1
|
Tse-Kang S, Wani KA, Pukkila-Worley R. Patterns of pathogenesis in innate immunity: insights from C. elegans. Nat Rev Immunol 2025:10.1038/s41577-025-01167-0. [PMID: 40247006 DOI: 10.1038/s41577-025-01167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
The cells in barrier tissues can distinguish pathogenic from commensal bacteria and target inflammatory responses only in the context of infection. As such, these cells must be able to identify pathogen infection specifically and not just the presence of an infectious organism, because many innocuous bacteria express the ligands that activate innate immunity in other contexts. Unravelling the mechanisms that underly this specificity, however, is challenging. Free-living nematodes, such as Caenorhabditis elegans, are faced with a similar dilemma, as they live in microorganism-rich habitats and eat bacteria as their source of nutrition. Nematodes lost canonical mechanisms of pattern recognition during their evolution and have instead evolved mechanisms to identify specific ligands or symptoms in the host that indicate active infection with an infectious microorganism. Here we review how C. elegans surveys for these patterns of pathogenesis to activate innate immune defences. Collectively, this work demonstrates that using C. elegans as an experimental platform to study host-pathogen interactions at barrier surfaces reveals primordial and fundamentally important principles of innate immune sensing in the animal branch of the tree of life.
Collapse
Affiliation(s)
- Samantha Tse-Kang
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Khursheed A Wani
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Read Pukkila-Worley
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Zhang H, Li X, Song D, Yukselen O, Nanda S, Kucukural A, Li JJ, Garber M, Walhout AJ. Worm Perturb-Seq: massively parallel whole-animal RNAi and RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636107. [PMID: 39975282 PMCID: PMC11838469 DOI: 10.1101/2025.02.02.636107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The transcriptome provides a highly informative molecular phenotype to connect genotype to phenotype and is most frequently measured by RNA-sequencing (RNA-seq). Therefore, an ultimate goal is to perturb every gene and measure changes in the transcriptome. However, this remains challenging, especially in intact organisms due to different experimental and computational challenges. Here, we present 'Worm Perturb-Seq (WPS)', which provides high-resolution RNA-seq profiles for hundreds of replicate perturbations at a time in a living animal. WPS introduces multiple experimental advances that combine strengths of bulk and single cell RNA-seq, and that further provides an analytical framework, EmpirDE, that leverages the unique power of the large WPS datasets. EmpirDE identifies differentially expressed genes (DEGs) by using gene-specific empirical null distributions, rather than control conditions alone, thereby systematically removing technical biases and improving statistical rigor. We applied WPS to 103 Caenhorhabditis elegans nuclear hormone receptors (NHRs) to delineate a Gene Regulatory Network (GRN) and found that this GRN presents a striking 'pairwise modularity' where pairs of NHRs regulate shared target genes. We envision that the experimental and analytical advances of WPS should be useful not only for C. elegans, but will be broadly applicable to other models, including human cells.
Collapse
Affiliation(s)
- Hefei Zhang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xuhang Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dongyuan Song
- Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, CA, USA
| | | | - Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alper Kucukural
- Via Scientific Inc. Cambridge, MA, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jingyi Jessica Li
- Bioinformatics Interdepartmental Ph.D. Program, University of California, Los Angeles, CA, USA
- Department of Statistics and Data Science, Department of Biostatistics, Department of Computational Medicine, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Manuel Garber
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Albertha J.M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Galilea A, Santillán VJ, Acebedo SL, Virginia Dansey M, Álvarez LD, Mazaira GI, Galigniana MD, Castro OA, Gola GF, Ramírez JA. Expanding the Repertoire of ceDAF-12 Ligands for Modulation of the Steroid Endocrine System in C. Elegans. Chembiochem 2024; 25:e202400018. [PMID: 39159394 DOI: 10.1002/cbic.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Steroid hormones are essential for the biological processes of eukaryotic organisms. The steroid endocrine system of C. elegans, which includes dafachronic acids (DA) and the nuclear receptor ceDAF-12, provides a simple model for exploring the role of steroid hormone signaling pathways in animals. In this study, we show for the first time the feasibility of designing synthetic steroids that can modulate different physiological processes, such as development, reproduction and ageing, in relation to ceDAF-12. Our results not only confirm the conclusions derived from genetic studies linking these processes but also provide new chemical tools to selectively manipulate them, as we found that different compounds produce different phenotypic results. The structures of these compounds are much more diverse than those of endogenous hormones and analogues previously described by other researchers, allowing further development of the chemical modulation of the steroid endocrine system in C. elegans and related nematodes.
Collapse
Affiliation(s)
- Agustín Galilea
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Vanessa J Santillán
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Sofía L Acebedo
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - María Virginia Dansey
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Lautaro D Álvarez
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Gisela I Mazaira
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Mario D Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- CONICET, Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Olga A Castro
- CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Gabriel F Gola
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Javier A Ramírez
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires., Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
4
|
Chen Y, Anderson MT, Payne N, Santori FR, Ivanova NB. Nuclear Receptors and the Hidden Language of the Metabolome. Cells 2024; 13:1284. [PMID: 39120315 PMCID: PMC11311682 DOI: 10.3390/cells13151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Nuclear hormone receptors (NHRs) are a family of ligand-regulated transcription factors that control key aspects of development and physiology. The regulation of NHRs by ligands derived from metabolism or diet makes them excellent pharmacological targets, and the mechanistic understanding of how NHRs interact with their ligands to regulate downstream gene networks, along with the identification of ligands for orphan NHRs, could enable innovative approaches for cellular engineering, disease modeling and regenerative medicine. We review recent discoveries in the identification of physiologic ligands for NHRs. We propose new models of ligand-receptor co-evolution, the emergence of hormonal function and models of regulation of NHR specificity and activity via one-ligand and two-ligand models as well as feedback loops. Lastly, we discuss limitations on the processes for the identification of physiologic NHR ligands and emerging new methodologies that could be used to identify the natural ligands for the remaining 17 orphan NHRs in the human genome.
Collapse
Affiliation(s)
- Yujie Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew Tom Anderson
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Nathaniel Payne
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Fabio R. Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
| | - Natalia B. Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; (Y.C.); (M.T.A.); (N.P.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Theska T, Renahan T, Sommer RJ. Starvation resistance in the nematode Pristionchus pacificus requires a conserved supplementary nuclear receptor. ZOOLOGICAL LETTERS 2024; 10:7. [PMID: 38481284 PMCID: PMC10938818 DOI: 10.1186/s40851-024-00227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
Nuclear hormone receptors (NHRs) are a deeply-conserved superfamily of metazoan transcription factors, which fine-tune the expression of their regulatory target genes in response to a plethora of sensory inputs. In nematodes, NHRs underwent an explosive expansion and many species have hundreds of nhr genes, most of which remain functionally uncharacterized. However, recent studies have reported that two sister receptors, Ppa-NHR-1 and Ppa-NHR-40, are crucial regulators of feeding-structure morphogenesis in the diplogastrid model nematode Pristionchus pacificus. In the present study, we functionally characterize Ppa-NHR-10, the sister paralog of Ppa-NHR-1 and Ppa-NHR-40, aiming to reveal whether it too regulates aspects of feeding-structure development. We used CRISPR/CAS9-mediated mutagenesis to create small frameshift mutations of this nuclear receptor gene and applied a combination of geometric morphometrics and unsupervised clustering to characterize potential mutant phenotypes. However, we found that Ppa-nhr-10 mutants do not show aberrant feeding-structure morphologies. Instead, multiple RNA-seq experiments revealed that many of the target genes of this receptor are involved in lipid catabolic processes. We hypothesized that their mis-regulation could affect the survival of mutant worms during starvation, where lipid catabolism is often essential. Indeed, using novel survival assays, we found that mutant worms show drastically decreased starvation resistance, both as young adults and as dauer larvae. We also characterized genome-wide changes to the transcriptional landscape in P. pacificus when exposed to 24 h of acute starvation, and found that Ppa-NHR-10 partially regulates some of these responses. Taken together, these results demonstrate that Ppa-NHR-10 is broadly required for starvation resistance and regulates different biological processes than its closest paralogs Ppa-NHR-1 and Ppa-NHR-40.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Tess Renahan
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Theska T, Sommer RJ. Feeding-structure morphogenesis in "rhabditid" and diplogastrid nematodes is not controlled by a conserved genetic module. Evol Dev 2024; 26:e12471. [PMID: 38356318 DOI: 10.1111/ede.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Disentangling the evolution of the molecular processes and genetic networks that facilitate the emergence of morphological novelties is one of the main objectives in evolutionary developmental biology. Here, we investigated the evolutionary history of a gene regulatory network controlling the development of novel tooth-like feeding structures in diplogastrid nematodes. Focusing on NHR-1 and NHR-40, the two transcription factors that regulate the morphogenesis of these feeding structures in Pristionchus pacificus, we sought to determine whether they have a similar function in Caenorhabditis elegans, an outgroup species to the Diplogastridae which has typical "rhabditid" flaps instead of teeth. Contrary to our initial expectations, we found that they do not have a similar function. While both receptors are co-expressed in the tissues that produce the feeding structures in the two nematodes, genetic inactivation of either receptor had no impact on feeding-structure morphogenesis in C. elegans. Transcriptomic experiments revealed that NHR-1 and NHR-40 have highly species-specific regulatory targets. These results suggest two possible evolutionary scenarios: either the genetic module responsible for feeding-structure morphogenesis in Diplogastridae already existed in the last common ancestor of C. elegans and P. pacificus, and subsequently disintegrated in the former as NHR-1 and NHR-40 acquired new targets, or it evolved in conjunction with teeth in Diplogastridae. These findings indicate that feeding-structure morphogenesis is regulated by different genetic programs in P. pacificus and C. elegans, hinting at developmental systems drift during the flap-to-tooth transformation. Further research in other "rhabditid" species is needed to fully reconstruct the developmental genetic changes which facilitated the evolution of novel feeding structures in Diplogastridae.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| |
Collapse
|
7
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
8
|
Lu CJ, Meng Y, Wang YL, Zhang T, Yang GF, Mo MH, Ji KF, Liang LM, Zou CG, Zhang KQ. Survival and infectivity of second-stage root-knot nematode Meloidogyne incognita juveniles depend on lysosome-mediated lipolysis. J Biol Chem 2022; 298:101637. [PMID: 35085555 PMCID: PMC8861644 DOI: 10.1016/j.jbc.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Adaptation to nutrient deprivation depends on the activation of metabolic programs to use reserves of energy. When outside a host plant, second-stage juveniles (J2) of the root-knot nematode (Meloidogyne spp.), an important group of pests responsible for severe losses in the production of crops (e.g., rice, wheat, and tomato), are unable to acquire food. Although lipid hydrolysis has been observed in J2 nematodes, its role in fitness and the underlying mechanisms remain unknown. Using RNA-seq analysis, here, we demonstrated that in the absence of host plants, the pathway for the biosynthesis of polyunsaturated fatty acids was upregulated, thereby increasing the production of arachidonic acid in middle-stage J2 Meloidogyne incognita worms. We also found that arachidonic acid upregulated the expression of the transcription factor hlh-30b, which in turn induced lysosomal biogenesis. Lysosomes promoted lipid hydrolysis via a lysosomal lipase, LIPL-1. Furthermore, our data demonstrated that blockage of lysosomal lipolysis reduced both lifespan and locomotion of J2 worms. Strikingly, disturbance of lysosomal lipolysis resulted in a decline in infectivity of these juveniles on tomato roots. Our findings not only reveal the molecular mechanism of lipolysis in J2 worms but also suggest potential novel strategies for the management of root-knot nematode pests.
Collapse
Affiliation(s)
- Chao-Jun Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yang Meng
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Yan-Li Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Gui-Fang Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Kai-Fang Ji
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
9
|
Wallace SW, Lizzappi MC, Magemizoğlu E, Hur H, Liang Y, Shaham S. Nuclear hormone receptors promote gut and glia detoxifying enzyme induction and protect C. elegans from the mold P. brevicompactum. Cell Rep 2021; 37:110166. [PMID: 34965433 PMCID: PMC8733895 DOI: 10.1016/j.celrep.2021.110166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022] Open
Abstract
Animals encounter microorganisms in their habitats, adapting physiology and behavior accordingly. The nematode Caenorhabditis elegans is found in microbe-rich environments; however, its responses to fungi are not extensively studied. Here, we describe interactions of C. elegans and Penicillium brevicompactum, an ecologically relevant mold. Transcriptome studies reveal that co-culture upregulates stress response genes, including xenobiotic-metabolizing enzymes (XMEs), in C. elegans intestine and AMsh glial cells. The nuclear hormone receptors (NHRs) NHR-45 and NHR-156 are induction regulators, and mutants that cannot induce XMEs in the intestine when exposed to P. brevicompactum experience mitochondrial stress and exhibit developmental defects. Different C. elegans wild isolates harbor sequence polymorphisms in nhr-156, resulting in phenotypic diversity in AMsh glia responses to microbe exposure. We propose that P. brevicompactum mitochondria-targeting mycotoxins are deactivated by intestinal detoxification, allowing tolerance to moldy environments. Our studies support the idea that C. elegans NHRs may be regulated by environmental cues.
Collapse
Affiliation(s)
- Sean W Wallace
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Malcolm C Lizzappi
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elif Magemizoğlu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hong Hur
- CCTS Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yupu Liang
- CCTS Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
10
|
Sural S, Hobert O. Nematode nuclear receptors as integrators of sensory information. Curr Biol 2021; 31:4361-4366.e2. [PMID: 34348120 DOI: 10.1016/j.cub.2021.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022]
Abstract
More than 20 years ago, the sequencing of the genome of the nematode Caenorhabditis elegans uncovered a still unparalleled abundance of C4-zinc finger orphan nuclear hormone receptors, encoded by 267 different nhr genes.1,2 Only less than 20 of them are conserved throughout the animal kingdom; all the remaining genes are the results of an expansion of the HNF4-subtype of nuclear receptors.3,4 Strikingly, even though most of the receptors contain predicted ligand binding domains, no ligand has since been identified for any of the non-conserved, C. elegans-expanded nhr genes. Based on an analysis of more than 100 nematode genome sequences, as well as the mining of recently established nervous system-wide gene expression patterns, we propose here that nhr family expansion is a manifestation of adaptation of free-living nematodes to complex sensory environments and that NHR proteins may function as sensory receptors for external or internal sensory cues to modulate the animal's sensory responses to environmental cues as well as its internal metabolic state.
Collapse
Affiliation(s)
- Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Nascimento PVP, Almeida-Oliveira F, Macedo-Silva A, Ausina P, Motinha C, Sola-Penna M, Majerowicz D. Gene annotation of nuclear receptor superfamily genes in the kissing bug Rhodnius prolixus and the effects of 20-hydroxyecdysone on lipid metabolism. INSECT MOLECULAR BIOLOGY 2021; 30:297-314. [PMID: 33455040 DOI: 10.1111/imb.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The hormone 20-hydroxyecdysone is fundamental for regulating moulting and metamorphosis in immature insects, and it plays a role in physiological regulation in adult insects. This hormone acts by binding and activating a receptor, the ecdysone receptor, which is part of the nuclear receptor gene superfamily. Here, we analyse the genome of the kissing bug Rhodnius prolixus to annotate the nuclear receptor superfamily genes. The R. prolixus genome displays a possible duplication of the HNF4 gene. All the analysed insect organs express most nuclear receptor genes as shown by RT-PCR. The quantitative PCR analysis showed that the RpEcR and RpUSP genes are highly expressed in the testis, while the RpHNF4-1 and RpHNF4-2 genes are more active in the fat body and ovaries and in the anterior midgut, respectively. Feeding does not induce detectable changes in the expression of these genes in the fat body. However, the expression of the RpHNF4-2 gene is always higher than that of RpHNF4-1. Treating adult females with 20-hydroxyecdysone increased the amount of triacylglycerol stored in the fat bodies by increasing their lipogenic capacity. These results indicate that 20-hydroxyecdysone acts on the lipid metabolism of adult insects, although the underlying mechanism is not clear.
Collapse
Affiliation(s)
- P V P Nascimento
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - F Almeida-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Macedo-Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P Ausina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Motinha
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Sola-Penna
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
13
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
14
|
Ubiquitous Selfish Toxin-Antidote Elements in Caenorhabditis Species. Curr Biol 2021; 31:990-1001.e5. [PMID: 33417886 DOI: 10.1016/j.cub.2020.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022]
Abstract
Toxin-antidote elements (TAs) are selfish genetic dyads that spread in populations by selectively killing non-carriers. TAs are common in prokaryotes, but very few examples are known in animals. Here, we report the discovery of maternal-effect TAs in both C. tropicalis and C. briggsae, two distant relatives of C. elegans. In C. tropicalis, multiple TAs combine to cause a striking degree of intraspecific incompatibility: five elements reduce the fitness of >70% of the F2 hybrid progeny of two Caribbean isolates. We identified the genes underlying one of the novel TAs, slow-1/grow-1, and found that its toxin, slow-1, is homologous to nuclear hormone receptors. Remarkably, although previously known TAs act during embryonic development, maternal loading of slow-1 in oocytes specifically slows down larval development, delaying the onset of reproduction by several days. Finally, we found that balancing selection acting on linked, conflicting TAs hampers their ability to spread in populations, leading to more stable genetic incompatibilities. Our findings indicate that TAs are widespread in Caenorhabditis species and target a wide range of developmental processes and that antagonism between them may cause lasting incompatibilities in natural populations. We expect that similar phenomena exist in other animal species.
Collapse
|
15
|
Rajan M, Anderson CP, Rindler PM, Romney SJ, Ferreira dos Santos MC, Gertz J, Leibold EA. NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling. eLife 2019; 8:e44674. [PMID: 31532389 PMCID: PMC6777940 DOI: 10.7554/elife.44674] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.
Collapse
Affiliation(s)
- Malini Rajan
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Cole P Anderson
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Paul M Rindler
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Steven Joshua Romney
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Maria C Ferreira dos Santos
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
| | - Jason Gertz
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUnited States
| | - Elizabeth A Leibold
- Department of Medicine, Division of HematologyUniversity of UtahSalt Lake CityUnited States
- Molecular Medicine ProgramUniversity of UtahSalt Lake CityUnited States
- Department of Oncological SciencesUniversity of UtahSalt Lake CityUnited States
| |
Collapse
|
16
|
Lambert SA, Yang AWH, Sasse A, Cowley G, Albu M, Caddick MX, Morris QD, Weirauch MT, Hughes TR. Similarity regression predicts evolution of transcription factor sequence specificity. Nat Genet 2019; 51:981-989. [PMID: 31133749 DOI: 10.1038/s41588-019-0411-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Transcription factor (TF) binding specificities (motifs) are essential for the analysis of gene regulation. Accurate prediction of TF motifs is critical, because it is infeasible to assay all TFs in all sequenced eukaryotic genomes. There is ongoing controversy regarding the degree of motif diversification among related species that is, in part, because of uncertainty in motif prediction methods. Here we describe similarity regression, a significantly improved method for predicting motifs, which we use to update and expand the Cis-BP database. Similarity regression inherently quantifies TF motif evolution, and shows that previous claims of near-complete conservation of motifs between human and Drosophila are inflated, with nearly half of the motifs in each species absent from the other, largely due to extensive divergence in C2H2 zinc finger proteins. We conclude that diversification in DNA-binding motifs is pervasive, and present a new tool and updated resource to study TF diversity and gene regulation across eukaryotes.
Collapse
Affiliation(s)
- Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Sasse
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gwendolyn Cowley
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Mark X Caddick
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Quaid D Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Canadian Institutes For Advanced Research (CIFAR) Artificial Intelligence Chair, Vector Institute, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Matthew T Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada. .,CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Wang S, Chen J, Jiang D, Zhang Q, You C, Tocher DR, Monroig Ó, Dong Y, Li Y. Hnf4α is involved in the regulation of vertebrate LC-PUFA biosynthesis: insights into the regulatory role of Hnf4α on expression of liver fatty acyl desaturases in the marine teleost Siganus canaliculatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:805-815. [PMID: 29352428 DOI: 10.1007/s10695-018-0470-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is an important metabolic pathway in vertebrates, especially fish, considering they are the major source of n-3 LC-PUFA in the human diet. However, most fish have only limited capability for biosynthesis of LC-PUFA. The rabbitfish (Siganus canaliculatus) is able to synthesize LC-PUFA as it has all the key enzyme activities required including Δ6Δ5 Fads2, Δ4 Fads2, Elovl5, and Elovl4. We previously reported a direct interaction between the transcription factor Hnf4α and the promoter regions of Δ4 and Δ6Δ5 Fads2, which suggested that Hnf4α was involved in the transcriptional regulation of fads2 in rabbitfish. For functionally investigating it further, a full-length cDNA of 1736-bp-encoding rabbitfish Hnf4α with 454 amino acids was cloned, which was highly expressed in intestine, followed by liver and eyes. Similar to the expression characteristics of its target genes Δ4 and Δ6Δ5 fads2, levels of hnf4α mRNA in liver and eyes were higher in fish reared at low salinity than those reared in high salinity. After the rabbitfish primary hepatocytes were, respectively, incubated with alverine, benfluorex or BI6015, which were anticipated agonists or antagonist for Hnf4α, the mRNA level of Δ6Δ5 and Δ4 fads2 displayed a similar change tendency with that of hnf4α mRNA. Furthermore, when the mRNA level of hhf4α was knocked down using siRNA, the expression of Δ6Δ5 and Δ4 fads2 also decreased. Together, these data suggest that Hnf4α is involved in the transcriptional regulation of LC-PUFA biosynthesis, specifically, by targeting Δ4 and Δ6Δ5 fads2 in rabbitfish.
Collapse
Affiliation(s)
- Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Junliang Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Danli Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Qinghao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Óscar Monroig
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Yewei Dong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
- School of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yuanyou Li
- School of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
18
|
Kim DH, Kim HS, Hwang DS, Kim HJ, Hagiwara A, Lee JS, Jeong CB. Genome-wide identification of nuclear receptor (NR) genes and the evolutionary significance of the NR1O subfamily in the monogonont rotifer Brachionus spp. Gen Comp Endocrinol 2017; 252:219-225. [PMID: 28673513 DOI: 10.1016/j.ygcen.2017.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023]
Abstract
Nuclear receptors (NRs) are a large family of transcription factors that are involved in many fundamental biological processes. NRs are considered to have originated from a common ancestor, and are highly conserved throughout the whole animal taxa. Therefore, the genome-wide identification of NR genes in an animal taxon can provide insight into the evolutionary tendencies of NRs. Here, we identified all the NR genes in the monogonont rotifer Brachionus spp., which are considered an ecologically key species due to their abundance and world-wide distribution. The NR family was composed of 40, 32, 29, and 32 genes in the genomes of the rotifers B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis, respectively, which were classified into seven distinct subfamilies. The composition of each subfamily was highly conserved between species, except for NR1O genes, suggesting that they have undergone sporadic evolutionary processes for adaptation to their different environmental pressures. In addition, despite the dynamics of NR evolution, the significance of the conserved endocrine system, particularly for estrogen receptor (ER)-signaling, in rotifers was discussed on the basis of phylogenetic analyses. The results of this study may help provide a better understanding the evolution of NRs, and expand our knowledge of rotifer endocrine systems.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Baldwin WS, Boswell WT, Ginjupalli G, Litoff EJ. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus. NUCLEAR RECEPTOR RESEARCH 2017; 4. [PMID: 28804711 DOI: 10.11131/2017/101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nuclear receptors (NRs) are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish) nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B), Rev-erb (NR1D), ROR (NR1F), COUPTF (NR2F), ERR (NR3B), RXR (NR2B), and to a lesser extent the NGF (NR4A), and NR3C steroid receptors (GR/AR). Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634.,Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | | - Gautam Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | |
Collapse
|
20
|
Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway. Proc Natl Acad Sci U S A 2017; 114:8841-8846. [PMID: 28760992 DOI: 10.1073/pnas.1704277114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.
Collapse
|
21
|
Holzer G, Markov GV, Laudet V. Evolution of Nuclear Receptors and Ligand Signaling. Curr Top Dev Biol 2017; 125:1-38. [DOI: 10.1016/bs.ctdb.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Bodofsky S, Koitz F, Wightman B. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. NUCLEAR RECEPTOR RESEARCH 2017; 4:101305. [PMID: 29333434 PMCID: PMC5761748 DOI: 10.11131/2017/101305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Francine Koitz
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Bruce Wightman
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| |
Collapse
|
23
|
Reis Rodrigues P, Kaul TK, Ho JH, Lucanic M, Burkewitz K, Mair WB, Held JM, Bohn LM, Gill MS. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans. G3 (BETHESDA, MD.) 2016; 6:1695-705. [PMID: 27172180 PMCID: PMC4889665 DOI: 10.1534/g3.116.026997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 01/20/2023]
Abstract
Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.
Collapse
Affiliation(s)
- Pedro Reis Rodrigues
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Tiffany K Kaul
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo-Hao Ho
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Mark Lucanic
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - William B Mair
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - Jason M Held
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Matthew S Gill
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
24
|
Chen W, Wei S, Yu Y, Xue H, Yao F, Zhang M, Xiao J, Hatch GM, Chen L. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity. Eur J Pharmacol 2016; 779:80-90. [PMID: 26957053 DOI: 10.1016/j.ejphar.2016.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 01/09/2023]
Abstract
Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK.
Collapse
Affiliation(s)
- Weijia Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun Jilin, China; Department of Pharmacology, College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Shengnan Wei
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun Jilin, China
| | - Yang Yu
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun Jilin, China
| | - Huan Xue
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun Jilin, China
| | - Fan Yao
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun Jilin, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun Jilin, China.
| | - Jun Xiao
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun Jilin, China
| |
Collapse
|
25
|
Narasimhan K, Lambert SA, Yang AWH, Riddell J, Mnaimneh S, Zheng H, Albu M, Najafabadi HS, Reece-Hoyes JS, Fuxman Bass JI, Walhout AJM, Weirauch MT, Hughes TR. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 2015; 4. [PMID: 25905672 PMCID: PMC4434323 DOI: 10.7554/elife.06967] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI:http://dx.doi.org/10.7554/eLife.06967.001 Many scientists use ‘model’ species—such as the fruit fly or a nematode worm called Caenorhabditis elegans—in their research because these organisms have useful features that make it easier to carry out many experiments. For example, C. elegans has a smaller genome compared to many other animals, which is useful for studying the roles of individual genes or stretches of DNA. Transcription factors are a type of protein that can bind to specific stretches of DNA and help to switch certain genes on or off. These ‘motifs’ may be close to the gene or further away in the genome, and therefore, must stand out amongst the rest of the DNA, like lights on a landing strip. However, the motifs for only 10% of the estimated 763 transcription factors in C. elegans have been identified so far. In this study, Narasimhan, Lambert, Yang et al. used a technique called a ‘protein binding microarray’ to identify the motifs for many more of the C. elegans transcription factors. These findings were then used to predict motifs for other transcription factors. Together, these methods increased the proportion of C. elegans transcription factors with known DNA-binding motifs from 10% to around 40%. Now that more DNA motifs have been identified, it is possible to look for similarities and differences between them. For example, Narasimhan, Lambert, Yang et al. found that transcription factors with similar sequences can bind to very varied motifs. On the other hand, some transcription factors that are very different are able to recognize very similar motifs. The experiments also indicate that motifs found very close to genes—in sequences known as ‘promoters’—may be able to interact with many proteins to influence the activity of genes. Narasimhan, Lambert, Yang et al.'s findings increase the number of C. elegans transcription factors with a motif, bringing the knowledge of these proteins more in line with the better-studied transcription factors of humans and fruit flies. The next challenge is to identify DNA motifs for the remaining 60% of transcription factors. DOI:http://dx.doi.org/10.7554/eLife.06967.002
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Jeremy Riddell
- Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
| | - Sanie Mnaimneh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hong Zheng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hamed S Najafabadi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - John S Reece-Hoyes
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Juan I Fuxman Bass
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
26
|
Martín-Durán JM, Hejnol A. The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa. BMC Biol 2015; 13:29. [PMID: 25895830 PMCID: PMC4434581 DOI: 10.1186/s12915-015-0139-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Background The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster. Results In the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut. Conclusions The comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0139-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
| |
Collapse
|
27
|
NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem J 2015; 466:37-44. [PMID: 25406993 DOI: 10.1042/bj20141296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Knowledge of how drugs are metabolized and excreted is an essential component of understanding their fate within and among target and non-target organisms. Thiabendazole (TBZ) was the first benzimidazole (BZ) to be commercially available and remains one of the most important anthelmintic drugs for medical and veterinary use. We have characterized how Caenorhabditis elegans metabolizes and excretes TBZ. We have shown that TBZ directly binds to the nuclear hormone receptor (NHR)-176 and that this receptor is required for the induction by TBZ of the cytochrome P450 (CYP) encoded by cyp-35d1. Further, RNAi inhibition of cyp-35d1 in animals exposed to TBZ causes a reduction in the quantity of a hydroxylated TBZ metabolite and its glucose conjugate that is detected in C. elegans tissue by HPLC. This final metabolite is unique to nematodes and we also identify two P-glycoproteins (PGPs) necessary for its excretion. Finally, we have shown that inhibiting the metabolism we describe increases the susceptibility of C. elegans to TBZ in wild-type and in resistant genetic backgrounds.
Collapse
|
28
|
Kaur S, Jobling S, Jones CS, Noble LR, Routledge EJ, Lockyer AE. The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: implications for developing new model organisms. PLoS One 2015; 10:e0121259. [PMID: 25849443 PMCID: PMC4388693 DOI: 10.1371/journal.pone.0121259] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 02/01/2023] Open
Abstract
Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leslie R. Noble
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Cheatle Jarvela AM, Hinman VF. Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo 2015; 6:3. [PMID: 25685316 PMCID: PMC4327956 DOI: 10.1186/2041-9139-6-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
The form that an animal takes during development is directed by gene regulatory networks (GRNs). Developmental GRNs interpret maternally deposited molecules and externally supplied signals to direct cell-fate decisions, which ultimately leads to the arrangements of organs and tissues in the organism. Genetically encoded modifications to these networks have generated the wide range of metazoan diversity that exists today. Most studies of GRN evolution focus on changes to cis-regulatory DNA, and it was historically theorized that changes to the transcription factors that bind to these cis-regulatory modules (CRMs) contribute to this process only rarely. A growing body of evidence suggests that changes to the coding regions of transcription factors play a much larger role in the evolution of developmental gene regulatory networks than originally imagined. Just as cis-regulatory changes make use of modular binding site composition and tissue-specific modules to avoid pleiotropy, transcription factor coding regions also predominantly evolve in ways that limit the context of functional effects. Here, we review the recent works that have led to this unexpected change in the field of Evolution and Development (Evo-Devo) and consider the implications these studies have had on our understanding of the evolution of developmental processes.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| |
Collapse
|
30
|
Hwang DS, Lee BY, Kim HS, Lee MC, Kyung DH, Om AS, Rhee JS, Lee JS. Genome-wide identification of nuclear receptor (NR) superfamily genes in the copepod Tigriopus japonicus. BMC Genomics 2014; 15:993. [PMID: 25407996 PMCID: PMC4247118 DOI: 10.1186/1471-2164-15-993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/04/2014] [Indexed: 01/14/2023] Open
Abstract
Background Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Results Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. Conclusions We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-993) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
31
|
Li Y, Ginjupalli GK, Baldwin WS. The HR97 (NR1L) group of nuclear receptors: a new group of nuclear receptors discovered in Daphnia species. Gen Comp Endocrinol 2014; 206:30-42. [PMID: 25092536 PMCID: PMC4182176 DOI: 10.1016/j.ygcen.2014.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/14/2014] [Accepted: 07/26/2014] [Indexed: 12/14/2022]
Abstract
The recently sequenced Daphnia pulex genome revealed the NR1L nuclear receptor group consisting of three novel receptors. Phylogenetic studies show that this group is related to the NR1I group (CAR/PXR/VDR) and the NR1J group (HR96), and were subsequently named HR97a/b/g. Each of the HR97 paralogs from Daphnia magna, a commonly used crustacean in toxicity testing, was cloned, sequenced, and partially characterized. Phylogenetic analysis indicates that the HR97 receptors are present in primitive arthropods such as the chelicerates but lost in insects. qPCR and immunohistochemistry demonstrate that each of the receptors is expressed near or at reproductive maturity, and that HR97g, the most ancient of the HR97 receptors, is primarily expressed in the gastrointestinal tract, mandibular region, and ovaries, consistent with a role in reproduction. Transactivation assays using an HR97a/b/g-GAL4 chimera indicate that unlike Daphnia HR96 that is promiscuous with respect to ligand recognition, the HR97 receptors do not respond to many of the ligands that activate CAR/PXR/HR96 nuclear receptors. Only three putative ligands of HR97 receptors were identified in this study: pyriproxyfen, methyl farnesoate, and arachidonic acid. Only arachidonic acid, which acts as an inverse agonist, alters HR97g activity at concentrations that would be considered within physiologically relevant ranges. Overall, this study demonstrates that, although closely related to the promiscuous receptors in the NR1I and NR1J groups, the HR97 receptors are mostly likely not multi-xenobiotic sensors, but rather may perform physiological functions, potentially in reproduction, unique to crustaceans and other non-insect arthropod groups.
Collapse
Affiliation(s)
- Yangchun Li
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States
| | - Gautam K Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States; Department of Biological Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
32
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
33
|
Nyaku ST, Sripathi VR, Kantety RV, Cseke SB, Buyyarapu R, Mc Ewan R, Gu YQ, Lawrence K, Senwo Z, Sripathi P, George P, Sharma GC. Characterization of the reniform nematode genome by shotgun sequencing. Genome 2014; 57:209-21. [PMID: 25036535 DOI: 10.1139/gen-2014-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reniform nematode (RN), a major agricultural pest particularly on cotton in the United States, is among the major plant-parasitic nematodes for which limited genomic information exists. In this study, over 380 Mb of sequence data were generated from pooled DNA of four adult female RNs and assembled into 67,317 contigs, including 25,904 (38.5%) predicted coding contigs and 41,413 (61.5%) noncoding contigs. Most of the characterized repeats were of low complexity (88.9%), and 0.9% of the contigs matched with 53.2% of GenBank ESTs. The most frequent Gene Ontology (GO) terms for molecular function and biological process were protein binding (32%) and embryonic development (20%). Further analysis showed that 741 (1.1%), 94 (0.1%), and 169 (0.25%) RN genomic contigs matched with 1328 (13.9%), 1480 (5.4%), and 1330 (7.4%) supercontigs of Meloidogyne incognita, Brugia malayi, and Pristionchus pacificus, respectively. Chromosome 5 of Caenorhabditis elegans had the highest number of hits to the RN contigs. Seven putative detoxification genes and three carbohydrate-active enzymes (CAZymes) involved in cell wall degradation were studied in more detail. Additionally, kinases, G protein-coupled receptors, and neuropeptides functioning in physiological, developmental, and regulatory processes were identified in the RN genome.
Collapse
Affiliation(s)
- Seloame T Nyaku
- a Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, Tsai IJ, Beasley H, Blok V, Cock PJA, den Akker SEV, Holroyd N, Hunt M, Mantelin S, Naghra H, Pain A, Palomares-Rius JE, Zarowiecki M, Berriman M, Jones JT, Urwin PE. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol 2014; 15:R43. [PMID: 24580726 PMCID: PMC4054857 DOI: 10.1186/gb-2014-15-3-r43] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/03/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. RESULTS We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. CONCLUSIONS The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.
Collapse
Affiliation(s)
- James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Laura M Jones
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Adam J Reid
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Thorpe
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Isheng J Tsai
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Vivian Blok
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter J A Cock
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Sebastian Eves-van den Akker
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | | | - Hardeep Naghra
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Present address: School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Arnab Pain
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Present address: Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan E Palomares-Rius
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Present address: Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Alameda del Obispo s/n Apdo 4084, 14080 Córdoba, Spain
| | - Magdalena Zarowiecki
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
35
|
Ward JD, Bojanala N, Bernal T, Ashrafi K, Asahina M, Yamamoto KR. Sumoylated NHR-25/NR5A regulates cell fate during C. elegans vulval development. PLoS Genet 2013; 9:e1003992. [PMID: 24348269 PMCID: PMC3861103 DOI: 10.1371/journal.pgen.1003992] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/16/2013] [Indexed: 11/19/2022] Open
Abstract
Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner.
Collapse
Affiliation(s)
- Jordan D. Ward
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Nagagireesh Bojanala
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Teresita Bernal
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Masako Asahina
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- Institute of Parasitology, Biology Centre ASCR, Ceske Budejovice, Czech Republic
- University of South Bohemia, Ceske Budejovice, Czech Republic
- * E-mail: (MA); (KRY)
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MA); (KRY)
| |
Collapse
|
36
|
Afonso MQL, de Lima LHF, Bleicher L. Residue correlation networks in nuclear receptors reflect functional specialization and the formation of the nematode-specific P-box. BMC Genomics 2013; 14 Suppl 6:S1. [PMID: 24564869 PMCID: PMC3908500 DOI: 10.1186/1471-2164-14-s6-s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Nuclear receptors (NRs) are transcription factors which bind small hormones, whose evolutionary history and the presence of different functional surfaces makes them an interesting target for a correlation based analysis. Results Correlation analysis of ligand binding domains shows that correlated residue subsets arise from the differences between functional sites in different nuclear receptor subfamilies. For the DNA binding domain, particularly, the analysis shows that the main source of correlation comes from residues that regulate hormone response element specificity, and one of the conserved residue sub-sets arises due to the presence of an unusual sequence for the DNA binding motif known as P-box in nematodes, suggesting the existence of different DBD-DNA specificities in nuclear receptors. Conclusions We conclude that DNA specificity and functional surface specialization has independently driven nuclear receptor evolution, and suggest possible binding modes for the class of divergent nuclear receptors in nematodes.
Collapse
|
37
|
Heestand BN, Shen Y, Liu W, Magner DB, Storm N, Meharg C, Habermann B, Antebi A. Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003651. [PMID: 23935515 PMCID: PMC3723528 DOI: 10.1371/journal.pgen.1003651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
Dietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4α-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62 mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span. Dietary restriction extends the life span of diverse species across taxa, yet the underlying mechanisms are poorly understood. In humans there are clear health benefits associated with DR such as improved serum cholesterol and lipid levels. In Caenorhabditis elegans, genes implicated in the TOR pathway, autophagy, protein synthesis and energy homeostasis have been shown to modulate the dietary restriction response; however their mechanism of action is still unclear. In this work, we find that the C. elegans nuclear hormone receptor, nhr-62, is required for longevity in multiple DR regimens, providing the first evidence of a nuclear receptor required for DR-induced longevity. Additionally, nhr-62 is required for physiologic changes associated with DR, including increased autophagy and decreased levels of triglycerides, possibly through lipolysis. Moreover, nhr-62 is responsible for regulating hundreds of genes under DR, as measured by qPCR and RNA-seq. Importantly, this work is the first to report transcriptome analysis of DR in C. elegans and the first to provide functional evidence that nuclear receptors are key regulators of the DR longevity response, which imply hormonal and metabolic control of longevity, possibly through alterations in fat metabolism, lipolysis, and autophagy.
Collapse
Affiliation(s)
- Bree N. Heestand
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yidong Shen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wei Liu
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Nadia Storm
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Caroline Meharg
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
38
|
Allosteric Controls of Nuclear Receptor Function in the Regulation of Transcription. J Mol Biol 2013; 425:2317-29. [DOI: 10.1016/j.jmb.2013.03.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
|
39
|
Abstract
Laboratory-reared Caenorhabditis elegans eat Escherichia coli. A new study demonstrates a strong diet-gene interaction: worms with reduced nhr-114 activity are fertile when fed E. coli K-12 strains but are sterile on E. coli B. Surprisingly, tryptophan supplementation of E. coli B restores worm fertility.
Collapse
Affiliation(s)
- E Jane Albert Hubbard
- New York University School of Medicine, Skirball Institute for Biomolecular Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
40
|
Gracida X, Eckmann CR. Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr Biol 2013; 23:607-13. [PMID: 23499532 DOI: 10.1016/j.cub.2013.02.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/30/2012] [Accepted: 02/14/2013] [Indexed: 01/29/2023]
Abstract
Animals can thrive on variable food resources as a result of autonomous processes and beneficial relationships with their gut microbes [1]. Food intake elicits major physiological changes, which are counteracted by transient systemic responses that maintain homeostasis in the organism. This integration of external information occurs through cellular sensory elements, such as nuclear receptors, which modulate gene expression in response to specific cues [2]. Given the importance of germline stem cells (GSCs) for the development of the germline and the continuity of species, it is reasonable to assume that GSCs might be shielded from the negative influence of environmental perturbations. To our knowledge, however, there are no mechanisms reported that protect GSCs from harmful dietary metabolites. Using Caenorhabditis elegans as a model, we report that the somatic activity of the conserved nuclear receptor nhr-114/HNF4 protects GSC integrity from dietary metabolites. In the absence of nhr-114 and on certain bacterial diets, otherwise somatically normal animals accumulate germ cell division defects during development and become sterile. We found that, in nhr-114(-) animals, the induction of germline defects and sterility depend on bacterial metabolic status, with respect to the essential amino acid tryptophan. This illustrates an animal-microbe interaction in which somatic nuclear receptor activity preserves the germline by buffering against dietary metabolites, most likely through a somatic detoxifying response. Overall, our findings uncover an unprecedented, and presumably evolutionarily conserved, soma-to-germline axis of communication that maintains reproductive robustness on variable food resources.
Collapse
Affiliation(s)
- Xicotencatl Gracida
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, 01307 Dresden, Germany
| | | |
Collapse
|
41
|
Lecroisey C, Laudet V, Schubert M. The cephalochordate amphioxus: a key to reveal the secrets of nuclear receptor evolution. Brief Funct Genomics 2012; 11:156-66. [PMID: 22441553 DOI: 10.1093/bfgp/els008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The members of the nuclear receptor (NR) superfamily are transcription factors characterized by a particular mode of function, which is related to the conserved nature of their molecular structure. NR proteins usually contain a DNA-binding domain (DBD) and a ligand-binding domain (LBD) allowing them to directly bind to DNA and regulate target gene expression in a ligand-dependent manner. In this review, we are summarizing our current understanding of the NR diversity in the cephalochordate amphioxus, which represents the best available proxy for the last common chordate ancestor both in terms of morphology and genome organization. The amphioxus genome encodes 33 NRs, which is more than expected based on its phylogenetic position, with at least one representative of all major NR groups, excepting NR1E and NR1I/J. This elevated number of receptor genes shows that the amphioxus NR complement has experienced some secondary modifications that are most evident in the NR1H group, which is characterized by three members in humans and ten representatives in amphioxus. By highlighting specific examples of the NR repertoire, including the receptors for retinoic acid, thyroid hormone, estrogen and steroids as well as the bile acid and oxysterol receptors of the NR1H group, we are illustrating the functional diversity of these receptors in amphioxus. We conclude that the amphioxus NRs are valuable models for assessing the evolutionary interplay between receptors and their ligands and that more integrative and comparative approaches are required for assessment of the evolutionary plasticity of receptor-ligand interactions revealed by the studies of amphioxus NRs.
Collapse
Affiliation(s)
- Claire Lecroisey
- Institut de Génomique Fonctionnelle de Lyon, UCBL, CNRS UMR, ENSL, INRA, Ecole Normale Supérieure de Lyon, France
| | | | | |
Collapse
|
42
|
Ghai V, Smit RB, Gaudet J. Transcriptional regulation of HLH-6-independent and subtype-specific genes expressed in the Caenorhabditis elegans pharyngeal glands. Mech Dev 2012; 129:284-97. [PMID: 22759833 DOI: 10.1016/j.mod.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/30/2012] [Accepted: 06/22/2012] [Indexed: 01/19/2023]
Abstract
The Caenorhabditis elegans pharyngeal glands represent one of five cell types in the pharynx. We have previously shown that the bHLH transcription factor, HLH-6, is required for gland development and for expression of many, but not all, gland genes (Smit et al., 2008). Here, we have identified additional gland-expressed genes and find that transcriptional regulatory inputs other than HLH-6 are necessary for their regulation. We demonstrate that at least two hlh-6 independent gland genes, nas-12 and Y8A9A.2, require a cis-acting motif (HRL3- Hlh-6 Regulatory eLement 3), previously described based on its requirement for hlh-6 expression (Ghai and Gaudet, 2008). We also show that expression of the gland-expressed genes, ZK596.1, scl-3, wrt-3, and Y76B12C.3, rely on cis-elements and trans-acting factor(s) other than HLH-6 and HRL3. In addition, we show that negative regulatory mechanisms are employed to refine the spatial expression of some genes, resulting in expression in only a subset of the five gland cells. We show that one of these genes, Y8A9A.2, is negatively regulated by the NHR transcription factor encoded by nhr-48, which represses Y8A9A.2 expression in the g1A cells. We also show that another gene expressed in the reciprocal subset of gland cells, phat-5, is negatively regulated in the g1P and g2 cells by an unknown factor acting through a conserved cis-element in the phat-5 promoter. Overall, this work reveals levels of regulation of gene expression in a single cell type beyond that previously known, and suggests mechanisms by which the different gland sub-types are distinguished.
Collapse
Affiliation(s)
- Vikas Ghai
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
43
|
The evolution of novelty in conserved gene families. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:490894. [PMID: 22779028 PMCID: PMC3388334 DOI: 10.1155/2012/490894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/23/2012] [Indexed: 12/05/2022]
Abstract
One of the major aims of contemporary evolutionary biology is the understanding of the current pattern of biological diversity. This involves, first, the description of character distribution at various nodes of the phylogenetic tree of life and, second, the functional explanation of such changes. The analysis of character distribution is a powerful tool at both the morphological and molecular levels. Recent high-throughput sequencing approaches provide new opportunities to study the genetic architecture of organisms at the genome-wide level. In eukaryotes, one overarching finding is the absence of simple correlations of gene count and biological complexity. Instead, the domain architecture of proteins is becoming a central focus for large-scale evolutionary innovations. Here, we review examples of the evolution of novelty in conserved gene families in insects and nematodes. We highlight how in the absence of whole-genome duplications molecular novelty can arise, how members of gene families have diversified at distinct mechanistic levels, and how gene expression can be maintained in the context of multiple innovations in regulatory mechanisms.
Collapse
|
44
|
Hou NS, Taubert S. Function and Regulation of Lipid Biology in Caenorhabditis elegans Aging. Front Physiol 2012; 3:143. [PMID: 22629250 PMCID: PMC3355469 DOI: 10.3389/fphys.2012.00143] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/27/2012] [Indexed: 02/02/2023] Open
Abstract
Rapidly expanding aging populations and a concomitant increase in the prevalence of age-related diseases are global health problems today. Over the past three decades, a large body of work has led to the identification of genes and regulatory networks that affect longevity and health span, often benefiting from the tremendous power of genetics in vertebrate and invertebrate model organisms. Interestingly, many of these factors appear linked to lipids, important molecules that participate in cellular signaling, energy metabolism, and structural compartmentalization. Despite the putative link between lipids and longevity, the role of lipids in aging remains poorly understood. Emerging data from the model organism Caenorhabditis elegans suggest that lipid composition may change during aging, as several pathways that influence aging also regulate lipid metabolism enzymes; moreover, some of these enzymes apparently play key roles in the pathways that affect the rate of aging. By understanding how lipid biology is regulated during C. elegans aging, and how it impacts molecular, cellular, and organismal function, we may gain insight into novel ways to delay aging using genetic or pharmacological interventions. In the present review we discuss recent insights into the roles of lipids in C. elegans aging, including regulatory roles played by lipids themselves, the regulation of lipid metabolic enzymes, and the roles of lipid metabolism genes in the pathways that affect aging.
Collapse
Affiliation(s)
- Nicole Shangming Hou
- Graduate Program in Cell and Developmental Biology, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
45
|
Pathare PP, Lin A, Bornfeldt KE, Taubert S, Van Gilst MR. Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships. PLoS Genet 2012; 8:e1002645. [PMID: 22511885 PMCID: PMC3325191 DOI: 10.1371/journal.pgen.1002645] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/22/2012] [Indexed: 01/16/2023] Open
Abstract
Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66– and NHR-80–mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα. Mammalian nuclear receptors are actively targeted for treatment of a range of cardiovascular diseases and obesity. However, effective drug development still depends on a more exhaustive characterization of how different nuclear receptors mediate their different physiological effects in vivo. Taking advantage of the roundworm Caenorhabditis elegans, we used a combination of genetic and biochemical approaches to characterize the gene network of the nuclear receptor NHR-49 and to explore the impact of the different target genes on physiology. This work has identified genes and pathways that were not previously known to be regulated by NHR-49. Importantly, we identified NHR-49 co-factors NHR-66 and NHR-80 that regulate specific subsets of NHR-49 target genes and that contribute to distinct phenotypes of nhr-49 animals. Taken together, our findings in C. elegans not only provide novel insights into how nuclear receptor transcriptional networks coordinate to regulate lipid metabolism, but also reveal the breadth of their influence on different aspects of animal physiology.
Collapse
Affiliation(s)
- Pranali P Pathare
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
| | | | | | | | | |
Collapse
|
46
|
Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012; 81:65-95. [PMID: 22663077 PMCID: PMC4010150 DOI: 10.1146/annurev-biochem-051710-134100] [Citation(s) in RCA: 817] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over 10 years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, Drosophila possesses three and humans bear six COMPASS family members, each capable of methylating H3K4 with nonredundant functions. In yeast, the histone H2B monoubiquitinase Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. The machineries involved in this process are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and -independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes is discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation result in the pathogenesis of human diseases, including cancer. Recent findings in this regard are also examined.
Collapse
Affiliation(s)
- Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| |
Collapse
|
47
|
Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol 2011; 9:e1000599. [PMID: 21423649 PMCID: PMC3057950 DOI: 10.1371/journal.pbio.1000599] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/27/2011] [Indexed: 12/18/2022] Open
Abstract
Lifespan extension induced by germline ablation in C. elegans is regulated by the nuclear hormone receptor NHR-80 in a process that requires the production of oleic acid by activation of the lipid desaturase FAT-6/SCD1. Background Preventing germline stem cell proliferation extends lifespan in nematodes and flies. So far, studies on germline-longevity signaling have focused on daf-16/FOXO and daf-12/VDR. Here, we report on NHR-80/HNF4, a nuclear receptor that specifically mediates longevity induced by depletion of the germ line through a mechanism that implicates fatty acid monodesaturation. Methods and Findings nhr-80/HNF4 is induced in animals lacking a germ line and is specifically required for their extended longevity. Overexpressing nhr-80/HNF4 increases the lifespan of germline-less animals. This lifespan extension can occur in the absence of daf-16/FOXO but requires the presence of the nuclear receptor DAF-12/VDR. We show that the fatty acid desaturase, FAT-6/SCD1, is a key target of NHR-80/HNF4 and promotes germline-longevity by desaturating stearic acid to oleic acid (OA). We find that NHR-80/HNF4 and OA must work in concert to promote longevity. Conclusions Taken together, our data indicate that the NHR-80 pathway participates in the mechanism of longevity extension through depletion of the germ line. We identify fat-6 and OA as essential downstream elements although other targets must also be present. Thus, NHR-80 links fatty acid desaturation to lifespan extension through germline ablation in a daf-16/FOXO independent manner. Reproduction and aging are two processes that seem to be closely intertwined. Experiments in Caenorhabditis elegans and Drosophila have shown that depletion of the germ line increases lifespan and that this process depends on insulin and lipophilic-hormone signaling. Recently, it was demonstrated that when germline stem cells (GSCs) cease to proliferate, fat metabolism is altered and this affects longevity. In this study, we have identified a nuclear hormone receptor, NHR-80, that mediates longevity through depletion of the germ line by promoting fatty acid desaturation. The nhr-80 gene is up-regulated at the mRNA and protein levels in germline-less animals, leading to the transcription of the gene, fat-6, and the production of oleic acid (OA). Our experiments also show that the NHR-80/FAT-6/OA pathway does not require the presence of DAF-16 but instead, depends fully on the presence of DAF-12, a steroid receptor that affects lifespan. We provide evidence that other NHR-80 targets must be present concomitantly. Our results reinforce the notion that fat metabolism is profoundly altered in response to GSC proliferation, and the data contribute to a better understanding of the molecular relationship between reproduction, fat metabolism, and aging.
Collapse
|
48
|
Taubert S, Ward JD, Yamamoto KR. Nuclear hormone receptors in nematodes: evolution and function. Mol Cell Endocrinol 2011; 334:49-55. [PMID: 20438802 PMCID: PMC3042524 DOI: 10.1016/j.mce.2010.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/18/2010] [Accepted: 04/24/2010] [Indexed: 11/16/2022]
Abstract
Nuclear hormone receptors (NHRs) are proteins that regulate gene expression in response to developmental, environmental, and nutritional signals. The activity of some NHRs is selectively and reversibly modulated by small molecular weight compounds. However, for others - termed "orphan" receptors - no such ligands have (yet) been identified, and at least some NHRs may lack natural ligands. NHRs exhibit a stereotyped architecture, with conserved N-terminal DNA-binding domains (DBDs) and more variable C-terminal ligand-binding domains (LBDs). NHRs control the transcription of remarkably diverse and specific gene networks, apparently by integrating multiple regulatory inputs that interact with distinct receptor surfaces; these inputs include small molecule ligands, transcriptional coregulators, and response elements, the genomic sites to which the receptors bind. NHRs comprise an ancient superfamily found in all metazoans, and recent findings have revealed NHR-like regulatory factors in fungi. Here, we consider NHR function and evolution in nematodes, roundworms that inhabit terrestrial, marine, and freshwater habitats; we focus in particular on the well-established experimental organism Caenorhabditis elegans. Interestingly, the C. elegans genome encodes a massively expanded NHR family; we speculate that some of the multiple physiological activities governed by individual mammalian NHRs may be distributed among multiple members of the C. elegans family, potentially focusing and simplifying functional analyses. Accordingly, investigations of relevant NHR cofactors, ligands, and response elements might also prove to be simpler; moreover, the abbreviated intergenic regions of the C. elegans genome will facilitate the assignment of response elements to target genes. Finally, the growing interest in medically relevant nematodes is providing novel insights into the function and evolution of NHRs.
Collapse
Affiliation(s)
- Stefan Taubert
- Department of Medical Genetics, University of British Columbia; Centre for Molecular Medicine and Therapeutics; and Child & Family Research Institute, Vancouver, BC, Canada
| | - Jordan D. Ward
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Corresponding author: UCSF, 600 16 St, GH-S574, San Francisco CA 94143-2280; Phone: +1 (415) 476-8445;
| |
Collapse
|
49
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic helminths. Mol Cell Endocrinol 2011; 334:56-66. [PMID: 20600585 PMCID: PMC2974807 DOI: 10.1016/j.mce.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/23/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Biochemistry, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
50
|
Abstract
Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation.
Collapse
Affiliation(s)
- Frances M Sladek
- Department of Cell Biology and Neuroscience, University of California, 2115 Biological Sciences Building, Riverside, CA 92521, United States.
| |
Collapse
|