1
|
Harris M, Kim BY, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. Genetics 2024; 226:iyae019. [PMID: 38366786 PMCID: PMC10990427 DOI: 10.1093/genetics/iyae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The X chromosome, being hemizygous in males, is exposed one-third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across 6 commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Harris M, Kim B, Garud N. Enrichment of hard sweeps on the X chromosome compared to autosomes in six Drosophila species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545888. [PMID: 38106201 PMCID: PMC10723260 DOI: 10.1101/2023.06.21.545888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The X chromosome, being hemizygous in males, is exposed one third of the time increasing the visibility of new mutations to natural selection, potentially leading to different evolutionary dynamics than autosomes. Recently, we found an enrichment of hard selective sweeps over soft selective sweeps on the X chromosome relative to the autosomes in a North American population of Drosophila melanogaster. To understand whether this enrichment is a universal feature of evolution on the X chromosome, we analyze diversity patterns across six commonly studied Drosophila species. We find an increased proportion of regions with steep reductions in diversity and elevated homozygosity on the X chromosome compared to autosomes. To assess if these signatures are consistent with positive selection, we simulate a wide variety of evolutionary scenarios spanning variations in demography, mutation rate, recombination rate, background selection, hard sweeps, and soft sweeps, and find that the diversity patterns observed on the X are most consistent with hard sweeps. Our findings highlight the importance of sex chromosomes in driving evolutionary processes and suggest that hard sweeps have played a significant role in shaping diversity patterns on the X chromosome across multiple Drosophila species.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles California, United States of America
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Nandita Garud
- Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles California, United States of America
- Department of Human Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
4
|
Machado HE, Lawrie DS, Petrov DA. Pervasive Strong Selection at the Level of Codon Usage Bias in Drosophila melanogaster. Genetics 2020; 214:511-528. [PMID: 31871131 PMCID: PMC7017021 DOI: 10.1534/genetics.119.302542] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Codon usage bias (CUB), where certain codons are used more frequently than expected by chance, is a ubiquitous phenomenon and occurs across the tree of life. The dominant paradigm is that the proportion of preferred codons is set by weak selection. While experimental changes in codon usage have at times shown large phenotypic effects in contrast to this paradigm, genome-wide population genetic estimates have supported the weak selection model. Here we use deep genomic population sequencing of two Drosophila melanogaster populations to measure selection on synonymous sites in a way that allowed us to estimate the prevalence of both weak and strong purifying selection. We find that selection in favor of preferred codons ranges from weak (|Nes| ∼ 1) to strong (|Nes| > 10), with strong selection acting on 10-20% of synonymous sites in preferred codons. While previous studies indicated that selection at synonymous sites could be strong, this is the first study to detect and quantify strong selection specifically at the level of CUB. Further, we find that CUB-associated polymorphism accounts for the majority of strong selection on synonymous sites, with secondary contributions of splicing (selection on alternatively spliced genes, splice junctions, and spliceosome-bound sites) and transcription factor binding. Our findings support a new model of CUB and indicate that the functional importance of CUB, as well as synonymous sites in general, have been underestimated.
Collapse
Affiliation(s)
- Heather E Machado
- Cancer, Ageing, and Somatic Mutation, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - David S Lawrie
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-3958
| | - Dmitri A Petrov
- Department of Biology, Stanford University, California 94305-5020
| |
Collapse
|
5
|
Llopart A. Faster‐X evolution of gene expression is driven by recessive adaptive
cis
‐regulatory variation in
Drosophila. Mol Ecol 2018; 27:3811-3821. [DOI: 10.1111/mec.14708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Ana Llopart
- Department of Biology The University of Iowa Iowa City Iowa
- Interdisciplinary Graduate Program in Genetics The University of Iowa Iowa City Iowa
| |
Collapse
|
6
|
Charlesworth B, Campos JL, Jackson BC. Faster-X evolution: Theory and evidence from Drosophila. Mol Ecol 2018; 27:3753-3771. [PMID: 29431881 DOI: 10.1111/mec.14534] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Benjamin C Jackson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Bergman J, Betancourt AJ, Vogl C. Transcription-Associated Compositional Skews in Drosophila Genes. Genome Biol Evol 2018; 10:269-275. [PMID: 29036491 PMCID: PMC5786239 DOI: 10.1093/gbe/evx200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/23/2022] Open
Abstract
In many organisms, local deviations from Chargaff's second parity rule are observed around replication and transcription start sites and within intron sequences. Here, we use expression data as well as a whole-genome data set of nearly 200 haplotypes to investigate such compositional skews in Drosophila melanogaster genes. We find a positive correlation between compositional skew and gene expression, comparable in strength to similar correlations between expression levels and genome-wide sequence features. This correlation is relatively stronger for germline, compared with somatic expression, consistent with the process of transcription-associated mutation bias. We also inferred mutation rates from alleles segregating at low frequencies in short introns, and show that, whereas the overall GC content of short introns does not conform to the equilibrium expectation, the level of the observed deviation from the second parity rule is generally consistent with the inferred rates.
Collapse
Affiliation(s)
- Juraj Bergman
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Wien, Austria
| | - Andrea J Betancourt
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
- Present address: Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Claus Vogl
- Institut für Tierzucht und Genetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
8
|
Matsumoto T, John A, Baeza-Centurion P, Li B, Akashi H. Codon Usage Selection Can Bias Estimation of the Fraction of Adaptive Amino Acid Fixations. Mol Biol Evol 2016; 33:1580-9. [PMID: 26873577 DOI: 10.1093/molbev/msw027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A growing number of molecular evolutionary studies are estimating the proportion of adaptive amino acid substitutions (α) from comparisons of ratios of polymorphic and fixed DNA mutations. Here, we examine how violations of two of the model assumptions, neutral evolution of synonymous mutations and stationary base composition, affect α estimation. We simulated the evolution of coding sequences assuming weak selection on synonymous codon usage bias and neutral protein evolution, α = 0. We show that weak selection on synonymous mutations can give polymorphism/divergence ratios that yield α-hat (estimated α) considerably larger than its true value. Nonstationary evolution (changes in population size, selection, or mutation) can exacerbate such biases or, in some scenarios, give biases in the opposite direction, α-hat < α. These results demonstrate that two factors that appear to be prevalent among taxa, weak selection on synonymous mutations and non-steady-state nucleotide composition, should be considered when estimating α. Estimates of the proportion of adaptive amino acid fixations from large-scale analyses of Drosophila melanogaster polymorphism and divergence data are positively correlated with codon usage bias. Such patterns are consistent with α-hat inflation from weak selection on synonymous mutations and/or mutational changes within the examined gene trees.
Collapse
Affiliation(s)
- Tomotaka Matsumoto
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Anoop John
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Pablo Baeza-Centurion
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Boyang Li
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Hiroshi Akashi
- Division of Evolutionary Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata, Mishima, Shizuoka, Japan
| |
Collapse
|
9
|
Using weighted features to predict recombination hotspots in Saccharomyces cerevisiae. J Theor Biol 2015; 382:15-22. [DOI: 10.1016/j.jtbi.2015.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/04/2015] [Accepted: 06/20/2015] [Indexed: 01/06/2023]
|
10
|
Chen JY, Shen QS, Zhou WZ, Peng J, He BZ, Li Y, Liu CJ, Luan X, Ding W, Li S, Chen C, Tan BCM, Zhang YE, He A, Li CY. Emergence, Retention and Selection: A Trilogy of Origination for Functional De Novo Proteins from Ancestral LncRNAs in Primates. PLoS Genet 2015; 11:e1005391. [PMID: 26177073 PMCID: PMC4503675 DOI: 10.1371/journal.pgen.1005391] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/24/2015] [Indexed: 01/08/2023] Open
Abstract
While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts. Although gene duplication has been believed as a predominant mechanism for creating new genes, recent reports suggested that new proteins could evolve “de novo” from non-coding DNA regions. These de novo genes are also named as “motherless” genes due to their lack of ancestral proteins as precursors, while recently we and others found that lncRNAs may represent an intermediate stage of their origination. To further elucidate this lncRNA-protein transition process, here we identified 64 hominoid-specific de novo genes and report a new mechanism for the origination of functional de novo proteins from ancestral non-coding transcripts: These non-coding “precursors” are generally not more selectively constrained than other lncRNA loci; and the existence of these de novo proteins is not beyond anticipation under neutral expectation; however, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | - Jiguang Peng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Bin Z. He
- FAS Center for Systems Biology & Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yumei Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chu-Jun Liu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xuke Luan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Wanqiu Ding
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Shuxian Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
- * E-mail: (AH); (CYL)
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
- * E-mail: (AH); (CYL)
| |
Collapse
|
11
|
Llopart A. Parallel faster-X evolution of gene expression and protein sequences in Drosophila: beyond differences in expression properties and protein interactions. PLoS One 2015; 10:e0116829. [PMID: 25789611 PMCID: PMC4366066 DOI: 10.1371/journal.pone.0116829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022] Open
Abstract
Population genetics models predict that the X (or Z) chromosome will evolve at faster rates than the autosomes in XY (or ZW) systems. Studies of molecular evolution using large datasets in multiple species have provided evidence supporting this faster-X effect in protein-coding sequences and, more recently, in transcriptomes. However, X-linked and autosomal genes differ significantly in important properties besides hemizygosity in males, including gene expression levels, tissue specificity in gene expression, and the number of interactions in which they are involved (i.e., protein-protein or DNA-protein interactions). Most important, these properties are known to correlate with rates of evolution, which raises the question of whether differences between the X chromosome and autosomes in gene properties, rather than hemizygosity, are sufficient to explain faster-X evolution. Here I investigate this possibility using whole genome sequences and transcriptomes of Drosophila yakuba and D. santomea and show that this is not the case. Additional factors are needed to account for faster-X evolution of both gene expression and protein-coding sequences beyond differences in gene properties, likely a higher incidence of positive selection in combination with the accumulation of weakly deleterious mutations.
Collapse
Affiliation(s)
- Ana Llopart
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
12
|
Charlesworth B, Campos JL. The relations between recombination rate and patterns of molecular variation and evolution in Drosophila. Annu Rev Genet 2014; 48:383-403. [PMID: 25251853 DOI: 10.1146/annurev-genet-120213-092525] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic recombination affects levels of variability and the efficacy of selection because natural selection acting at one site affects evolutionary processes at linked sites. The variation in local recombination rates across the Drosophila genome provides excellent material for testing hypotheses concerning the evolutionary consequences of recombination. The current state of knowledge from studies of Drosophila genomics and population genetics is reviewed here. Selection at linked sites has influenced the relations between recombination rates and patterns of molecular variation and evolution, such that higher rates of recombination are associated with both higher levels of variability and a greater efficacy of selection. It seems likely that background selection against deleterious mutations is a major factor contributing to these patterns in genome regions in which crossing over is rare or absent, whereas selective sweeps of positively selected mutations probably play an important role in regions with crossing over.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; , ,
| | | |
Collapse
|
13
|
Garrigan D, Kingan SB, Geneva AJ, Vedanayagam JP, Presgraves DC. Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution. Genome Biol Evol 2014; 6:2444-58. [PMID: 25193308 PMCID: PMC4202334 DOI: 10.1093/gbe/evu198] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane’s rule: F1 hybrid males are sterile and F1 hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural selection on the X chromosome have shaped the molecular evolutionary history of D. mauritiana, refining our understanding of the possible causes of the large X-effect in speciation.
Collapse
|
14
|
Singh ND, Koerich LB, Carvalho AB, Clark AG. Positive and purifying selection on the Drosophila Y chromosome. Mol Biol Evol 2014; 31:2612-23. [PMID: 24974375 DOI: 10.1093/molbev/msu203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Y chromosomes, with their reduced effective population size, lack of recombination, and male-limited transmission, present a unique collection of constraints for the operation of natural selection. Male-limited transmission may greatly increase the efficacy of selection for male-beneficial mutations, but the reduced effective size also inflates the role of random genetic drift. Together, these defining features of the Y chromosome are expected to influence rates and patterns of molecular evolution on the Y as compared with X-linked or autosomal loci. Here, we use sequence data from 11 genes in 9 Drosophila species to gain insight into the efficacy of natural selection on the Drosophila Y relative to the rest of the genome. Drosophila is an ideal system for assessing the consequences of Y-linkage for molecular evolution in part because the gene content of Drosophila Y chromosomes is highly dynamic, with orthologous genes being Y-linked in some species whereas autosomal in others. Our results confirm the expectation that the efficacy of natural selection at weakly selected sites is reduced on the Y chromosome. In contrast, purifying selection on the Y chromosome for strongly deleterious mutations does not appear to be compromised. Finally, we find evidence of recurrent positive selection for 4 of the 11 genes studied here. Our results thus highlight the variable nature of the mode and impact of natural selection on the Drosophila Y chromosome.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Biological Sciences, North Carolina State University
| | - Leonardo B Koerich
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
| |
Collapse
|
15
|
Abstract
Repetitive DNA are DNA sequences that are repeated multiple times in the genome and normally considered nonfunctional. Several studies predict that the rapid evolution of chromosome-specific satellites led to hybrid incompatibilities and speciation. Interestingly, in Drosophila, the X and dot chromosomes share a unique and noteworthy property: They are identified by chromosome-specific binding proteins and they are particularly involved in genetic incompatibilities between closely related species. Here, I show that the X and dot chromosomes are overpopulated by certain repetitive elements that undergo recurrent turnover in Drosophila species. The portion of the X and dot chromosomes covered by such satellites is up to 52 times and 44 times higher than in other chromosomes, respectively. In addition, the newly evolved X chromosome in D. pseudoobscura (the chromosomal arm XR) has been invaded by the same satellite that colonized the ancestral X chromosome (chromosomal arm XL), whereas the autosomal homologs in other species remain mostly devoid of satellites. Contrarily, the Müller element F in D. ananassae, homolog to the dot chromosome in D. melanogaster, has no overrepresented DNA sequences compared with any other chromosome. The biology and evolutionary patterns of the characterized satellites suggest that they provide both chromosomes with some kind of structural identity and are exposed to natural selection. The rapid satellite turnover fits some speciation models and may explain why these two chromosomes are typically involved in hybrid incompatibilities.
Collapse
Affiliation(s)
- Miguel Gallach
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Austria
| |
Collapse
|
16
|
Evidence that natural selection on codon usage in Drosophila pseudoobscura varies across codons. G3-GENES GENOMES GENETICS 2014; 4:681-92. [PMID: 24531731 PMCID: PMC4059240 DOI: 10.1534/g3.114.010488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like other species of Drosophila, Drosophila pseudoobscura has a distinct bias toward the usage of C- and G-ending codons. Previous studies have indicated that this bias is due, at least in part, to natural selection. Codon bias clearly differs among amino acids (and other codon classes) in Drosophila, which may reflect differences in the intensity of selection on codon usage. Ongoing natural selection on synonymous codon usage should be reflected in the shapes of the site frequency spectra of derived states at polymorphic positions. Specifically, regardless of other demographic effects on the spectrum, it should be shifted toward higher values for changes from less-preferred to more-preferred codons, and toward lower values for the converse. If the intensity of natural selection is increased, shifts in the site frequency spectra should be more pronounced. A total of 33,729 synonymous polymorphic sites on Chromosome 2 in D. pseudoobscura were analyzed. Shifts in the site frequency spectra are consistent with differential intensity of natural selection on codon usage, with stronger shifts associated with higher codon bias. The shifts, in general, are greater for polymorphic synonymous sites than for polymorphic intron sites, also consistent with natural selection. However, unlike observations in D. melanogaster, codon bias is not reduced in areas of low recombination in D. pseudoobscura; the site frequency spectrum signal for selection on codon usage remains strong in these regions. However, diversity is reduced, as expected. It is possible that estimates of low recombination reflect a recent change in recombination rate.
Collapse
|
17
|
Campos JL, Halligan DL, Haddrill PR, Charlesworth B. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster. Mol Biol Evol 2014; 31:1010-28. [PMID: 24489114 PMCID: PMC3969569 DOI: 10.1093/molbev/msu056] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill–Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect.
Collapse
Affiliation(s)
- José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
18
|
Fine-scale heterogeneity in crossover rate in the garnet-scalloped region of the Drosophila melanogaster X chromosome. Genetics 2013; 194:375-87. [PMID: 23410829 DOI: 10.1534/genetics.112.146746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity.
Collapse
|
19
|
Shen JJ, Dushoff J, Bewick AJ, Chain FJ, Evans BJ. Genomic dynamics of transposable elements in the western clawed frog (Silurana tropicalis). Genome Biol Evol 2013; 5:998-1009. [PMID: 23645600 PMCID: PMC3673623 DOI: 10.1093/gbe/evt065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2013] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are repetitive DNA sequences that can make new copies of themselves that are inserted elsewhere in a host genome. The abundance and distributions of TEs vary considerably among phylogenetically diverse hosts. With the aim of exploring the basis of this variation, we evaluated correlations between several genomic variables and the presence of TEs and non-TE repeats in the complete genome sequence of the Western clawed frog (Silurana tropicalis). This analysis reveals patterns of TE insertion consistent with gene disruption but not with the insertional preference model. Analysis of non-TE repeats recovered unique features of their genome-wide distribution when compared with TE repeats, including no strong correlation with exons and a particularly strong negative correlation with GC content. We also collected polymorphism data from 25 TE insertion sites in 19 wild-caught S. tropicalis individuals. DNA transposon insertions were fixed at eight of nine sites and at a high frequency at one of nine, whereas insertions of long terminal repeat (LTR) and non-LTR retrotransposons were fixed at only 4 of 16 sites and at low frequency at 12 of 16. A maximum likelihood model failed to attribute these differences in insertion frequencies to variation in selection pressure on different classes of TE, opening the possibility that other phenomena such as variation in rates of replication or duration of residence in the genome could play a role. Taken together, these results identify factors that sculpt heterogeneity in TE distribution in S. tropicalis and illustrate that genomic dynamics differ markedly among TE classes and between TE and non-TE repeats.
Collapse
Affiliation(s)
- Jiangshan J. Shen
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Present address: Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Adam J. Bewick
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Frédéric J.J. Chain
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ben J. Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Campos JL, Zeng K, Parker DJ, Charlesworth B, Haddrill PR. Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster. Mol Biol Evol 2012. [PMID: 23204387 PMCID: PMC3603305 DOI: 10.1093/molbev/mss222] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Codon usage bias (CUB) in Drosophila is higher for X-linked genes than for autosomal genes. One possible explanation is that the higher effective recombination rate for genes on the X chromosome compared with the autosomes reduces their susceptibility to Hill–Robertson effects, and thus enhances the efficacy of selection on codon usage. The genome sequence of D. melanogaster was used to test this hypothesis. Contrary to expectation, it was found that, after correcting for the effective recombination rate, CUB remained higher on the X than on the autosomes. In contrast, an analysis of polymorphism data from a Rwandan population showed that mean nucleotide site diversity at 4-fold degenerate sites for genes on the X is approximately three-quarters of the autosomal value after correcting for the effective recombination rate, compared with approximate equality before correction. In addition, these data show that selection for preferred versus unpreferred synonymous variants is stronger on the X than the autosomes, which accounts for the higher CUB of genes on the X chromosome. This difference in the strength of selection does not appear to reflect the effects of dominance of mutations affecting codon usage, differences in gene expression levels between X and autosomes, or differences in mutational bias. Its cause therefore remains unexplained. The stronger selection on CUB on the X chromosome leads to a lower rate of synonymous site divergence compared with the autosomes; this will cause a stronger upward bias for X than A in estimates of the proportion of nonsynonymous mutations fixed by positive selection, for methods based on the McDonald–Kreitman test.
Collapse
Affiliation(s)
- Jose L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
21
|
Compositional bias is a major determinant of the distribution pattern and abundance of palindromes in Drosophila melanogaster. J Mol Evol 2012; 75:130-40. [PMID: 23138634 DOI: 10.1007/s00239-012-9527-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Palindromic sequences are important DNA motifs related to gene regulation, DNA replication and recombination, and thus, investigating the evolutionary forces shaping the distribution pattern and abundance of palindromes in the genome is substantially important. In this article, we analyzed the abundance of palindromes in the genome, and then explored the possible effects of several genomic factors on the palindrome distribution and abundance in Drosophila melanogaster. Our results show that the palindrome abundance in D. melanogaster deviates from random expectation and the uneven distribution of palindromes across the genome is associated with local GC content, recombination rate, and coding exon density. Our data suggest that base composition is the major determinant of the distribution pattern and abundance of palindromes and the correlation between palindrome density and recombination is a side-product of the effect of compositional bias on the palindrome abundance.
Collapse
|
22
|
Comeron JM, Ratnappan R, Bailin S. The many landscapes of recombination in Drosophila melanogaster. PLoS Genet 2012; 8:e1002905. [PMID: 23071443 PMCID: PMC3469467 DOI: 10.1371/journal.pgen.1002905] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/02/2012] [Indexed: 01/06/2023] Open
Abstract
Recombination is a fundamental biological process with profound evolutionary implications. Theory predicts that recombination increases the effectiveness of selection in natural populations. Yet, direct tests of this prediction have been restricted to qualitative trends due to the lack of detailed characterization of recombination rate variation across genomes and within species. The use of imprecise recombination rates can also skew population genetic analyses designed to assess the presence and mode of selection across genomes. Here we report the first integrated high-resolution description of genomic and population variation in recombination, which also distinguishes between the two outcomes of meiotic recombination: crossing over (CO) and gene conversion (GC). We characterized the products of 5,860 female meioses in Drosophila melanogaster by genotyping a total of 139 million informative SNPs and mapped 106,964 recombination events at a resolution down to 2 kilobases. This approach allowed us to generate whole-genome CO and GC maps as well as a detailed description of variation in recombination among individuals of this species. We describe many levels of variation in recombination rates. At a large-scale (100 kb), CO rates exhibit extreme and highly punctuated variation along chromosomes, with hot and coldspots. We also show extensive intra-specific variation in CO landscapes that is associated with hotspots at low frequency in our sample. GC rates are more uniformly distributed across the genome than CO rates and detectable in regions with reduced or absent CO. At a local scale, recombination events are associated with numerous sequence motifs and tend to occur within transcript regions, thus suggesting that chromatin accessibility favors double-strand breaks. All these non-independent layers of variation in recombination across genomes and among individuals need to be taken into account in order to obtain relevant estimates of recombination rates, and should be included in a new generation of population genetic models of the interaction between selection and linkage.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
23
|
Clemente F, Vogl C. Evidence for complex selection on four-fold degenerate sites in Drosophila melanogaster. J Evol Biol 2012; 25:2582-95. [PMID: 23020078 DOI: 10.1111/jeb.12003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/04/2023]
Abstract
We considered genome-wide four-fold degenerate sites from an African Drosophila melanogaster population and compared them to short introns. To include divergence and to polarize the data, we used its close relatives Drosophila simulans, Drosophila sechellia, Drosophila erecta and Drosophila yakuba as outgroups. In D. melanogaster, the GC content at four-fold degenerate sites is higher than in short introns; compared to its relatives, more AT than GC is fixed. The former has been explained by codon usage bias (CUB) favouring GC; the latter by decreased intensity of directional selection or by increased mutation bias towards AT. With a biallelic equilibrium model, evidence for directional selection comes mostly from the GC-rich ancestral base composition. Together with a slight mutation bias, it leads to an asymmetry of the unpolarized allele frequency spectrum, from which directional selection is inferred. Using a quasi-equilibrium model and polarized spectra, however, only purifying and no directional selection is detected. Furthermore, polarized spectra are proportional to those of the presumably unselected short introns. As we have no evidence for a decrease in effective population size, relaxed CUB must be due to a reduction in the selection coefficient. Going beyond the biallelic model and considering all four bases, signs of directional selection are stronger. In contrast to short introns, complementary bases show strand specificity and allele frequency spectra depend on mutation directions. Hence, the traditional biallelic model to describe the evolution of four-fold degenerate sites should be replaced by more complex models assuming only quasi-equilibrium and accounting for all four bases.
Collapse
Affiliation(s)
- F Clemente
- Institute of Population Genetics, Veterinärmedizinische Universität Wien, Vienna, Austria
| | | |
Collapse
|
24
|
Langley CH, Stevens K, Cardeno C, Lee YCG, Schrider DR, Pool JE, Langley SA, Suarez C, Corbett-Detig RB, Kolaczkowski B, Fang S, Nista PM, Holloway AK, Kern AD, Dewey CN, Song YS, Hahn MW, Begun DJ. Genomic variation in natural populations of Drosophila melanogaster. Genetics 2012; 192:533-98. [PMID: 22673804 PMCID: PMC3454882 DOI: 10.1534/genetics.112.142018] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/24/2012] [Indexed: 02/07/2023] Open
Abstract
This report of independent genome sequences of two natural populations of Drosophila melanogaster (37 from North America and 6 from Africa) provides unique insight into forces shaping genomic polymorphism and divergence. Evidence of interactions between natural selection and genetic linkage is abundant not only in centromere- and telomere-proximal regions, but also throughout the euchromatic arms. Linkage disequilibrium, which decays within 1 kbp, exhibits a strong bias toward coupling of the more frequent alleles and provides a high-resolution map of recombination rate. The juxtaposition of population genetics statistics in small genomic windows with gene structures and chromatin states yields a rich, high-resolution annotation, including the following: (1) 5'- and 3'-UTRs are enriched for regions of reduced polymorphism relative to lineage-specific divergence; (2) exons overlap with windows of excess relative polymorphism; (3) epigenetic marks associated with active transcription initiation sites overlap with regions of reduced relative polymorphism and relatively reduced estimates of the rate of recombination; (4) the rate of adaptive nonsynonymous fixation increases with the rate of crossing over per base pair; and (5) both duplications and deletions are enriched near origins of replication and their density correlates negatively with the rate of crossing over. Available demographic models of X and autosome descent cannot account for the increased divergence on the X and loss of diversity associated with the out-of-Africa migration. Comparison of the variation among these genomes to variation among genomes from D. simulans suggests that many targets of directional selection are shared between these species.
Collapse
Affiliation(s)
- Charles H Langley
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Clemente F, Vogl C. Unconstrained evolution in short introns? - an analysis of genome-wide polymorphism and divergence data from Drosophila. J Evol Biol 2012; 25:1975-1990. [PMID: 22901008 DOI: 10.1111/j.1420-9101.2012.02580.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 12/23/2022]
Abstract
An unconstrained reference sequence facilitates the detection of selection. In Drosophila, sequence variation in short introns seems to be least influenced by selection and dominated by mutation and drift. Here, we test this with genome-wide sequences using an African population (Malawi) of D. melanogaster and data from the related outgroup species D. simulans, D. sechellia, D. erecta and D. yakuba. The distribution of mutations deviates from equilibrium, and the content of A and T (AT) nucleotides shows an excess of variance among introns. We explain this by a complex mutational pattern: a shift in mutational bias towards AT, leading to a slight nonequilibrium in base composition and context-dependent mutation rates, with G or C (GC) sites mutating most frequently in AT-rich introns. By comparing the corresponding allele frequency spectra of AT-rich vs. GC-rich introns, we can rule out the influence of directional selection or biased gene conversion on the mutational pattern. Compared with neutral equilibrium expectations, polymorphism spectra show an excess of low frequency and a paucity of intermediate frequency variants, irrespective of the direction of mutation. Combining the information from different outgroups with the polymorphism data and using a generalized linear model, we find evidence for shared ancestral polymorphism between D. melanogaster and D. simulans, D. sechellia, arguing against a bottleneck in D. melanogaster. Generally, we find that short introns can be used as a neutral reference on a genome-wide level, if the spatially and temporally varying mutational pattern is accounted for.
Collapse
Affiliation(s)
- F Clemente
- Institute of Population Genetics, Veterinärmedizinische Universität Wien, Vienna, Austria
| | - C Vogl
- Institute of Animal Breeding and Genetics, Veterinärmedizinische Universität Wien, Vienna, Austria
| |
Collapse
|
26
|
The Growing Rate of The Information Quantity of The Human Genome is Modulated by Recombination*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Campos JL, Charlesworth B, Haddrill PR. Molecular evolution in nonrecombining regions of the Drosophila melanogaster genome. Genome Biol Evol 2012; 4:278-88. [PMID: 22275518 PMCID: PMC3318434 DOI: 10.1093/gbe/evs010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We study the evolutionary effects of reduced recombination on the Drosophila melanogaster genome, analyzing more than 200 new genes that lack crossing-over and employing a novel orthology search among species of the melanogaster subgroup. These genes are located in the heterochromatin of chromosomes other than the dot (fourth) chromosome. Noncrossover regions of the genome all exhibited an elevated level of evolutionary divergence from D. yakuba at nonsynonymous sites, lower codon usage bias, lower GC content in coding and noncoding regions, and longer introns. Levels of gene expression are similar for genes in regions with and without crossing-over, which rules out the possibility that the reduced level of adaptation that we detect is caused by relaxed selection due to lower levels of gene expression in the heterochromatin. The patterns observed are consistent with a reduction in the efficacy of selection in all regions of the genome of D. melanogaster that lack crossing-over, as a result of the effects of enhanced Hill-Robertson interference. However, we also detected differences among nonrecombining locations: The X chromosome seems to exhibit the weakest effects, whereas the fourth chromosome and the heterochromatic genes on the autosomes located most proximal to the centromere showed the largest effects. However, signatures of selection on both nonsynonymous mutations and on codon usage persist in all heterochromatic regions.
Collapse
Affiliation(s)
- José L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| | | | | |
Collapse
|
28
|
Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae. J Theor Biol 2012; 293:49-54. [DOI: 10.1016/j.jtbi.2011.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/04/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022]
|
29
|
Zhou D, Udpa N, Gersten M, Visk DW, Bashir A, Xue J, Frazer KA, Posakony JW, Subramaniam S, Bafna V, Haddad GG. Experimental selection of hypoxia-tolerant Drosophila melanogaster. Proc Natl Acad Sci U S A 2011; 108:2349-54. [PMID: 21262834 PMCID: PMC3038716 DOI: 10.1073/pnas.1010643108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through long-term laboratory selection (over 200 generations), we have generated Drosophila melanogaster populations that tolerate severe, normally lethal, levels of hypoxia. Because of initial experiments suspecting genetic mechanisms underlying this adaptation, we compared the genomes of the hypoxia-selected flies with those of controls using deep resequencing. By applying unique computing and analytical methods we identified a number of DNA regions under selection, mostly on the X chromosome. Several of the hypoxia-selected regions contained genes encoding or regulating the Notch pathway. In addition, previous expression profiling revealed an activation of the Notch pathway in the hypoxia-selected flies. We confirmed the contribution of Notch activation to hypoxia tolerance using a specific γ-secretase inhibitor, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), which significantly reduced adult survival and life span in the hypoxia-selected flies. We also demonstrated that flies with loss-of-function Notch mutations or RNAi-mediated Notch knockdown had a significant reduction in hypoxia tolerance, but those with a gain-of-function had a dramatic opposite effect. Using the UAS-Gal4 system, we also showed that specific overexpression of the Notch intracellular domain in glial cells was critical for conferring hypoxia tolerance. Unique analytical tools and genetic and bioinformatic strategies allowed us to discover that Notch activation plays a major role in this hypoxia tolerance in Drosophila melanogaster.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093
| | - Nitin Udpa
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093
| | - Merril Gersten
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093
| | - DeeAnn W. Visk
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093
| | - Ali Bashir
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093
| | - Jin Xue
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093
| | - Kelly A. Frazer
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093
| | - James W. Posakony
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093
| | - Shankar Subramaniam
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92092
| | - Vineet Bafna
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA 92093
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92092
| | - Gabriel G. Haddad
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093
- Department of Neuroscience, University of California at San Diego, La Jolla, CA 92093; and
- Division of Pulmonology, Rady Children's Hospital, San Diego, CA 92123
| |
Collapse
|
30
|
Haddrill PR, Zeng K, Charlesworth B. Determinants of synonymous and nonsynonymous variability in three species of Drosophila. Mol Biol Evol 2010; 28:1731-43. [PMID: 21191087 DOI: 10.1093/molbev/msq354] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We estimated the intensity of selection on preferred codons in Drosophila pseudoobscura and D. miranda at X-linked and autosomal loci, using a published data set on sequence variability at 67 loci, by means of an improved method that takes account of demographic effects. We found evidence for stronger selection at X-linked loci, consistent with their higher levels of codon usage bias. The estimates of the strength of selection and mutational bias in favor of unpreferred codons were similar to those found in other species, after taking into account the fact that D. pseudoobscura showed evidence for a recent expansion in population size. We examined correlates of synonymous and nonsynonymous diversity in these species and found no evidence for effects of recurrent selective sweeps on nonsynonymous mutations, which is probably because this set of genes have much higher than average levels of selective constraints. There was evidence for correlated effects of levels of selective constraints on protein sequences and on codon usage, as expected under models of selection for translational accuracy. Our analysis of a published data set on D. melanogaster provided evidence for the effects of selective sweeps of nonsynonymous mutations on linked synonymous diversity, but only in the subset of loci that experienced the highest rates of nonsynonymous substitutions (about one-quarter of the total) and not at more slowly evolving loci. Our correlational analysis of this data set suggested that both selective constraints on protein sequences and recurrent selective sweeps affect the overall level of codon usage.
Collapse
Affiliation(s)
- Penelope R Haddrill
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
31
|
Zeng K, Charlesworth B. Studying patterns of recent evolution at synonymous sites and intronic sites in Drosophila melanogaster. J Mol Evol 2009; 70:116-28. [PMID: 20041239 DOI: 10.1007/s00239-009-9314-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Most previous studies of the evolution of codon usage bias (CUB) and intronic GC content (iGC) in Drosophila melanogaster were based on between-species comparisons, reflecting long-term evolutionary events. However, a complete picture of the evolution of CUB and iGC cannot be drawn without knowledge of their more recent evolutionary history. Here, we used a polymorphism dataset collected from Zimbabwe to study patterns of the recent evolution of CUB and iGC. Analyzing coding and intronic data jointly with a model which can simultaneously estimate selection, mutational, and demographic parameters, we have found that: (1) natural selection is probably acting on synonymous codons; (2) a constant population size model seems to be sufficient to explain most of the observed synonymous polymorphism patterns; (3) GC is favored over AT in introns. In agreement with the long-term evolutionary patterns, ongoing selection acting on X-linked synonymous codons is stronger than that acting on autosomal codons. The selective differences between preferred and unpreferred codons tend to be greater than the differences between GC and AT in introns, suggesting that natural selection, not just biased gene conversion, may have influenced the evolution of CUB. Interestingly, evidence for non-equilibrium evolution comes exclusively from the intronic data. However, three different models, an equilibrium model with two classes of selected sites and two non-equilibrium models with changes in either population size or mutational parameters, fit the intronic data equally well. These results show that using inadequate selection (or demographic) models can result in incorrect estimates of demographic (or selection) parameters.
Collapse
Affiliation(s)
- Kai Zeng
- Ashworth Laboratories, School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
32
|
Goering LM, Hunt PK, Heighington C, Busick C, Pennings PS, Hermisson J, Kumar S, Gibson G. Association of orthodenticle with natural variation for early embryonic patterning in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:841-54. [PMID: 19488993 PMCID: PMC2784951 DOI: 10.1002/jez.b.21299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although it is well established that cis-acting regulatory variation contributes to morphological evolution between species, few concrete examples of polymorphism affecting developmental patterning within species have been demonstrated. Early embryogenesis in Drosophila is initiated by a gradient of Bicoid morphogen activity that results in differential expression of multiple target genes. In a screen for genetic variation affecting this process, we surveyed 96 wild-type lines of Drosophila melanogaster for polymorphisms in binding sites within 16 Bicoid cis-regulatory response elements. One common polymorphism in the orthodenticle (otd) early head enhancer is associated with a complex series of indels/substitutions that define two distinct haplotypes. The middle region of this enhancer exhibits an unusual pattern of nucleotide diversity that does not easily fit into standard models of selection and demography. Population Gene Expression Maps, generated by extracting binary expression profiles from normalized embryo images, revealed a ventral reduction of otd transcript abundance in one of the haplotypes that was recapitulated in expression of transgenic constructs containing the two alleles. We thus demonstrate that even a process as robust as early developmental patterning is affected by standing genetic variation, intriguingly involving otd, whose morphogenetic function bicoid is thought to have displaced during dipteran evolution.
Collapse
Affiliation(s)
- Lisa M Goering
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sackton TB, Kulathinal RJ, Bergman CM, Quinlan AR, Dopman EB, Carneiro M, Marth GT, Hartl DL, Clark AG. Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome Biol Evol 2009; 1:449-65. [PMID: 20333214 PMCID: PMC2839279 DOI: 10.1093/gbe/evp048] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2009] [Indexed: 12/20/2022] Open
Abstract
Short-read sequencing techniques provide the opportunity to capture genome-wide sequence data in a single experiment. A current challenge is to identify questions that shallow-depth genomic data can address successfully and to develop corresponding analytical methods that are statistically sound. Here, we apply the Roche/454 platform to survey natural variation in strains of Drosophila melanogaster from an African (n = 3) and a North American (n = 6) population. Reads were aligned to the reference D. melanogaster genomic assembly, single nucleotide polymorphisms were identified, and nucleotide variation was quantified genome wide. Simulations and empirical results suggest that nucleotide diversity can be accurately estimated from sparse data with as little as 0.2x coverage per line. The unbiased genomic sampling provided by random short-read sequencing also allows insight into distributions of transposable elements and copy number polymorphisms found within populations and demonstrates that short-read sequencing methods provide an efficient means to quantify variation in genome organization and content. Continued development of methods for statistical inference of shallow-depth genome-wide sequencing data will allow such sparse, partial data sets to become the norm in the emerging field of population genomics.
Collapse
Affiliation(s)
- Timothy B Sackton
- Department of Organismic and Evolutionary Biology, Harvard University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Singh ND, Aquadro CF, Clark AG. Estimation of fine-scale recombination intensity variation in the white-echinus interval of D. melanogaster. J Mol Evol 2009; 69:42-53. [PMID: 19504037 PMCID: PMC2748731 DOI: 10.1007/s00239-009-9250-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 04/27/2009] [Accepted: 05/15/2009] [Indexed: 01/19/2023]
Abstract
Accurate assessment of local recombination rate variation is crucial for understanding the recombination process and for determining the impact of natural selection on linked sites. In Drosophila, local recombination intensity has been estimated primarily by statistical approaches, by estimating the local slope of the relationship between the physical and genetic maps. However, these estimates are limited in resolution and, as a result, the physical scale at which recombination intensity varies in Drosophila is largely unknown. Although there is some evidence suggesting as much as a 40-fold variation in crossover rate at a local scale in D. pseudoobscura, little is known about the fine-scale structure of recombination rate variation in D. melanogaster. Here we experimentally examine the fine-scale distribution of crossover events in a 1.2-Mb region on the D. melanogaster X chromosome using a classic genetic mapping approach. Our results show that crossover frequency is significantly heterogeneous within this region, varying approximately 3.5-fold. Simulations suggest that this degree of heterogeneity is sufficient to affect levels of standing nucleotide diversity, although the magnitude of this effect is small. We recover no statistical association between empirical estimates of nucleotide diversity and recombination intensity, which is likely due to the limited number of loci sampled in our population genetic data set. However, codon bias is significantly negatively correlated with fine-scale recombination intensity estimates, as expected. Our results shed light on the relevant physical scale to consider in evolutionary analyses relating to recombination rate and highlight the motivations to increase the resolution of the recombination map in Drosophila.
Collapse
Affiliation(s)
- Nadia D Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
35
|
DuMont VLB, Singh ND, Wright MH, Aquadro CF. Locus-specific decoupling of base composition evolution at synonymous sites and introns along the Drosophila melanogaster and Drosophila sechellia lineages. Genome Biol Evol 2009; 1:67-74. [PMID: 20333178 PMCID: PMC2817403 DOI: 10.1093/gbe/evp008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2009] [Indexed: 12/20/2022] Open
Abstract
Selection is thought to be partially responsible for patterns of molecular evolution at synonymous sites within numerous Drosophila species. Recently, “per-site” and likelihood methods have been developed to detect loci for which positive selection is a major component of synonymous site evolution. An underlying assumption of these methods, however, is a homogeneous mutation process. To address this potential shortcoming, we perform a complementary analysis making gene-by-gene comparisons of paired synonymous site and intron substitution rates toward and away from the nucleotides G and C because preferred codons are G or C ending in Drosophila. This comparison may reduce both the false-positive rate (due to broadscale heterogeneity in mutation) and false-negative rate (due to lack of power comparing small numbers of sites) of the per-site and likelihood methods. We detect loci with patterns of evolution suggestive of synonymous site selection pressures predominately favoring unpreferred and preferred codons along the Drosophila melanogaster and Drosophila sechellia lineages, respectively. Intron selection pressures do not appear sufficient to explain all these results as the magnitude of the difference in synonymous and intron evolution is dependent on recombination environment and chromosomal location in a direction supporting the hypothesis of selectively driven synonymous fixations. This comparison identifies 101 loci with an apparent switch in codon preference between D. melanogaster and D. sechellia, a pattern previously only observed at the Notch locus.
Collapse
|
36
|
Zhao H, Wang D, Liu B, Jiang X, Zhang J, Fan M, Fan Z, Chen Y, Song SW, Gao W, Jiang T, Cui Q. Recombination rates of human microRNA. Biochem Biophys Res Commun 2009; 379:702-5. [PMID: 19133229 DOI: 10.1016/j.bbrc.2008.12.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
The fact that microRNAs play a role in almost all biological processes is well established, as is the importance of recombination in generating genome variability. However, the association between microRNAs and recombination remains largely unknown. In order to investigate the recombination patterns of microRNAs, we performed a comprehensive analysis of the recombination rate of human microRNAs. We observed that microRNAs that are expressed in several tissues tend to have lower recombination rates than tissue-specific microRNAs. Additionally, microRNAs that are associated with a number of diseases are also likely to have lower recombination rates. Furthermore, microRNAs with higher expression levels are found to have fewer recombination events. These findings reveal patterns in recombination rates of microRNAs that could help in understanding the function, evolution, and disease-related roles of microRNAs.
Collapse
Affiliation(s)
- Huizhi Zhao
- LIAMA Center for Computational Medicine and National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The correlation between recombination rate and dinucleotide bias in Drosophila melanogaster. J Mol Evol 2008; 67:358-67. [PMID: 18797953 DOI: 10.1007/s00239-008-9150-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/12/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Revealing how recombination affects genomic sequence is of great significance to our understanding of genome evolution. The present paper focuses on the correlation between recombination rate and dinucleotide bias in Drosophila melanogaster genome. Our results show that the overall dinucleotide bias is positively correlated with recombination rate for genomic sequences including untranslated regions, introns, intergenic regions, and coding sequences. The correlation patterns of individual dinucleotide biases with recombination rate are presented. Possible mechanisms of interaction between recombination and dinucleotide bias are discussed. Our data indicate that there may be a genome-wide universal mechanism acting between recombination rate and dinucleotide bias, which is likely to be neighbor-dependent biased gene conversion.
Collapse
|
38
|
Ometto L, De Lorenzo D, Stephan W. Contrasting patterns of sequence divergence and base composition between Drosophila introns and intergenic regions. Biol Lett 2008; 2:604-7. [PMID: 17148300 PMCID: PMC1833996 DOI: 10.1098/rsbl.2006.0521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two non-coding DNA classes, introns and intergenic regions, of Drosophila melanogaster exhibit contrasting evolutionary patterns. GC content is significantly higher in intergenic regions and affects their degree of nucleotide variability. Divergence is positively correlated with recombination rate in intergenic regions, but not in introns. We argue that these differences are due to different selective constraints rather than mutational or recombinational mechanisms.
Collapse
Affiliation(s)
- Lino Ometto
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.
| | | | | |
Collapse
|
39
|
Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol 2008; 5:e310. [PMID: 17988176 PMCID: PMC2062478 DOI: 10.1371/journal.pbio.0050310] [Citation(s) in RCA: 495] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 09/26/2007] [Indexed: 01/13/2023] Open
Abstract
The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans. Population genomics, the study of genome-wide patterns of sequence variation within and between closely related species, can provide a comprehensive view of the relative importance of mutation, recombination, natural selection, and genetic drift in evolution. It can also provide fundamental insights into the biological attributes of organisms that are specifically shaped by adaptive evolution. One approach for generating population genomic datasets is to align DNA sequences from whole-genome shotgun projects to a standard reference sequence. We used this approach to carry out whole-genome analysis of polymorphism and divergence in Drosophila simulans, a close relative of the model system, D. melanogaster. We find that polymorphism and divergence fluctuate on a large scale across the genome and that these fluctuations are probably explained by natural selection rather than by variation in mutation rates. Our analysis suggests that adaptive protein evolution is common and is often related to biological processes that may be associated with gene expression, chromosome biology, and reproduction. The approaches presented here will have broad applicability to future analysis of population genomic variation in other systems, including humans. Low-coverage genome sequences from multiple Drosophila simulans strains provide the first comprehensive view of polymorphism and divergence in the fruit fly.
Collapse
|
40
|
Wang J, Keightley PD, Halligan DL. Effect of divergence time and recombination rate on molecular evolution of Drosophila INE-1 transposable elements and other candidates for neutrally evolving sites. J Mol Evol 2007; 65:627-39. [PMID: 17896069 DOI: 10.1007/s00239-007-9028-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/22/2007] [Accepted: 07/09/2007] [Indexed: 11/29/2022]
Abstract
Interspecies divergence of orthologous transposable element remnants is often assumed to be simply due to genetic drift of neutral mutations that occurred after the divergence of the species. However, divergence may also be affected by other factors, such as variation in the mutation rate, ancestral polymorphisms, or selection. Here we attempt to determine the impact of these forces on divergence of three classes of sites that are often assumed to be selectively unconstrained (INE-1 TE remnants, sites within short introns, and fourfold degenerate sites) in two different pairwise comparisons of Drosophila (D. melanogaster vs. D. simulans and D. simulans vs. D. sechellia). We find that divergence of these three classes of sites is strongly influenced by the recombination environment in which they are located, and this is especially true for the closer D. simulans vs. D. sechellia comparison. We suggest that this is mainly a result of the contribution of ancestral polymorphisms in different recombination regions. We also find that intergenic INE-1 elements are significantly more diverged than intronic INE-1 in both pairwise comparisons, implying the presence of either negative selection or lower mutation rates in introns. Furthermore, we show that substitution rates in INE-1 elements are not associated with the length of the noncoding sequence in which they are located, suggesting that reduced divergence in long noncoding sequences is not due to reduced mutation rates in these regions. Finally, we show that GC content for each site within INE-1 sequences has evolved toward an equilibrium value (approximately 33%) since insertion.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | |
Collapse
|
41
|
Abstract
The genomes of higher eukaryotes are carefully balanced systems of gene expression that compensate for the different numbers of sex chromosomes in the two sexes by adjusting gene expression levels. Different strategies for sex chromosome dosage compensation have evolved, which all involve modulating chromatin structure as a means to fine-tune transcription levels. As data accumulate, previous over-simplifications are being revised, and novel features of the compensation processes are gaining attention, many of which are of sufficient global validity to influence our view on gene expression beyond the realm of dosage compensation itself.
Collapse
Affiliation(s)
- Tobias Straub
- Adolf Butenandt Institute, Department of Molecular Biology, Ludwig Maximilians University, 80336 Munich, Germany
| | | |
Collapse
|
42
|
Singh ND, Davis JC, Petrov DA. X-linked genes evolve higher codon bias in Drosophila and Caenorhabditis. Genetics 2005; 171:145-55. [PMID: 15965246 PMCID: PMC1456507 DOI: 10.1534/genetics.105.043497] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparing patterns of molecular evolution between autosomes and sex chromosomes (such as X and W chromosomes) can provide insight into the forces underlying genome evolution. Here we investigate patterns of codon bias evolution on the X chromosome and autosomes in Drosophila and Caenorhabditis. We demonstrate that X-linked genes have significantly higher codon bias compared to autosomal genes in both Drosophila and Caenorhabditis. Furthermore, genes that become X-linked evolve higher codon bias gradually, over tens of millions of years. We provide several lines of evidence that this elevation in codon bias is due exclusively to their chromosomal location and not to any other property of X-linked genes. We present two possible explanations for these observations. One possibility is that natural selection is more efficient on the X chromosome due to effective haploidy of the X chromosomes in males and persistently low effective numbers of reproducing males compared to that of females. Alternatively, X-linked genes might experience stronger natural selection for higher codon bias as a result of maladaptive reduction of their dosage engendered by the loss of the Y-linked homologs.
Collapse
Affiliation(s)
- Nadia D Singh
- Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|