1
|
Fünfgeld MMFF, Wang W, Ishihara H, Arrivault S, Feil R, Smith AM, Stitt M, Lunn JE, Niittylä T. Sucrose synthases are not involved in starch synthesis in Arabidopsis leaves. NATURE PLANTS 2022; 8:574-582. [PMID: 35484201 PMCID: PMC9122829 DOI: 10.1038/s41477-022-01140-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/18/2022] [Indexed: 05/11/2023]
Abstract
Many plants accumulate transitory starch reserves in their leaves during the day to buffer their carbohydrate supply against fluctuating light conditions, and to provide carbon and energy for survival at night. It is universally accepted that transitory starch is synthesized from ADP-glucose (ADPG) in the chloroplasts. However, the consensus that ADPG is made in the chloroplasts by ADPG pyrophosphorylase has been challenged by a controversial proposal that ADPG is made primarily in the cytosol, probably by sucrose synthase (SUS), and then imported into the chloroplasts. To resolve this long-standing controversy, we critically re-examined the experimental evidence that appears to conflict with the consensus pathway. We show that when precautions are taken to avoid artefactual changes during leaf sampling, Arabidopsis thaliana mutants that lack SUS activity in mesophyll cells (quadruple sus1234) or have no SUS activity (sextuple sus123456) have wild-type levels of ADPG and starch, while ADPG is 20 times lower in the pgm and adg1 mutants that are blocked in the consensus chloroplastic pathway of starch synthesis. We conclude that the ADPG needed for starch synthesis in leaves is synthesized primarily by ADPG pyrophosphorylase in the chloroplasts.
Collapse
Affiliation(s)
- Maximilian M F F Fünfgeld
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Luxembourg Institute of Health, Strassen, Luxembourg
| | - Wei Wang
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- University of Helsinki, Helsinki, Finland
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden.
| |
Collapse
|
2
|
Figueroa CM, Asencion Diez MD, Ballicora MA, Iglesias AA. Structure, function, and evolution of plant ADP-glucose pyrophosphorylase. PLANT MOLECULAR BIOLOGY 2022; 108:307-323. [PMID: 35006475 DOI: 10.1007/s11103-021-01235-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/15/2021] [Indexed: 05/25/2023]
Abstract
This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.
Collapse
Affiliation(s)
- Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Matías D Asencion Diez
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA.
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina.
| |
Collapse
|
3
|
Shi HD, Zhang WQ, Lu HY, Zhang WQ, Ye H, Liu DD. Functional characterization of a starch synthesis-related gene AmAGP in Amorphophallus muelleri. PLANT SIGNALING & BEHAVIOR 2020; 15:1805903. [PMID: 32799608 PMCID: PMC7588197 DOI: 10.1080/15592324.2020.1805903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
has attracted tremendous interest because of its high contents of glucomannan and starch. Very few genes regulating glucomannan and starch were reported in Amorphophallus. In this study, an ADP-glucose pyrophosphorylase (AGP) gene that plays a significant role in plant starch synthesis was cloned from Amorphophallus muelleri. It was shown that it encoded a predicted protein containing a conserved plant ADP-Glucose-PP repeat domain and seven potential ligand-binding sites. The real-time quantitative PCR showed that AmAGP was most abundant in tubers, and it was positively correlated with starch content. Additionally, its influencers about temperature and exogenous plant hormone were also discussed, showing that AmAGP expressed highly in tubers under treatments using 25°C and IAA. Furthermore, starch content was closely related to AmAGP expression level, suggesting that AmAGP was involved in the regulation of starch synthesis in A. muelleri. Therefore, identifying the sequence of AmAGP and its expression pattern during tuber enlarging and the changes of its transcript levels in response to temperature and plant hormones would contribute to a better understanding of starch synthesis, and also providing a reference information for future preferable breeding for obtaining more starch or more glucomannan in Amorphophallus.
Collapse
Affiliation(s)
- Hong-Di Shi
- School of Agriculture, Yunnan University, Kunming, China
| | - Wan-Qiao Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Hong-Ye Lu
- School of International Education, Baise University, Baise, China
| | - Wen-Qian Zhang
- Department of Science and Education, Xintai Modern Agricultural Development Service Center, Xintai, China
| | - Hui Ye
- School of Agriculture, Yunnan University, Kunming, China
| | - Dan-Dan Liu
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Lee SK, Jeon JS. Review: Crucial role of inorganic pyrophosphate in integrating carbon metabolism from sucrose breakdown to starch synthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110572. [PMID: 32771173 DOI: 10.1016/j.plantsci.2020.110572] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The endosperm is a primary constituent of mature seeds in rice as well as in other cereal crops, serving as the major storage reserve of starch. Observations indicate that the central part of the endosperm is subject to hypoxic conditions, which require a switch of energy metabolism owing to limited mitochondrial respiration. Uniquely, this endosperm generates a large source of inorganic pyrophosphate (PPi) as a byproduct of the reaction of ADP glucose pyrophosphorylase in the cytosol. Recent results derived from examination of the mutants of cereal crops, especially rice, for PPi-utilizing enzymes clearly suggest an important role of PPi as an alternative energy currency for integrating carbon metabolism from sucrose breakdown to starch synthesis in the endosperm. Thus, the present review provides an outline of the interlaced PPi-dependent metabolic pathways, which are critical for starch synthesis in the endosperm in terms of energy metabolism, along with its application to enhance yield potential.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
5
|
Solis-Badillo E, Agama-Acevedo E, Tiessen A, Lopez Valenzuela JA, Bello-Perez LA. ADP-Glucose Pyrophosphorylase Is Located in the Plastid and Cytosol in the Pulp of Tropical Banana Fruit (Musa acuminata). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:76-82. [PMID: 31848854 DOI: 10.1007/s11130-019-00788-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a key enzyme of starch synthesis in seeds, tubers and fruits. UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of sucrose metabolism in the cytosol while alkaline phosphatase (ALP) is a marker enzyme of the amyloplast that keeps the production of ADPG by removing PPi. Unripe banana accumulates starch in the pulp during development, while ripe fruits are characterized by the accumulation of soluble sugars. The aim of the study was to compare starch granule structure, carbohydrate levels, subcellular location and activities of three enzymes: AGPase, UGPase and ALP. Protein extracts from the cytosolic and amyloplastidial fractions were obtained from the pulp of banana fruit at three developmental stages (11, 16 and 21 weeks after flowering) and analyzed by electrophoresis and immunodetection. Protein profiles were similar during ripening, showing a main electrophoretic band at 50-55 kDa. Higher protein content was found in the cytosolic than in the amyloplastidial fraction. Starch granules and ALP activity were enriched in the amyloplast, whereas AGPase showed a subcellular distribution similar to UGPase. Immunoblot analysis also confirmed the presence of AGPase in both cytosol and amyloplast. AGPase activity was higher in the cytosol than in the amyloplast. Both AGPase activity and western blot band intensity were highest at 16 weeks. UGPase activity was highest at 21 weeks. We conclude that cytosolic production of ADP-glucose is not an exclusive feature of cereal endosperms due to plant breeding, but it also occurs in fruits of non-domesticated plants such as tropical banana (Musa acuminata). This work increases our understanding about pyrophosphorylase activities in the pulp of banana fruit.
Collapse
Affiliation(s)
| | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, Mexico
- Laboratorio Nacional PlanTECC, Irapuato, Mexico
| | | | | |
Collapse
|
6
|
Qiu Y, Tay YV, Ruan Y, Adams KL. Divergence of duplicated genes by repeated partitioning of splice forms and subcellular localization. THE NEW PHYTOLOGIST 2020; 225:1011-1022. [PMID: 31469915 DOI: 10.1111/nph.16148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Gene duplication is a prominent and recurrent process in plant genomes. Among the possible fates of duplicated genes, subfunctionalization refers to duplicates taking on different parts of the function or expression pattern of the ancestral gene. This partitioning could be accompanied by changes in subcellular localization of the protein products. When alternative splicing of gene products leads to protein products with different subcellular localizations, we propose that after gene duplication there will be partitioning of the alternatively spliced forms such that the products of each duplicate are localized to only one of the original locations, which we refer to as sublocalization. We identified the plastid ascorbate peroxidase (cpAPX) genes across angiosperms and analyzed their duplication history, alternative splicing, and subcellular targeting patterns to identify cases of sublocalization. We found angiosperms typically have one cpAPX gene that generates both thylakoidal APX (tAPX) and stromal APX (sAPX) through alternative splicing. We identified several independent lineage-specific sublocalization cases with specialized paralogues of tAPX and sAPX. We determined that the sublocalization happened through two types of sequence evolution patterns. Our findings suggest that the divergence through sublocalization is key to the retention of paralogous cpAPX genes in angiosperms.
Collapse
Affiliation(s)
- Yichun Qiu
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yii Van Tay
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yuan Ruan
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Dong MY, Fan XW, Li YZ. Cassava AGPase genes and their encoded proteins are different from those of other plants. PLANTA 2019; 250:1621-1635. [PMID: 31399791 DOI: 10.1007/s00425-019-03247-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Cassava AGPase and AGPase genes have some unique characteristics. ADP-glucose pyrophosphorylase (AGPase) is a rate-limiting enzyme for starch synthesis. In this study, cassava AGPase genes (MeAGP) were analyzed based on six cultivars and one wild species. A total of seven MeAGPs was identified, including four encoding AGPase large subunits (MeAGPLs 1, 2, 3 and 4) and three encoding AGPase small subunits (MeAGPSs 1, 2 and 3). The copy number of MeAGPs varied in cassava germplasm materials. There were 14 introns for MeAGPLs 1, 2 and 3, 13 introns for MeAGPL4, and 8 introns for other three MeAGPSs. Multiple conservative amino acid sequence motifs were found in the MeAGPs. There were differences in amino acids at binding sites of substrates and regulators among different MeAGP subunits and between MeAGPs and a potato AGPase small subunit (1YP2:B). MeAGPs were all located in chloroplasts. MeAGP expression was not only associated with gene copy number and types/combinations, regions and levels of the DNA methylation but was also affected by environmental factors with the involvement of various transcription factors in multiple regulation networks and in various cis-elements in the gene promoter regions. The MeAGP activity also changed with environmental conditions and had potential differences among the subunits. Taken together, MeAGPs differ in number from those of Arabidopsis, potato, maize, banana, sweet potato, and tomato.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
Guo J, Dai S, Li H, Liu A, Liu C, Cheng D, Cao X, Chu X, Zhai S, Liu J, Zhao Z, Song J. Identification and Expression Analysis of Wheat TaGF14 Genes. Front Genet 2018; 9:12. [PMID: 29441089 PMCID: PMC5797578 DOI: 10.3389/fgene.2018.00012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023] Open
Abstract
The 14-3-3 gene family members play key roles in various cellular processes. However, little is known about the numbers and roles of 14-3-3 genes in wheat. The aims of this study were to identify TaGF14 numbers in wheat by searching its whole genome through blast, to study the phylogenetic relationships with other plant species and to discuss the functions of TaGF14s. The results showed that common wheat harbored 20 TaGF14 genes, located on wheat chromosome groups 2, 3, 4, and 7. Out of them, eighteen TaGF14s are non-ε proteins, and two wheat TaGF14 genes, TaGF14i and TaGF14f, are ε proteins. Phylogenetic analysis indicated that these genes were divided into six clusters: cluster 1 (TaGF14d, TaGF14g, TaGF14j, TaGF14h, TaGF14c, and TaGF14n); cluster 2 (TaGF14k); cluster 3 (TaGF14b, TaGF14l, TaGF14m, and TaGF14s); cluster 4 (TaGF14a, TaGF14e, and TaGF14r); cluster 5 (TaGF14i and TaGF14f); and cluster 6 (TaGF14o, TaGF14p, TaGF14q, and TaGF14t). Tissue-specific gene expressions suggested that all TaGF14s were likely constitutively expressed, except two genes, i.e., TaGF14p and TaGF14f. And the highest amount of TaGF14 transcripts were observed in developing grains at 20 days post anthesis (DPA), especially for TaGF14j and TaGF14l. After drought stress, five genes, i.e., TaGF14c, TaGF14d, TaGF14g, TaGF14h, and TaGF14j, were up-regulated expression under drought stress for both 1 and 6 h, suggesting these genes played vital role in combating against drought stress. However, all the TaGF14s were down-regulated expression under heat stress for both 1 and 6 h, indicating TaGF14s may be negatively associated with heat stress by reducing the expression to combat heat stress or through other pathways. These results suggested that cluster 1, e.g., TaGF14j, may participate in the whole wheat developing stages, e.g., grain-filling (starch biosynthesis) and may also participate in combating against drought stress. Subsequently, a homolog of TaGF14j, TaGF14-JM22, were cloned by RACE and used to validate its function. Immunoblotting results showed that TaGF14-JM22 protein, closely related to TaGF14d, TaGF14g, and TaGF14j, can interact with AGP-L, SSI, SSII, SBEIIa, and SBEIIb in developing grains, suggesting that TaGF14s located on group 4 may be involved in starch biosynthesis. Therefore, it is possible to develop starch-rich wheat cultivars by modifying TaGF14s.
Collapse
Affiliation(s)
- Jun Guo
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuang Dai
- Shandong Center of Crop Germplasm Resource, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haosheng Li
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aifeng Liu
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Cheng Liu
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dungong Cheng
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyou Cao
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiusheng Chu
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shengnan Zhai
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhendong Zhao
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianmin Song
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
9
|
Yang Y, Gao T, Xu M, Dong J, Li H, Wang P, Li G, Guo T, Kang G, Wang Y. Functional Analysis of a Wheat AGPase Plastidial Small Subunit with a Truncated Transit Peptide. Molecules 2017; 22:molecules22030386. [PMID: 28257051 PMCID: PMC6155376 DOI: 10.3390/molecules22030386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/17/2017] [Accepted: 02/25/2017] [Indexed: 11/16/2022] Open
Abstract
ADP-glucose pyrophosphorylase (AGPase), the key enzyme in starch synthesis, consists of two small subunits and two large subunits with cytosolic and plastidial isoforms. In our previous study, a cDNA sequence encoding the plastidial small subunit (TaAGPS1b) of AGPase in grains of bread wheat (Triticum aestivum L.) was isolated and the protein subunit encoded by this gene was characterized as a truncated transit peptide (about 50% shorter than those of other plant AGPS1bs). In the present study, TaAGPS1b was fused with green fluorescent protein (GFP) in rice protoplast cells, and confocal fluorescence microscopy observations revealed that like other AGPS1b containing the normal transit peptide, TaAGPS1b-GFP was localized in chloroplasts. TaAGPS1b was further overexpressed in a Chinese bread wheat cultivar, and the transgenic wheat lines exhibited a significant increase in endosperm AGPase activities, starch contents, and grain weights. These suggested that TaAGPS1b subunit was targeted into plastids by its truncated transit peptide and it could play an important role in starch synthesis in bread wheat grains.
Collapse
Affiliation(s)
- Yang Yang
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tian Gao
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mengjun Xu
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jie Dong
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hanxiao Li
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| | - Pengfei Wang
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gezi Li
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| | - Tiancai Guo
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guozhang Kang
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yonghua Wang
- The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, Zhengzhou 450002, China.
- The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
10
|
Batra R, Saripalli G, Mohan A, Gupta S, Gill KS, Varadwaj PK, Balyan HS, Gupta PK. Comparative Analysis of AGPase Genes and Encoded Proteins in Eight Monocots and Three Dicots with Emphasis on Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:19. [PMID: 28174576 PMCID: PMC5259687 DOI: 10.3389/fpls.2017.00019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/04/2017] [Indexed: 05/11/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) is a heterotetrameric enzyme with two large subunits (LS) and two small subunits (SS). It plays a critical role in starch biosynthesis. We are reporting here detailed structure, function and evolution of the genes encoding the LS and the SS among monocots and dicots. "True" orthologs of maize Sh2 (AGPase LS) and Bt2 (AGPase SS) were identified in seven other monocots and three dicots; structure of the enzyme at protein level was also studied. Novel findings of the current study include the following: (i) at the DNA level, the genes controlling the SS are more conserved than those controlling the LS; the variation in both is mainly due to intron number, intron length and intron phase distribution; (ii) at protein level, the SS genes are more conserved relative to those for LS; (iii) "QTCL" motif present in SS showed evolutionary differences in AGPase belonging to wheat 7BS, T. urartu, rice and sorghum, while "LGGG" motif in LS was present in all species except T. urartu and chickpea; SS provides thermostability to AGPase, while LS is involved in regulation of AGPase activity; (iv) heterotetrameric structure of AGPase was predicted and analyzed in real time environment through molecular dynamics simulation for all the species; (v) several cis-acting regulatory elements were identified in the AGPase promoters with their possible role in regulating spatial and temporal expression (endosperm and leaf tissue) and also the expression, in response to abiotic stresses; and (vi) expression analysis revealed downregulation of both subunits under conditions of heat and drought stress. The results of the present study have allowed better understanding of structure and evolution of the genes and the encoded proteins and provided clues for exploitation of variability in these genes for engineering thermostable AGPase.
Collapse
Affiliation(s)
- Ritu Batra
- Bioinformatics Infrastructure Facility (BIF) Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| | - Gautam Saripalli
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| | - Amita Mohan
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
| | - Saurabh Gupta
- Department of Bioinformatics, Indian Institute of Information Technology-AllahabadAllahabad, India
| | - Kulvinder S. Gill
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- *Correspondence: Kulvinder S. Gill
| | - Pritish K. Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology-AllahabadAllahabad, India
| | - Harindra S. Balyan
- Bioinformatics Infrastructure Facility (BIF) Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| | - Pushpendra K. Gupta
- Bioinformatics Infrastructure Facility (BIF) Laboratory, Department of Genetics and Plant Breeding, Ch. Charan Singh UniversityMeerut, India
| |
Collapse
|
11
|
Saripalli G, Gupta PK. AGPase: its role in crop productivity with emphasis on heat tolerance in cereals. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1893-916. [PMID: 26152573 DOI: 10.1007/s00122-015-2565-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/16/2015] [Indexed: 05/11/2023]
Abstract
AGPase, a key enzyme of starch biosynthetic pathway, has a significant role in crop productivity. Thermotolerant variants of AGPase in cereals may be used for developing cultivars, which may enhance productivity under heat stress. Improvement of crop productivity has always been the major goal of plant breeders to meet the global demand for food. However, crop productivity itself is influenced in a large measure by a number of abiotic stresses including heat, which causes major losses in crop productivity. In cereals, crop productivity in terms of grain yield mainly depends upon the seed starch content so that starch biosynthesis and the enzymes involved in this process have been a major area of investigation for plant physiologists and plant breeders alike. Considerable work has been done on AGPase and its role in crop productivity, particularly under heat stress, because this enzyme is one of the major enzymes, which catalyses the rate-limiting first committed key enzymatic step of starch biosynthesis. Keeping the above in view, this review focuses on the basic features of AGPase including its structure, regulatory mechanisms involving allosteric regulators, its sub-cellular localization and its genetics. Major emphasis, however, has been laid on the genetics of AGPases and its manipulation for developing high yielding cultivars that will have comparable productivity under heat stress. Some important thermotolerant variants of AGPase, which mainly involve specific amino acid substitutions, have been highlighted, and the prospects of using these thermotolerant variants of AGPase in developing cultivars for heat prone areas have been discussed. The review also includes a brief account on transgenics for AGPase, which have been developed for basic studies and crop improvement.
Collapse
Affiliation(s)
- Gautam Saripalli
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Pushpendra Kumar Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
12
|
Chamala S, Feng G, Chavarro C, Barbazuk WB. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Front Bioeng Biotechnol 2015; 3:33. [PMID: 25859541 PMCID: PMC4374538 DOI: 10.3389/fbioe.2015.00033] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) plays important roles in many plant functions, but its conservation across the plant kingdom is not known. We describe a methodology to identify AS events and identify conserved AS events across large phylogenetic distances using RNA-Seq datasets. We applied this methodology to transcriptome data from nine angiosperms including Amborella, the single sister species to all other extant flowering plants. AS events within 40–70% of the expressed multi-exonic genes per species were found, 27,120 of which are conserved among two or more of the taxa studied. While many events are species specific, many others are shared across long evolutionary distances suggesting they have functional significance. Conservation of AS event data provides an estimate of the number of ancestral AS events present at each node of the tree representing the nine species studied. Furthermore, the presence or absence of AS isoforms between species with different whole genome duplication (WGD) histories provides the opportunity to examine the impact of WDG on AS potential. Examining AS in gene families identifies those with high rates of AS, and conservation can distinguish ancient events vs. recent or species specific adaptations. The MADS-box and SR protein families are found to represent families with low and high occurrences of AS, respectively, yet their AS events were likely present in the MRCA of angiosperms.
Collapse
Affiliation(s)
- Srikar Chamala
- Department of Biology, University of Florida , Gainesville, FL , USA
| | - Guanqiao Feng
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida , Gainesville, FL , USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia , Athens, GA , USA
| | - W Brad Barbazuk
- Department of Biology, University of Florida , Gainesville, FL , USA ; Genetics Institute, University of Florida , Gainesville, FL , USA
| |
Collapse
|
13
|
Li X, Wang C, Cheng J, Zhang J, da Silva JAT, Liu X, Duan X, Li T, Sun H. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor. BMC PLANT BIOLOGY 2014; 14:358. [PMID: 25524032 PMCID: PMC4302423 DOI: 10.1186/s12870-014-0358-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/27/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND The formation and development of bulblets are crucial to the Lilium genus since these processes are closely related to carbohydrate metabolism, especially to starch and sucrose metabolism. However, little is known about the transcriptional regulation of both processes. To gain insight into carbohydrate-related genes involved in bulblet formation and development, we conducted comparative transcriptome profiling of Lilium davidii var. unicolor bulblets at 0 d, 15 d (bulblets emerged) and 35 d (bulblets formed a basic shape with three or four scales) after scale propagation. RESULTS Analysis of the transcriptome revealed that a total of 52,901 unigenes with an average sequence size of 630 bp were generated. Based on Clusters of Orthologous Groups (COG) analysis, 8% of the sequences were attributed to carbohydrate transport and metabolism. The results of KEGG pathway enrichment analysis showed that starch and sucrose metabolism constituted the predominant pathway among the three library pairs. The starch content in mother scales and bulblets decreased and increased, respectively, with almost the same trend as sucrose content. Gene expression analysis of the key enzymes in starch and sucrose metabolism suggested that sucrose synthase (SuSy) and invertase (INV), mainly hydrolyzing sucrose, presented higher gene expression in mother scales and bulblets at stages of bulblet appearance and enlargement, while sucrose phosphate synthase (SPS) showed higher expression in bulblets at morphogenesis. The enzymes involved in the starch synthetic direction such as ADPG pyrophosphorylase (AGPase), soluble starch synthase (SSS), starch branching enzyme (SBE) and granule-bound starch synthase (GBSS) showed a decreasing trend in mother scales and higher gene expression in bulblets at bulblet appearance and enlargement stages while the enzyme in the cleavage direction, starch de-branching enzyme (SDBE), showed higher gene expression in mother scales than in bulblets. CONCLUSIONS An extensive transcriptome analysis of three bulblet development stages contributes considerable novel information to our understanding of carbohydrate metabolism-related genes in Lilium at the transcriptional level, and demonstrates the fundamentality of carbohydrate metabolism in bulblet emergence and development at the molecular level. This could facilitate further investigation into the molecular mechanisms underlying these processes in lily and other related species.
Collapse
Affiliation(s)
- XueYan Li
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - ChunXia Wang
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - JinYun Cheng
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - Jing Zhang
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | | | - XiaoYu Liu
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - Xin Duan
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - TianLai Li
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| | - HongMei Sun
- />College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866 P R China
| |
Collapse
|
14
|
Mahendhiran M, Ramirez-Prado JH, Escobedo-Gracia Medrano RM, Canto-Canché B, Tzec-Simá M, Grijalva-Arango R, James-Kay A. Single nucleotide polymorphisms in partial sequences of the gene encoding the large sub-units of ADP-glucose pyrophosphorylase within a representative collection of 10 Musa genotypes. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Huang B, Hennen-Bierwagen TA, Myers AM. Functions of multiple genes encoding ADP-glucose pyrophosphorylase subunits in maize endosperm, embryo, and leaf. PLANT PHYSIOLOGY 2014; 164:596-611. [PMID: 24381067 PMCID: PMC3912092 DOI: 10.1104/pp.113.231605] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ADP-glucose pyrophosphorylase (AGPase) provides the nucleotide sugar ADP-glucose and thus constitutes the first step in starch biosynthesis. The majority of cereal endosperm AGPase is located in the cytosol with a minor portion in amyloplasts, in contrast to its strictly plastidial location in other species and tissues. To investigate the potential functions of plastidial AGPase in maize (Zea mays) endosperm, six genes encoding AGPase large or small subunits were characterized for gene expression as well as subcellular location and biochemical activity of the encoded proteins. Seven transcripts from these genes accumulate in endosperm, including those from shrunken2 and brittle2 that encode cytosolic AGPase and five candidates that could encode subunits of the plastidial enzyme. The amino termini of these five polypeptides directed the transport of a reporter protein into chloroplasts of leaf protoplasts. All seven proteins exhibited AGPase activity when coexpressed in Escherichia coli with partner subunits. Null mutations were identified in the genes agpsemzm and agpllzm and shown to cause reduced AGPase activity in specific tissues. The functioning of these two genes was necessary for the accumulation of normal starch levels in embryo and leaf, respectively. Remnant starch was observed in both instances, indicating that additional genes encode AGPase large and small subunits in embryo and leaf. Endosperm starch was decreased by approximately 7% in agpsemzm- or agpllzm- mutants, demonstrating that plastidial AGPase activity contributes to starch production in this tissue even when the major cytosolic activity is present.
Collapse
|
16
|
Spielbauer G, Li L, Römisch-Margl L, Do PT, Fouquet R, Fernie AR, Eisenreich W, Gierl A, Settles AM. Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2231-42. [PMID: 23530131 PMCID: PMC3654415 DOI: 10.1093/jxb/ert082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels.
Collapse
Affiliation(s)
- Gertraud Spielbauer
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Li Li
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lilla Römisch-Margl
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany
| | - Phuc Thi Do
- Max-Planck-Institut für Molekulare Pflanzenphysiologie; Potsdam-Golm, Germany
| | - Romain Fouquet
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie; Potsdam-Golm, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, 85747 Garching, Germany
| | - Alfons Gierl
- Lehrstuhl für Genetik, Technische Universität München, 85354 Freising, Germany
| | - A. Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Sekhon RS, Briskine R, Hirsch CN, Myers CL, Springer NM, Buell CR, de Leon N, Kaeppler SM. Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS One 2013; 8:e61005. [PMID: 23637782 PMCID: PMC3634062 DOI: 10.1371/journal.pone.0061005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/05/2013] [Indexed: 01/17/2023] Open
Abstract
Transcriptome analysis is a valuable tool for identification and characterization of genes and pathways underlying plant growth and development. We previously published a microarray-based maize gene atlas from the analysis of 60 unique spatially and temporally separated tissues from 11 maize organs [1]. To enhance the coverage and resolution of the maize gene atlas, we have analyzed 18 selected tissues representing five organs using RNA sequencing (RNA-Seq). For a direct comparison of the two methodologies, the same RNA samples originally used for our microarray-based atlas were evaluated using RNA-Seq. Both technologies produced similar transcriptome profiles as evident from high Pearson's correlation statistics ranging from 0.70 to 0.83, and from nearly identical clustering of the tissues. RNA-Seq provided enhanced coverage of the transcriptome, with 82.1% of the filtered maize genes detected as expressed in at least one tissue by RNA-Seq compared to only 56.5% detected by microarrays. Further, from the set of 465 maize genes that have been historically well characterized by mutant analysis, 427 show significant expression in at least one tissue by RNA-Seq compared to 390 by microarray analysis. RNA-Seq provided higher resolution for identifying tissue-specific expression as well as for distinguishing the expression profiles of closely related paralogs as compared to microarray-derived profiles. Co-expression analysis derived from the microarray and RNA-Seq data revealed that broadly similar networks result from both platforms, and that co-expression estimates are stable even when constructed from mixed data including both RNA-Seq and microarray expression data. The RNA-Seq information provides a useful complement to the microarray-based maize gene atlas and helps to further understand the dynamics of transcription during maize development.
Collapse
Affiliation(s)
- Rajandeep S. Sekhon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Roman Briskine
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Candice N. Hirsch
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nathan M. Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
18
|
Cook FR, Fahy B, Trafford K. A rice mutant lacking a large subunit of ADP-glucose pyrophosphorylase has drastically reduced starch content in the culm but normal plant morphology and yield. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:1068-1078. [PMID: 32480856 DOI: 10.1071/fp12186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/03/2012] [Indexed: 06/11/2023]
Abstract
A mutant of rice (Oryza sativa L.) was identified with a Tos17 insertion in Os05g50380, a gene encoding a plastidial large subunit (LSU) of ADP-glucose pyrophosphorylase (AGPase) that was previously called OsAPL3 or OsAGPL1. The insertion prevents the production of a normal transcript. Characterisation of the mutant showed that this LSU is required for 97% of the starch synthesised in the flowering stem (culm), approximately half of the AGPase activity in developing embryos and that it contributes to AGPase activity in the endosperm. Despite the near absence of starch in the culms and reduced starch content in the embryos, the mutant rice plants grow and develop normally, and show no reduction in productivity. The starch content of leaves is increased in the mutant, revealing plasticity in the distribution of photosynthates among different temporary carbohydrate storage pools within the plant.
Collapse
Affiliation(s)
| | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norfolk, NR4 7UH, UK
| | - Kay Trafford
- John Innes Centre, Norwich Research Park, Norfolk, NR4 7UH, UK
| |
Collapse
|
19
|
Su Z, Gu X. Revisit on the evolutionary relationship between alternative splicing and gene duplication. Gene 2012; 504:102-6. [PMID: 22621894 DOI: 10.1016/j.gene.2012.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/18/2012] [Accepted: 05/07/2012] [Indexed: 11/19/2022]
Abstract
Gene duplications and alternative splicing (AS) isoforms are two widespread types of genetic variations that can facilitate diversification of protein function. A number of studies claimed that after gene duplication, two AS isoforms with differential functions can be 'fixed', respectively, in each of the duplicate copies. This simple 'functional-sharing' hypothesis was recently challenged by Roux and Robinson-Rechavi (2011). Instead, they proposed a more sophisticated hypothesis, invoking that less alternative splicing genes tend to be duplicated more frequently, and single-copy genes are younger than duplicate genes, or the 'duplicability-age' hypothesis for short. In this letter, we show that all these genome-wide analyses of AS isoforms actually did not provide clear-cut evidence to nullify the basic idea of functional-sharing hypothesis. After updating our understanding of genome-wide alternative splicing, duplicability and CNV (copy number variation), we argue that the foundation of the duplicability-age hypothesis remains to be justified carefully. Finally, we suggest that a better approach to resolving this controversy is the correspondence analysis of indels (insertions and deletions) between duplicate genes to the genomic exon-intron structure, which can be used to experimentally test the effect of functional-sharing hypothesis.
Collapse
Affiliation(s)
- Zhixi Su
- MOE Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
20
|
Li C, Li QG, Dunwell JM, Zhang YM. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol 2012; 29:3227-36. [PMID: 22586327 DOI: 10.1093/molbev/mss131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. In regard to the starch content in the seeds of crop plants, there is a distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare evolutionary rate, gene duplication, and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed 1) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred before the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots, 2) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed, and 3) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, for example, ADP-glucose pyrophosphorylase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.
Collapse
Affiliation(s)
- Chun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Severing EI, van Dijk ADJ, Morabito G, Busscher-Lange J, Immink RGH, van Ham RCHJ. Predicting the impact of alternative splicing on plant MADS domain protein function. PLoS One 2012; 7:e30524. [PMID: 22295091 PMCID: PMC3266260 DOI: 10.1371/journal.pone.0030524] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/18/2011] [Indexed: 11/18/2022] Open
Abstract
Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1-3) subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP), resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the potential impact on the interaction capabilities of the encoded MIKC proteins.
Collapse
Affiliation(s)
- Edouard I. Severing
- Applied Bioinformatics, Plant Research International, Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands
| | - Aalt D. J. van Dijk
- Applied Bioinformatics, Plant Research International, Wageningen, The Netherlands
| | - Giuseppa Morabito
- Plant Developmental Systems, Plant Research International, Wageningen, The Netherlands
| | | | - Richard G. H. Immink
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- Plant Developmental Systems, Plant Research International, Wageningen, The Netherlands
| | - Roeland C. H. J. van Ham
- Applied Bioinformatics, Plant Research International, Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
22
|
Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids. Proc Natl Acad Sci U S A 2011; 108:16122-7. [PMID: 21900601 DOI: 10.1073/pnas.1109551108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polyploidy has been a common process during the evolution of eukaryotes, especially plants, leading to speciation and the evolution of new gene functions. Gene expression levels and patterns can change, and gene silencing can occur in allopolyploids--phenomena sometimes referred to as "transcriptome shock." Alternative splicing (AS) creates multiple mature mRNAs from a single type of precursor mRNA. Here we examined the evolution of AS patterns after polyploidy, with natural and two resynthesized allotetraploid Brassica napus lines, using RT-PCR and sequencing assays of 82 AS events in duplicated gene pairs (homeologs). Comparing the AS patterns between the two homeologs in natural B. napus revealed that many of the gene pairs show different AS patterns, with a few showing variation that was organ specific or induced by abiotic stress treatments. In the resynthesized allotetraploids, 26-30% of the duplicated genes showed changes in AS compared with the parents, including many cases of AS event loss after polyploidy. Parallel losses of many AS events after allopolyploidy were detected in the two independently resynthesized lines. More changes occurred in parallel between the two lines than changes specific to each line. The PASTICCINO gene showed partitioning of two AS events between the two homeologs in the resynthesized allopolyploids. AS changes after allopolyploidy were much more common than homeolog silencing. Our findings indicate that AS patterns can change rapidly after polyploidy, that many genes are affected, and that AS changes are an important component of the transcriptome shock experienced by new allopolyploids.
Collapse
|
23
|
Chen J, Huang B, Li Y, Du H, Gu Y, Liu H, Zhang J, Huang Y. Synergistic influence of sucrose and abscisic acid on the genes involved in starch synthesis in maize endosperm. Carbohydr Res 2011; 346:1684-91. [PMID: 21640984 DOI: 10.1016/j.carres.2011.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 11/27/2022]
Abstract
Starch is the major carbon reserve in plant storage organs, the synthesis of which is orchestrated by four major enzymes, ADP-glucose pyrophosphorylase, starch synthase, starch-branching enzyme and starch-debranching enzyme. There is much information available on the function of these key enzymes; however, little is known about their transcriptional regulation. In order to understand the transcriptional regulation of starch biosynthesis, the expression profiles of 24 starch genes were investigated in this work. The results showed major transcriptional changes for 15 of the 24 starch genes observed in maize endosperm, most of which are elevated at the early and middle stages of the developing endosperm. Sucrose, abscisic acid (ABA) and indole-3-acetic acid (IAA) had a significant correlation with the expression of 15 genes, indicating that sugars and phytohormones might take part in the regulation of starch synthesis. Also, we found that there is interaction of abscisic acid and sucrose on the regulation of the expression of these genes.
Collapse
Affiliation(s)
- Jiang Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Corbi J, Debieu M, Rousselet A, Montalent P, Le Guilloux M, Manicacci D, Tenaillon MI. Contrasted patterns of selection since maize domestication on duplicated genes encoding a starch pathway enzyme. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:705-22. [PMID: 21060986 DOI: 10.1007/s00122-010-1480-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/22/2010] [Indexed: 05/08/2023]
Abstract
Maize domestication from teosinte (Zea mays ssp. parviglumis) was accompanied by an increase of kernel size in landraces. Subsequent breeding has led to a diversification of kernel size and starch content among major groups of inbred lines. We aim at investigating the effect of domestication on duplicated genes encoding a key enzyme of the starch pathway, the ADP-glucose pyrophosphorylase (AGPase). Three pairs of paralogs encode the AGPase small (SSU) and large (LSU) subunits mainly expressed in the endosperm, the embryo and the leaf. We first validated the putative sequence of LSU(leaf) through a comparative expression assay of the six genes. Second, we investigated the patterns of molecular evolution on a 2 kb coding region homologous among the six genes in three panels: teosintes, landraces, and inbred lines. We corrected for demographic effects by relying on empirical distributions built from 580 previously sequenced ESTs. We found contrasted patterns of selection among duplicates: three genes exhibit patterns of directional selection during domestication (SSU(end), LSU(emb)) or breeding (LSU(leaf)), two exhibit patterns consistent with diversifying (SSU(leaf)) and balancing selection (SSU(emb)) accompanying maize breeding. While patterns of linkage disequilibrium did not reveal sign of coevolution between genes expressed in the same organ, we detected an excess of non-synonymous substitutions in the small subunit functional domains highlighting their role in AGPase evolution. Our results offer a different picture on AGPase evolution than the one depicted at the Angiosperm level and reveal how genetic redundancy can provide flexibility in the response to selection.
Collapse
Affiliation(s)
- J Corbi
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Peter L. Keeling
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| | - Alan M. Myers
- NSF Engineering Research Center for Biorenewable Chemicals and Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
26
|
Zhang PG, Huang SZ, Pin AL, Adams KL. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis. Mol Biol Evol 2010; 27:1686-97. [PMID: 20185454 DOI: 10.1093/molbev/msq054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene duplication at various scales, from single gene duplication to whole-genome (WG) duplication, has occurred throughout eukaryotic evolution and contributed greatly to the large number of duplicated genes in the genomes of many eukaryotes. Previous studies have shown divergence in expression patterns of many duplicated genes at various evolutionary time scales and cases of gain of a new function or expression pattern by one duplicate or partitioning of functions or expression patterns between duplicates. Alternative splicing (AS) is a fundamental aspect of the expression of many genes that can increase gene product diversity and affect gene regulation. However, the evolution of AS patterns of genes duplicated by polyploidy, as well as in a sizable number of duplicated gene pairs in plants, has not been examined. Here, we have characterized conservation and divergence in AS patterns in genes duplicated by a polyploidy event during the evolutionary history of Arabidopsis thaliana. We used reverse transcription-polymerase chain reaction to assay 104 WG duplicates in six organ types and in plants grown under three abiotic stress treatments to detect organ- and stress-specific patterns of AS. Differences in splicing patterns in one or more organs, or under stress conditions, were found between the genes in a large majority of the duplicated pairs. In a few cases, AS patterns were the same between duplicates only under one or more abiotic stress treatments and not under normal growing conditions or vice versa. We also examined AS in 42 tandem duplicates and we found patterns of AS roughly comparable with the genes duplicated by polyploidy. The alternatively spliced forms in some of the genes created premature stop codons that would result in missing or partial functional domains if the transcripts are translated, which could affect gene function and cause functional divergence between duplicates. Our results indicate that AS patterns have diverged considerably after gene and genome duplication during the evolutionary history of the Arabidopsis lineage, sometimes in an organ- or stress-specific manner. AS divergence between duplicated genes may have contributed to gene functional evolution and led to preservation of some duplicated genes.
Collapse
Affiliation(s)
- Peter G Zhang
- UBC Botanical Garden and Centre for Plant Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
27
|
Yan HB, Pan XX, Jiang HW, Wu GJ. Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:815-25. [PMID: 19593540 DOI: 10.1007/s00122-009-1091-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/08/2009] [Indexed: 05/10/2023]
Abstract
Gene duplication and divergence are important evolutionary processes. It has been suggested that a whole genome duplication (WGD) event occurred in the Gramineae, predating its divergence, and a second WGD occurred in maize during its evolution. In this study we compared the fate of the genes involved in the core pathway of starch biosynthesis following the ancient and second WGDs in maize and rice. In total, thirty starch synthesis genes were detected in the maize genome, which covered all the starch synthesis gene families encoded by 27 genes in rice. All of these genes, except ZmGBSSIIb and ZmBEIII, are anchored within large-scale synteny blocks of rice and maize chromosomes. Previous findings and our results indicate that two of the current copies of many starch synthesis genes (including AGPL, AGPS, GBSS, SSII, SSIII, and BEII) probably arose from the ancient WGD in the Gramineae and are still present in the maize and rice genome. Furthermore, two copies of at least six genes (AGPS1, SSIIb, SSIIIb, GBSSII, BEI, and ISA3) appear to have been retained in the maize genome after its second WGD, although complete coding regions were only detected among the duplicate sets of AGPS1, SSIIb, and SSIIIb. The expression patterns of the remaining duplicate sets of starch synthesis genes (AGPL1/2, AGPS1/2, SSIIa/b, SSIIIa/b, GBSSI/II, and BEIIa/b) differ in their expression and could be classified into two groups in maize. The first group is mainly expressed in the endosperm, whereas the second is expressed in other organs and the early endosperm development. The four duplicate sets of ZmGBSSII, ZmSSIIb, ZmSSIIIb and AGPS1, which arose from the second WGD diverged in gene structure and/or expression patterns in maize. These results indicated that some duplicated starch synthesis genes were remained, whereas others diverged in gene structure and/or expression pattern in maize. For most of the duplicated genes, one of the copies has disappeared in the maize genome after the WGD and the subsequent "diploidization".
Collapse
Affiliation(s)
- Hong-Bo Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Tianhe District, 510650 Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Shewry PR, Underwood C, Wan Y, Lovegrove A, Bhandari D, Toole G, Mills EC, Denyer K, Mitchell RA. Storage product synthesis and accumulation in developing grains of wheat. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2009.03.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. PLANT PHYSIOLOGY 2009; 149:1541-59. [PMID: 19168640 PMCID: PMC2649383 DOI: 10.1104/pp.109.135293] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Starch biosynthetic enzymes from maize (Zea mays) and wheat (Triticum aestivum) amyloplasts exist in cell extracts in high molecular weight complexes; however, the nature of those assemblies remains to be defined. This study tested the interdependence of the maize enzymes starch synthase IIa (SSIIa), SSIII, starch branching enzyme IIb (SBEIIb), and SBEIIa for assembly into multisubunit complexes. Mutations that eliminated any one of those proteins also prevented the others from assembling into a high molecular mass form of approximately 670 kD, so that SSIII, SSIIa, SBEIIa, and SBEIIb most likely all exist together in the same complex. SSIIa, SBEIIb, and SBEIIa, but not SSIII, were also interdependent for assembly into a complex of approximately 300 kD. SSIII, SSIIa, SBEIIa, and SBEIIb copurified through successive chromatography steps, and SBEIIa, SBEIIb, and SSIIa coimmunoprecipitated with SSIII in a phosphorylation-dependent manner. SBEIIa and SBEIIb also were retained on an affinity column bearing a specific conserved fragment of SSIII located outside of the SS catalytic domain. Additional proteins that copurified with SSIII in multiple biochemical methods included the two known isoforms of pyruvate orthophosphate dikinase (PPDK), large and small subunits of ADP-glucose pyrophosphorylase, and the sucrose synthase isoform SUS-SH1. PPDK and SUS-SH1 required SSIII, SSIIa, SBEIIa, and SBEIIb for assembly into the 670-kD complex. These complexes may function in global regulation of carbon partitioning between metabolic pathways in developing seeds.
Collapse
|
30
|
Stamova BS, Laudencia-Chingcuanco D, Beckles DM. Transcriptomic analysis of starch biosynthesis in the developing grain of hexaploid wheat. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2009; 2009:407426. [PMID: 20224818 PMCID: PMC2834961 DOI: 10.1155/2009/407426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/19/2009] [Accepted: 11/19/2009] [Indexed: 05/04/2023]
Abstract
The expression of genes involved in starch synthesis in wheat was analyzed together with the accumulation profiles of soluble sugars, starch, protein, and starch granule distribution in developing caryopses obtained from the same biological materials used for profiling of gene expression using DNA microarrays. Multiple expression patterns were detected for the different starch biosynthetic gene isoforms, suggesting their relative importance through caryopsis development. Members of the ADP-glucose pyrophosphorylase, starch synthase, starch branching enzyme, and sucrose synthase gene families showed different expression profiles; expression of some members of these gene families coincided with a period of high accumulation of starch while others did not. A biphasic pattern was observed in the rates of starch and protein accumulation which paralleled changes in global gene expression. Metabolic and regulatory genes that show a pattern of expression similar to starch accumulation and granule size distribution were identified, suggesting their coinvolvement in these biological processes.
Collapse
Affiliation(s)
- Boryana S. Stamova
- Genomics and Gene Discovery Unit, USDA-ARS WRRC, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences MS3, University of California-Davis, 1 Shields Avenue, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, M.I.N.D Institute, University of California Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - Debbie Laudencia-Chingcuanco
- Genomics and Gene Discovery Unit, USDA-ARS WRRC, 800 Buchanan Street, Albany, CA 94710, USA
- *Debbie Laudencia-Chingcuanco:
| | - Diane M. Beckles
- Department of Plant Sciences MS3, University of California-Davis, 1 Shields Avenue, Davis, CA 95618, USA
| |
Collapse
|
31
|
Comparot-Moss S, Denyer K. The evolution of the starch biosynthetic pathway in cereals and other grasses. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2481-92. [PMID: 19505928 DOI: 10.1093/jxb/erp141] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In most species, the precursor for starch synthesis, ADPglucose, is made exclusively in the plastids by the enzyme ADPglucose pyrophosphorylase (AGPase). However, in the endosperm of grasses, including the economically important cereals, ADPglucose is also made in the cytosol via a cytosolic form of AGPase. Cytosolic ADPglucose is imported into plastids for starch synthesis via an ADPglucose/ADP antiporter (ADPglucose transporter) in the plastid envelope. The genes encoding the two subunits of cytosolic AGPase and the ADPglucose transporter are unique to grasses. In this review, the evolutionary origins of this unique endosperm pathway of ADPglucose synthesis and its functional significance are discussed. It is proposed that the genes encoding the pathway originated from a whole-genome-duplication event in an early ancestor of the grasses.
Collapse
|
32
|
Slewinski TL, Ma Y, Baker RF, Huang M, Meeley R, Braun DM. Determining the role of Tie-dyed1 in starch metabolism: epistasis analysis with a maize ADP-glucose pyrophosphorylase mutant lacking leaf starch. J Hered 2008; 99:661-6. [PMID: 18723774 DOI: 10.1093/jhered/esn062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves retain large amounts of starch on prolonged dark treatment, consistent with a defect in starch catabolism. To further test this hypothesis, we identified a mutant allele of the leaf expressed small subunit of ADP-glucose pyrophosphorylase (agps-m1), an enzyme required for starch synthesis. We determined that the agps-m1 mutant allele is a molecular null and that plants homozygous for the mutation lack transitory leaf starch. Epistasis analysis of tdy1-R; agps-m1 double mutants demonstrates that Tdy1 function is independent of starch metabolism. These data suggest that Tdy1 may function in sucrose export from leaves.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
33
|
Barbazuk WB, Fu Y, McGinnis KM. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 2008; 18:1381-92. [PMID: 18669480 DOI: 10.1101/gr.053678.106] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) creates multiple mRNA transcripts from a single gene. While AS is known to contribute to gene regulation and proteome diversity in animals, the study of its importance in plants is in its early stages. However, recently available plant genome and transcript sequence data sets are enabling a global analysis of AS in many plant species. Results of genome analysis have revealed differences between animals and plants in the frequency of alternative splicing. The proportion of plant genes that have one or more alternative transcript isoforms is approximately 20%, indicating that AS in plants is not rare, although this rate is approximately one-third of that observed in human. The majority of plant AS events have not been functionally characterized, but evidence suggests that AS participates in important plant functions, including stress response, and may impact domestication and trait selection. The increasing availability of plant genome sequence data will enable larger comparative analyses that will identify functionally important plant AS events based on their evolutionary conservation, determine the influence of genome duplication on the evolution of AS, and discover plant-specific cis-elements that regulate AS. This review summarizes recent analyses of AS in plants, discusses the importance of further analysis, and suggests directions for future efforts.
Collapse
Affiliation(s)
- W Brad Barbazuk
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA.
| | | | | |
Collapse
|
34
|
Cossegal M, Chambrier P, Mbelo S, Balzergue S, Martin-Magniette ML, Moing A, Deborde C, Guyon V, Perez P, Rogowsky P. Transcriptional and metabolic adjustments in ADP-glucose pyrophosphorylase-deficient bt2 maize kernels. PLANT PHYSIOLOGY 2008; 146:1553-70. [PMID: 18287491 PMCID: PMC2287333 DOI: 10.1104/pp.107.112698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/15/2008] [Indexed: 05/09/2023]
Abstract
During the cloning of monogenic recessive mutations responsible for a defective kernel phenotype in a Mutator-induced Zea mays mutant collection, we isolated a new mutant allele in Brittle2 (Bt2), which codes for the small subunit of ADP-glucose pyrophosphorylase (AGPase), a key enzyme in starch synthesis. Reverse transcription-polymerase chain reaction experiments with gene-specific primers confirmed a predominant expression of Bt2 in endosperm, of Agpsemzm in embryo, and of Agpslzm in leaf, but also revealed considerable additional expression in various tissues for all three genes. Bt2a, the classical transcript coding for a cytoplasmic isoform, was almost exclusively expressed in the developing endosperm, whereas Bt2b, an alternative transcript coding for a plastidial isoform, was expressed in almost all tissues tested with a pattern very similar to that of Agpslzm. The phenotypic analysis showed that, at 30 d after pollination (DAP), mutant kernels were plumper than wild-type kernels, that the onset of kernel collapse took place between 31 and 35 DAP, and that the number of starch grains was greatly reduced in the mutant endosperm but not the mutant embryo. A comparative transcriptome analysis of wild-type and bt2-H2328 kernels at middevelopment (35 DAP) with the 18K GeneChip Maize Genome Array led to the conclusion that the lack of Bt2-encoded AGPase triggers large-scale changes on the transcriptional level that concern mainly genes involved in carbohydrate or amino acid metabolic pathways. Principal component analysis of (1)H nuclear magnetic resonance metabolic profiles confirmed the impact of the bt2-H2328 mutation on these pathways and revealed that the bt2-H2328 mutation did not only affect the endosperm, but also the embryo at the metabolic level. These data suggest that, in the bt2-H2328 endosperms, regulatory networks are activated that redirect excess carbon into alternative biosynthetic pathways (amino acid synthesis) or into other tissues (embryo).
Collapse
Affiliation(s)
- Magalie Cossegal
- Reproduction et Développement des Plantes, UMR 879 INRA-CNRS-ENSL-UCBL, IFR128 BioSciences Lyon-Gerland, F-69364 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|