute hepatic injury model after stem cell transplantation. World J Gastroenterol 2011; 17:2821-8. [PMID: 21734789 PMCID: PMC3120941 DOI: 10.3748/wjg.v17.i23.2821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/17/2011] [Accepted: 03/24/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate apparent diffusion coefficient (ADC) values as an indication of reconditioning of acute hepatic injury (AHI) after allogeneic mononuclear bone marrow cell (MBMC) transplantation.
METHODS: Three groups were used in our study: a cell transplantation group (n = 21), transplantation control group (n = 21) and normal control group (n = 10). AHI model rabbits in the cell transplantation group were injected with 5 mL of MBMC suspension at multiple sites in the liver and the transplantation controls were injected with 5 mL D-Hanks solution. At the end of the 1st, 2nd and 4th wk, 7 rabbits were randomly selected from the cell transplantation group and transplantation control group for magnetic resonance diffusion-weighted imaging (MR-DWI) and measurement of the mean ADC values of injured livers. After MR-DWI examination, the rabbits were sacrificed and the livers subjected to pathological examination. Ten healthy rabbits from the normal control group were used for MR-DWI examination and measurement of the mean ADC value of normal liver.
RESULTS: At all time points, the liver pathological scores from the cell transplantation group were significantly lower than those in the transplantation control group (27.14 ± 1.46 vs 69.29 ± 6.16, 22.29 ± 2.29 vs 57.00 ± 1.53, 19.00 ± 2.31 vs 51.86 ± 6.04, P = 0.000). The mean ADC values of the cell transplantation group were significantly higher than the transplantation control group ((1.07 ± 0.07) × 10-3 mm2/s vs (0.69 ± 0.05) × 10-3 mm2/s, (1.41 ± 0.04) × 10-3 mm2/s vs (0.84 ± 0.06) × 10-3 mm2/s, (1.68 ± 0.04) × 10-3 mm2/s vs (0.86 ± 0.04) × 10-3 mm2/s, P = 0.000). The pathological scores of the cell transplantation group and transplantation control group gradually decreased. However, their mean ADC values gradually increased to near that of the normal control. At the end of the 1st wk, the mean ADC values of the cell transplantation group and transplantation control group were significantly lower than those of the normal control group [(1.07 ± 0.07) × 10-3 mm2/s vs (1.76 ± 0.03) × 10-3 mm2/s, (0.69 ± 0.05) × 10-3 mm2/s vs (1.76 ± 0.03) × 10-3 mm2/s, P = 0.000]. At any 2 time points, the pathological scores and the mean ADC values of the cell transplantation group were significantly different (P = 0.000). At the end of the 1st wk, the pathological scores and the mean ADC values of the transplantation control group were significantly different from those at the end of the 2nd and 4th wk (P = 0.000). However, there was no significant difference between the 2nd and 4th wk (P = 0.073 and 0.473, respectively). The coefficient of correlation between the pathological score and the mean ADC value in the cell transplantation group was -0.883 (P = 0.000) and -0.762 (P = 0.000) in the transplantation control group.
CONCLUSION: Tracking the longitudinally dynamic change in the mean ADC value of the AHI liver may reflect hepatic injury reconditioning after allogeneic MBMC transplantation.
Collapse
|
44
|
Connell L, Koerte IK, Laubender RP, Morhard D, Linn J, Becker HC, Reiser M, Brueckmann H, Ertl-Wagner B. Hyperdense basilar artery sign—a reliable sign of basilar artery occlusion. Neuroradiology 2011; 54:321-7. [DOI: 10.1007/s00234-011-0887-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|
45
|
Microembolic signals measured by transcranial Doppler during transcatheter closure of atrial septal defect using the Amplatzer septal occluder. Cardiol Young 2011; 21:182-6. [PMID: 21205421 DOI: 10.1017/s1047951110001733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE To determine the frequency and factors associated with increase in microembolic signals during transcatheter closure of atrial septal defect using the Amplatzer septal occluder. METHODS During the procedure in 16 patients, we measured microembolic signals using transcranial Doppler. Procedure time was divided into five periods: right cardiac catheterisation; left cardiac catheterisation; left cardiac angiocardiography; sizing and long sheath placement; device placement and release. We compared numbers of microembolic signals among the five periods and identified factors associated with them. RESULTS Mean size of septal occluder was 16 millimetres in diameter. Total number of microembolic signals was a median of 31.5, ranging from 3 to 113. Microembolic signals in three periods, left cardiac catheterisation; sizing, and long sheath placement; and device placement and release, were not significantly different from one another, but were significantly higher than those in the remaining two periods, right cardiac catheterisation and left cardiac angiocardiography (median was 9 in left cardiac catheterisation; 6 in sizing and long sheath placement; 6.5 in device placement and release, versus 0 in right cardiac catheterisation and 1 in left cardiac angiocardiography, p less than 0.05, respectively). Importantly, the time for device manipulation positively correlated with total number of microembolic signals (r equals 0.77, p less than 0.001), although fluoroscopic time, age, or size of septal occluder did not. CONCLUSIONS Transcatheter closure of atrial septal defect using the Amplatzer septal occluder produces microemboli, especially during device placement. To minimise the risk of systemic embolism, we must decrease the time for device manipulation.
Collapse
|
46
|
Abstract
Diffusion-weighted imaging is becoming increasingly more important in neuroradiology. Formerly this technique was mainly used in stroke diagnostics but the spectrum of applications is becoming increasingly larger. Diffusion-weighted imaging is a useful tool for differentiation between metastases and abscesses, for assessment of the depth of invasiveness of tumors and to differentiate inflammation from astrocytomas. It has now become a standard technique in multiple sclerosis imaging. A further advantage in addition to the diagnostic capabilities is the speed of the sequence which makes it insensitive to movement artefacts.
Collapse
|
47
|
How to repair an ischemic brain injury? Value of experimental models in search of answers. NEUROLOGÍA (ENGLISH EDITION) 2011. [DOI: 10.1016/s2173-5808(11)70016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Assessment of baseline hemodynamic parameters within infarct progression areas in acute stroke patients using perfusion-weighted MRI. Neuroradiology 2010; 53:571-6. [DOI: 10.1007/s00234-010-0793-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
49
|
Reynaud O, Ciobanu L. Post-processing correction of magnetization transfer effects in FENSI perfusion MRI data. Magn Reson Med 2010; 65:457-62. [PMID: 20859996 DOI: 10.1002/mrm.22625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/14/2010] [Accepted: 08/10/2010] [Indexed: 12/20/2022]
Abstract
Magnetization transfer effects induced by repetitive saturation pulses employed in flow enhancement of signal intensity imaging sequences currently prevent quantitative, in vivo, cerebral perfusion studies. This study investigates the magnitude of these effects and introduces a post-processing correction protocol. The study shows that the magnetization transfer effect is consistent across individuals, which enables the derivation of a correction factor to be applied in post-acquisition. Our results, obtained for cerebral flux in white and gray matter in rodent brains, are in agreement with cerebral blood flow measurements previously reported in the literature.
Collapse
|
50
|
Forsting M. Acute stroke imaging. Neuroradiology 2010; 52:173. [PMID: 20094708 DOI: 10.1007/s00234-009-0639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 10/19/2022]
Affiliation(s)
- Michael Forsting
- Institute of Radiology and Neuroradiology, University of Essen, Essen, Germany.
| |
Collapse
|