1
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
2
|
Jang EH, Bae HD, Jeon Y, Shin DH, Kang S, Lee K. Meclizine, a piperazine-derivative antihistamine, binds to dimerized translationally controlled tumor protein and attenuates allergic reactions in a mouse model. Biomed Pharmacother 2023; 157:114072. [PMID: 36493627 DOI: 10.1016/j.biopha.2022.114072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), a highly conserved protein present in most eukaryotes, is involved in numerous biological processes. Only the dimeric form of TCTP (dTCTP) formed during inflammatory conditions exhibits cytokine-like activity. Therefore, dTCTP is considered as a therapeutic target for allergic diseases. Because monomeric TCTP (mTCTP) and dTCTP share a high topological similarity, we hypothesized that small molecules interacting with mTCTP would also bind to dTCTP and interfere with dTCTP-based cellular processes. In this study, nine compounds listed in the literature as interacting with mTCTP were investigated for their ability to suppress the activity of extracellular dTCTP in bronchial epithelial cells. It was found that one of the nine, meclizine, a piperazine-derivative antihistamine, significantly reduced IL-8 release and suppressed the NF-κB pathway. The direct interaction of meclizine with dTCTP was confirmed by surface plasmon resonance (SPR). Also, we found that meclizine can attenuate ovalbumin (OVA)-induced airway inflammation in mice. Therefore, meclizine might be a potential anti-allergic drug as an inhibitor for dTCTP.
Collapse
Affiliation(s)
- Eun-Hwa Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hae-Duck Bae
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeon
- Bone Science R&D Center, 3, Magokjungang 12-ro, Gangseo-gu, Seoul 07789, South Korea
| | - Dong Hae Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Kyunglim Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
3
|
Guo B, Lin B, Huang Q, Li Z, Zhuo K, Liao J. A nematode effector inhibits plant immunity by preventing cytosolic free Ca 2+ rise. PLANT, CELL & ENVIRONMENT 2022; 45:3070-3085. [PMID: 35880644 DOI: 10.1111/pce.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The Meloidogyne enterolobii effector MeTCTP is a member of the translationally controlled tumour protein (TCTP) family, involved in M. enterolobii parasitism. In this study, we found that MeTCTP forms homodimers and, in this form, binds calcium ions (Ca2+ ). At the same time, Ca2+ could induce homodimerization of MeTCTP. We further identified that MeTCTP inhibits the increase of cytosolic free Ca2+ concentration ([Ca2+ ]cyt ) in plant cells and suppresses plant immune responses. This includes suppression of reactive oxygen species burst and cell necrosis, further promoting M. enterolobii parasitism. Our results have elucidated that the effector MeTCTP can directly target Ca2+ by its homodimeric form and prevent [Ca2+ ]cyt rise in plant roots, revealing a novel mechanism utilized by plant pathogens to suppress plant immunity.
Collapse
Affiliation(s)
- Bin Guo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qiuling Huang
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhiwen Li
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Vocational College of Ecological Engineering, Guangzhou, China
| |
Collapse
|
4
|
Lagunas-Rangel FA. Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites. Acta Parasitol 2022; 67:1024-1031. [PMID: 35138574 PMCID: PMC9165267 DOI: 10.1007/s11686-022-00521-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Purpose Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species. Methods The complete sequences of TCTP orthologs in protozoan parasites were identified with the NCBI BLAST tool in the database of the EuPathDB Bioinformatics Resource Center. The sequences were aligned and important regions of the protein were identified, and later phylogenetic trees and 3D models were built with different bioinformatic tools. Results Our results show evolutionarily and structurally conserved sites that could be exploited to create new therapeutic strategies given the increase in the number of strains resistant to current drugs. Conclusion TCTP orthologs in protozoan parasites have been little studied but have been shown to be important in parasite growth, proliferation, reproduction, and response to changes in the environment. For all this, TCTP can be considered as a possible therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s11686-022-00521-9.
Collapse
|
5
|
Koo N, Shin AY, Oh S, Kim H, Hong S, Park SJ, Sim YM, Byeon I, Kim KY, Lim YP, Kwon SY, Kim YM. Comprehensive analysis of Translationally Controlled Tumor Protein (TCTP) provides insights for lineage-specific evolution and functional divergence. PLoS One 2020; 15:e0232029. [PMID: 32374732 PMCID: PMC7202613 DOI: 10.1371/journal.pone.0232029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Translationally controlled tumor protein (TCTP) is a conserved, multifunctional protein involved in numerous cellular processes in eukaryotes. Although the functions of TCTP have been investigated sporadically in animals, invertebrates, and plants, few lineage-specific activities of this molecule, have been reported. An exception is in Arabidopsis thaliana, in which TCTP (AtTCTP1) functions in stomatal closuer by regulating microtubule stability. Further, although the development of next-generation sequencing technologies has facilitated the analysis of many eukaryotic genomes in public databases, inter-kingdom comparative analyses using available genome information are comparatively scarce. METHODOLOGY To carry out inter-kingdom comparative analysis of TCTP, TCTP genes were identified from 377 species. Then phylogenetic analysis, prediction of protein structure, molecular docking simulation and molecular dynamics analysis were performed to investigate the evolution of TCTP genes and their binding proteins. RESULTS A total of 533 TCTP genes were identified from 377 eukaryotic species, including protozoa, fungi, invertebrates, vertebrates, and plants. Phylogenetic and secondary structure analyses reveal lineage-specific evolution of TCTP, and inter-kingdom comparisons highlight the lineage-specific emergence of, or changes in, secondary structure elements in TCTP proteins from different kingdoms. Furthermore, secondary structure comparisons between TCTP proteins within each kingdom, combined with measurements of the degree of sequence conservation, suggest that TCTP genes have evolved to conserve protein secondary structures in a lineage-specific manner. Additional tertiary structure analysis of TCTP-binding proteins and their interacting partners and docking simulations between these proteins further imply that TCTP gene variation may influence the tertiary structures of TCTP-binding proteins in a lineage-specific manner. CONCLUSIONS Our analysis suggests that TCTP has undergone lineage-specific evolution and that structural changes in TCTP proteins may correlate with the tertiary structure of TCTP-binding proteins and their binding partners in a lineage-specific manner.
Collapse
Affiliation(s)
- Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sangho Oh
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyeongmin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Choongchung-Buk-do, Republic of Korea
| | - Seongmin Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Korea
| | - Seong-Jin Park
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Mi Sim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Iksu Byeon
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kye Young Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Jojic B, Amodeo S, Bregy I, Ochsenreiter T. Distinct 3' UTRs regulate the life-cycle-specific expression of two TCTP paralogs in Trypanosoma brucei. J Cell Sci 2018; 131:jcs.206417. [PMID: 29661850 PMCID: PMC5992589 DOI: 10.1242/jcs.206417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/28/2018] [Indexed: 12/02/2022] Open
Abstract
The translationally controlled tumor protein (TCTP; also known as TPT1 in mammals) is highly conserved and ubiquitously expressed in eukaryotes. It is involved in growth and development, cell cycle progression, protection against cellular stresses and apoptosis, indicating the multifunctional role of the protein. Here, for the first time, we characterize the expression and function of TCTP in the human and animal pathogen, Trypanosoma brucei. We identified two paralogs (TCTP1 and TCTP2) that are differentially expressed in the life cycle of the parasite. The genes have identical 5′ untranslated regions (UTRs) and almost identical open-reading frames. The 3′UTRs differ substantially in sequence and length, and are sufficient for the exclusive expression of TCTP1 in procyclic- and TCTP2 in bloodstream-form parasites. Furthermore, we characterize which parts of the 3′UTR are needed for TCTP2 mRNA stability. RNAi experiments demonstrate that TCTP1 and TCTP2 expression is essential for normal cell growth in procyclic- and bloodstream-form parasites, respectively. Depletion of TCTP1 in the procyclic form cells leads to aberrant cell and mitochondrial organelle morphology, as well as enlarged, and a reduced number of, acidocalcisomes. Summary:T. brucei has two TCTP genes that are differentially expressed during the parasite life cycle owing to their different 3′UTRs. TCTP also has a role in regulating cell growth and morphology.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | |
Collapse
|
7
|
From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017; 46:65-83. [DOI: 10.1016/j.semcancer.2017.02.009] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
|
8
|
Demarta-Gatsi C, Peronet R, Smith L, Thiberge S, Ménard R, Mécheri S. Immunological memory to blood-stage malaria infection is controlled by the histamine releasing factor (HRF) of the parasite. Sci Rep 2017; 7:9129. [PMID: 28831137 PMCID: PMC5567273 DOI: 10.1038/s41598-017-09684-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
While most subunit malaria vaccines provide only limited efficacy, pre-erythrocytic and erythrocytic genetically attenuated parasites (GAP) have been shown to confer complete sterilizing immunity. We recently generated a Plasmodium berghei (PbNK65) parasite that lacks a secreted factor, the histamine releasing factor (HRF) (PbNK65 hrfΔ), and induces in infected mice a self-resolving blood stage infection accompanied by a long lasting immunity. Here, we explore the immunological mechanisms underlying the anti-parasite protective properties of the mutant PbNK65 hrfΔ and demonstrate that in addition to an up-regulation of IL-6 production, CD4+ but not CD8+ T effector lymphocytes are indispensable for the clearance of malaria infection. Maintenance of T cell-associated protection is associated with the reduction in CD4+PD-1+ and CD8+PD-1+ T cell numbers. A higher number of central and effector memory B cells in mutant-infected mice also plays a pivotal role in protection. Importantly, we also demonstrate that prior infection with WT parasites followed by a drug cure does not prevent the induction of PbNK65 hrfΔ-induced protection, suggesting that such protection in humans may be efficient even in individuals that have been infected and who repeatedly received antimalarial drugs.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Roger Peronet
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Leanna Smith
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France.,CNRS ERL9195, Paris, F-75015, France.,INSERM U1201, Paris, F-75015, France
| | - Sabine Thiberge
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, F-75015, Paris, France
| | - Robert Ménard
- Institut Pasteur, Unité de Biologie et Génétique du Paludisme, F-75015, Paris, France
| | - Salaheddine Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, F-75015, France. .,CNRS ERL9195, Paris, F-75015, France. .,INSERM U1201, Paris, F-75015, France.
| |
Collapse
|
9
|
Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson R, Telerman A, Vidal M. Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur J Cell Biol 2017; 96:83-98. [PMID: 28110910 DOI: 10.1016/j.ejcb.2016.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Translationally controlled tumor protein (Tpt1/TCTP) is a multi-functional cytosolic protein whose cellular levels are finely tuned. TCTP regulates protein behavior by favoring stabilization of protein partners or on the contrary by promoting degradation of others. TCTP has been shown to be transcriptionally and translationally regulated, but much less is known about its degradation process. In this study, we present evidence that chaperone-mediated autophagy (CMA) contributes to TCTP regulation. CMA allows lysosomal degradation of specific cytosolic proteins on a molecule-by-molecule basis. It contributes to cellular homeostasis especially by acting as a quality control for cytosolic proteins in response to stress and as a way of regulating the level of specific proteins. Using a variety of approaches, we show that CMA degradation of TCTP is Hsc70 and LAMP-2A dependent. Our data indicate that (i) TCTP directly interacts with Hsc70; (ii) silencing LAMP-2A in MEFs using siRNA leads to inhibition of TCTP downregulation; (iii) TCTP is relocalized from a diffuse cytosolic pattern to a punctate lysosomal pattern when CMA is upregulated; (iv) TCTP is degraded in vitro by purified lysosomes. Importantly, using lysine-mutated forms of TCTP, we show that acetylation of Lysine 19 generates a KFERQ-like motif and promotes binding to Hsc70, lysosome targeting and TCTP degradation by CMA. Altogether these results indicate that TCTP is degraded by chaperone-mediated autophagy in an acetylation dependent manner.
Collapse
Affiliation(s)
- Anne Bonhoure
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Alice Vallentin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Marianne Martin
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France
| | - Andrea Senff-Ribeiro
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Robert Amson
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Adam Telerman
- UMR 8113, École Normale Supérieure, 94235 Cachan, France; UMR 981, Institut Gustave Roussy, 94800 Villejuif, France
| | - Michel Vidal
- UMR 5235, CNRS, Université Montpellier, 34095 Montpellier, France.
| |
Collapse
|
10
|
Betsch L, Savarin J, Bendahmane M, Szecsi J. Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development. Results Probl Cell Differ 2017; 64:149-172. [PMID: 29149407 DOI: 10.1007/978-3-319-67591-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a conserved protein which expression was associated with several biochemical and cellular functions. Loss-of-function mutants are lethal both in animals and in plants, making the identification of its exact role difficult. Recent data using the model plant Arabidopsis thaliana provided the first viable adult knockout for TCTP and helped addressing the biological role of TCTP during organ development and the functional conservation between plants and animals. This chapter summarizes our up to date knowledge about the role of TCTP in plants and discuss about conserved functions and mechanisms between plants and animals.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
11
|
Assrir N, Malard F, Lescop E. Structural Insights into TCTP and Its Interactions with Ligands and Proteins. Results Probl Cell Differ 2017; 64:9-46. [PMID: 29149402 DOI: 10.1007/978-3-319-67591-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.
Collapse
Affiliation(s)
- Nadine Assrir
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
13
|
Abstract
The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, Colonia San Pedro Zacatenco, México City, 07360, México.
| |
Collapse
|
14
|
Lucibello M, Adanti S, Antelmi E, Dezi D, Ciafrè S, Carcangiu ML, Zonfrillo M, Nicotera G, Sica L, De Braud F, Pierimarchi P. Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells. Oncotarget 2016; 6:5275-91. [PMID: 25779659 PMCID: PMC4467148 DOI: 10.18632/oncotarget.2971] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 01/09/2023] Open
Abstract
Upregulation of Translationally Controlled Tumor Protein (TCTP) is associated with poorly differentiated aggressive tumors, including breast cancer, but the underlying mechanism(s) are still debated. Here, we show that in breast cancer cell lines TCTP is primarily localized in the nucleus, mostly in the phosphorylated form. The effects of Dihydroartemisinin (DHA), an anti-malaria agent that binds TCTP, were tested on breast cancer cells. DHA decreases cell proliferation and induces apoptotic cell death by targeting the phosphorylated form of TCTP. Remarkably, DHA enhances the anti-tumor effects of Doxorubicin in triple negative breast cancer cells resulting in an increased level of apoptosis. DHA also synergizes with Trastuzumab, used to treat HER2/neu positive breast cancers, to induce apoptosis of tumor cells. Finally, we present new clinical data that nuclear phospho-TCTP overexpression in primary breast cancer tissue is associated with high histological grade, increase expression of Ki-67 and with ER-negative breast cancer subtypes. Notably, phospho-TCTP expression levels increase in trastuzumab-resistant breast tumors, suggesting a possible role of phospho-TCTP as a new prognostic marker. In conclusion, the anti-tumor effect of DHA in vitro with conventional chemotherapeutics suggests a novel therapeutic strategy and identifies phospho-TCTP as a new promising target for advanced breast cancer.
Collapse
Affiliation(s)
- Maria Lucibello
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Sara Adanti
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Ester Antelmi
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dario Dezi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Maria Luisa Carcangiu
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Zonfrillo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Giuseppe Nicotera
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Lorenzo Sica
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Medical Oncology Department, Pathology and Molecular Biology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
15
|
Deng Z, Chen J, Leclercq J, Zhou Z, Liu C, Liu H, Yang H, Montoro P, Xia Z, Li D. Expression Profiles, Characterization and Function of HbTCTP in Rubber Tree (Hevea brasiliensis). FRONTIERS IN PLANT SCIENCE 2016; 7:789. [PMID: 27375647 PMCID: PMC4896220 DOI: 10.3389/fpls.2016.00789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/22/2016] [Indexed: 05/21/2023]
Abstract
As a highly conserved protein, the translationally controlled tumor protein (TCTP) carries out vital roles in various life processes. In rubber tree, two TCTP genes, HbTCTP and HbTCTP1, were cloned, but only HbTCTP1 was studied in details. In this study, cis-acting regulatory elements, expression patterns, subcellular localization, interacting proteins, and antioxidant activity of HbTCTP were systematically analyzed. Besides the common cis-acting regulatory elements, HbTCTP promoter also harbored various known cis-elements that respond to hormone/stresses. Being consistent with the aforementioned results, HbTCTP was regulated by drought, low temperature, high salt, ethylene (ET), wounding, H2O2, and methyl jasmonate (MeJA) treatments. HbTCTP was expressed throughout different tissues and developmental stages of leaves. In addition, HbTCTP was associated with tapping panel dryness (TPD). HbTCTP was localized in the membrane, cytoplasm and the nucleus, and interacted with four proteins rubber elongation factor (REF), 17.5 kDa heat shock family protein, annexin, and REF-like stress related protein 1. Being similar to HbTCTP1, HbTCTP also indicated antioxidant activity in metal-catalyzed oxidation (MCO) system. Our results are useful for further understanding the molecular characterization and expression profiles of HbTCTP, but also lay a solid foundation for elucidating the function of HbTCTP in rubber tree.
Collapse
Affiliation(s)
- Zhi Deng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Jiangshu Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
| | | | - Zhuangzhi Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Changren Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
| | - Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | | | - Zhihui Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan UniversityHaikou, China
- *Correspondence: Zhihui Xia
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
- Dejun Li
| |
Collapse
|
16
|
Toscano-Morales R, Xoconostle-Cázares B, Cabrera-Ponce JL, Hinojosa-Moya J, Ruiz-Salas JL, Galván-Gordillo SV, Guevara-González RG, Ruiz-Medrano R. AtTCTP2, an Arabidopsis thaliana homolog of Translationally Controlled Tumor Protein, enhances in vitro plant regeneration. FRONTIERS IN PLANT SCIENCE 2015; 6:468. [PMID: 26191065 PMCID: PMC4489097 DOI: 10.3389/fpls.2015.00468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a central regulator of cell proliferation and differentiation in animals, and probably also in plants. Arabidopsis harbors two TCTP genes, AtTCTP1 (At3g16640), which is an important mitotic regulator, and AtTCTP2 (At3g05540), which is considered a pseudogene. Nevertheless, we have obtained evidence suggesting that this gene is functional. Indeed, a T-DNA insertion mutant, SALK_045146, displays a lethal phenotype during early rosette stage. Also, both the AtTCTP2 promoter and structural gene are functional, and heterozygous plants show delayed development. AtTCTP1 cannot compensate for the loss of AtTCTP2, since the accumulation levels of the AtTCTP1 transcript are even higher in heterozygous plants than in wild-type plants. Leaf explants transformed with Agrobacterium rhizogenes harboring AtTCTP2, but not AtTCTP1, led to whole plant regeneration with a high frequency. Insertion of a sequence present in AtTCTP1 but absent in AtTCTP2 demonstrates that it suppresses the capacity for plant regeneration; also, this phenomenon is enhanced by the presence of TCTP (AtTCTP1 or 2) in the nuclei of root cells. This confirms that AtTCTP2 is not a pseudogene and suggests the involvement of certain TCTP isoforms in vegetative reproduction in some plant species.
Collapse
Affiliation(s)
- Roberto Toscano-Morales
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | | | - Jesús Hinojosa-Moya
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad UniversitariaPuebla, Mexico
| | - Jorge L. Ruiz-Salas
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Santiago V. Galván-Gordillo
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| | - Ramón G. Guevara-González
- CA Ingenieria de Biosistemas, Centro Universitario Cerro de las Campanas, Universidad Autónoma de QuerétaroSantiago de Querétaro, Mexico
| | - Roberto Ruiz-Medrano
- Laboratory of Plant Molecular Biology, Department of Biotechnology and Bioengineering, CINVESTAVMexico City, Mexico
| |
Collapse
|
17
|
Wang ZQ, Li GZ, Gong QQ, Li GX, Zheng SJ. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC PLANT BIOLOGY 2015; 15:123. [PMID: 25990386 PMCID: PMC4438481 DOI: 10.1186/s12870-015-0500-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/21/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mercury (Hg) is not only a threat to public health but also a growth risk factor to plants, as it is readily accumulated by higher plants. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development; however, the detoxification and tolerance mechanisms of plants to Hg stress are still not fully understood. Exposure to toxic Hg also occurs in some crops cultivated under anoxic conditions, such as rice (Oryza sativa L.), a model organism and one of the most important cultivated plants worldwide. In this study, we functionally characterized a rice translationally controlled tumor protein gene (Os11g43900, OsTCTP) involved in Hg stress tolerance. RESULTS OsTCTP was ubiquitously expressed in all examined plant tissues, especially in actively dividing and differentiating tissues, such as roots and nodes. OsTCTP was found to localize both the cytosol and the nucleus. OsTCTP was induced by mercuric chloride, cupric sulfate, abscisic acid, and hydrogen peroxide at the protein level in a time-dependent manner. Overexpression of OsTCTP potentiated the activities of several antioxidant enzymes, reduced the Hg-induced H2O2 levels, and promoted Hg tolerance in rice, whereas knockdown of OsTCTP produced opposite effects. And overexpression of OsTCTP did not prevent Hg absorption and accumulation in rice. We also demonstrated that Asn 48 and Asn 97 of OsTCTP amino acids were not the potential N-glycosylation sites. CONCLUSIONS Our results suggest that OsTCTP is capable of decreasing the Hg-induced reactive oxygen species (ROS), therefore, reducing the damage of ROS and enhancing the tolerance of rice plants to Hg stress. Thus, OsTCTP is a valuable gene for genetic engineering to improve rice performance under Hg contaminated paddy soils.
Collapse
Affiliation(s)
- Zhan Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ge Zi Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao Qiao Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Taylor KJ, Van TTH, MacDonald SM, Meshnick SR, Fernley RT, Macreadie IG, Smooker PM. Immunization of mice with Plasmodium TCTP delays establishment of Plasmodium infection. Parasite Immunol 2015; 37:23-31. [PMID: 25376500 DOI: 10.1111/pim.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/31/2014] [Indexed: 12/19/2022]
Abstract
Translationally controlled tumour protein (TCTP) may play an important role in the establishment or maintenance of parasitemia in a malarial infection. In this study, the potential of TCTP as a malaria vaccine was investigated in two trials. In the initial vaccine trial, Plasmodium falciparum TCTP (PfTCTP) was expressed in Saccharomyces cerevisiae and used to immunize BALB/c mice. Following challenge with Plasmodium yoelii YM, parasitemia was significantly reduced during the early stages of infection. In the second vaccine trial, the TCTP from P. yoelii and P. berghei was expressed in Escherichia coli and used in several mouse malaria models. A significant reduction in parasitemia in the early stages of infection was observed in BALB/c mice challenged with P. yoelii YM. A significantly reduced parasitemia at each day leading up to a delayed and reduced peak parasitemia was also observed in BALB/c mice challenged with the nonlethal Plasmodium chabaudi (P.c.) chabaudi AS. These results suggest that TCTP has an important role for parasite establishment and may be important for pathogenesis.
Collapse
Affiliation(s)
- K J Taylor
- School of Applied Sciences, RMIT University, Bundoora, VIc., Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Chen K, Huang C, Yuan J, Cheng H, Zhou R. Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol Biol Evol 2014; 31:2194-211. [PMID: 24890374 DOI: 10.1093/molbev/msu181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding genomic variation and detecting selection signatures in a genome under selection have been great challenges for a century. Activation, development/exhaustion of primordial follicles in mammalian ovary determines reproductive success, menopause/end of female reproductive life. However, molecular mechanisms underlying oogenesis, particularly under artificial selection, are largely unknown. We report that a proteome-wide scan for selection signatures in the genome over 9,000 years of artificial pressure on the ovary revealed a general picture of selection signatures in the genome, especially genomic variations through artificial selection were detected in promoter and intron regions. Crossbreeding between domestic and wild species results in more than half of the protein spots exhibiting heterosis. Translationally controlled tumor protein (TCTP) is upregulated by artificial selection and positively regulates autophagy through the AMP-activated protein kinase pathway. Notably, TCTP interacts with ATG16 complex. In addition to cytoplasmic autophagy, nucleophagy occurs in the nuclei of granulosa and cumulus cells in ovaries, indicating an importance of the nuclear material for degradation by nucleophagy. Our findings provide insight into cellular and molecular mechanisms relevant for improvement of ovary functions, and identify selection signatures in the genome for ovary function over long-term artificial selection pressure.
Collapse
Affiliation(s)
- Ke Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Chunhua Huang
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jia Yuan
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
20
|
Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins. Toxicon 2014; 83:91-120. [DOI: 10.1016/j.toxicon.2014.02.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/19/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
|
21
|
The Plasmodium falciparum translationally controlled tumor protein (TCTP) is incorporated more efficiently into B cells than its human homologue. PLoS One 2014; 9:e85514. [PMID: 24465583 PMCID: PMC3894975 DOI: 10.1371/journal.pone.0085514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum secretes a homologue of the translationally controlled tumor protein (TCTP) into serum of infected individuals, although its role in pathogenesis or virulence is unknown. To determine the effect of P. falciparum TCTP on B cells as compared to human TCTP, fluorescently labeled proteins were incubated on primary cultures of mouse splenic B cells and analyzed by flow cytometry and confocal microscopy. Our results indicate that both recombinant proteins are incorporated into B cells, but differ significantly in their rate and percentage of incorporation, being significantly higher for P. falciparum TCTP. Furthermore, P. falciparum TCTP showed a lower B cell proliferative effect than human TCTP, suggesting a mechanism through which the former could interfere in the host's immune response.
Collapse
|
22
|
Santa Brígida AB, dos Reis SP, de Nazaré Monteiro Costa C, Cardoso CMY, Lima AM, de Souza CRB. Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 2014; 41:1787-97. [DOI: 10.1007/s11033-014-3028-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/03/2014] [Indexed: 12/28/2022]
|
23
|
Gutiérrez-Galeano DF, Toscano-Morales R, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R. Structural divergence of plant TCTPs. FRONTIERS IN PLANT SCIENCE 2014; 5:361. [PMID: 25120549 PMCID: PMC4114181 DOI: 10.3389/fpls.2014.00361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/07/2014] [Indexed: 05/02/2023]
Abstract
The Translationally Controlled Tumor Protein (TCTP) is a highly conserved protein at the level of sequence, considered to play an essential role in the regulation of growth and development in eukaryotes. However, this function has been inferred from studies in a few model systems, such as mice and mammalian cell lines, Drosophila and Arabidopsis. Thus, the knowledge regarding this protein is far from complete. In the present study bioinformatic analysis showed the presence of one or more TCTP genes per genome in plants with highly conserved signatures and subtle variations at the level of primary structure but with more noticeable differences at the level of predicted three-dimensional structures. These structures show differences in the "pocket" region close to the center of the protein and in its flexible loop domain. In fact, all predictive TCTP structures can be divided into two groups: (1) AtTCTP1-like and (2) CmTCTP-like, based on the predicted structures of an Arabidopsis TCTP and a Cucurbita maxima TCTP; according to this classification we propose that their probable function in plants may be inferred in principle. Thus, different TCTP genes in a single organism may have different functions; additionally, in those species harboring a single TCTP gene this could carry multiple functions. On the other hand, in silico analysis of AtTCTP1-like and CmTCTP-like promoters suggest that these share common motifs but with different abundance, which may underscore differences in their gene expression patterns. Finally, the absence of TCTP genes in most chlorophytes with the exception of Coccomyxa subellipsoidea, indicates that other proteins perform the roles played by TCTP or the pathways regulated by TCTP occur through alternative routes. These findings provide insight into the evolution of this gene family in plants.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Ruiz-Medrano
- *Correspondence: Roberto Ruiz-Medrano, Department of Biotechnology and Bioengineering, CINVESTAV-IPN, Ave., IPN 2508, Zacatenco, 07360 Mexico DF, Mexico e-mail:
| |
Collapse
|
24
|
Hinojosa-Moya JJ, Xoconostle-Cázares B, Toscano-Morales R, Ramírez-Ortega F, Luis Cabrera-Ponce J, Ruiz-Medrano R. Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP. PLANT SIGNALING & BEHAVIOR 2013; 8:e26477. [PMID: 24065051 PMCID: PMC4091340 DOI: 10.4161/psb.26477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/13/2013] [Indexed: 05/17/2023]
Abstract
In higher plants, the phloem plays a central role in the delivery of nutrients and signals from source to sink tissues. These signals likely coordinate different aspects of plant development, as well as its response to environmental cues. Although some phloem-transported proteins and RNAs may function as signaling molecules in plants, their mode of action remains poorly understood. Previous analysis of transcripts from CMV-infected pumpkin (Cucurbita maxima cv Big Max) identified a Translationally-Controlled Tumor Protein (TCTP) mRNA homolog, designated CmTCTP. In the present work this transcript was analyzed in terms of its expression pattern. This RNA accumulates, both in healthy and CMV-infected plants, in developing and mature phloem in petiole and roots, as well as in apices at high levels. The protein was present at lower levels in most cell types, and almost no signal was detected in apices, suggesting translational regulation of this RNA. Additionally, CmTCTP harbored by Agrobacterium rhizogenes is capable of inducing whole plant regeneration. These data suggest a role for CmTCTP in growth regulation, possibly through long-distance signaling.
Collapse
Affiliation(s)
- J Jesús Hinojosa-Moya
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
- Facultad de Ingeniería Química; Benemérita Universidad Autónoma de Puebla; Colonia San Manuel; Ciudad Universitaria; Puebla, México
| | | | | | | | - José Luis Cabrera-Ponce
- Departamento de Ingeniería Genética de Plantas; CINVESTAV-IPN Unidad Guanajuato; Irapuato, Guanajuato México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería; CINVESTAV- IPN; Zacatenco, D.F. Mexico
| |
Collapse
|
25
|
cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 2013; 529:150-8. [PMID: 23933269 DOI: 10.1016/j.gene.2013.07.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/01/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
Abstract
A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis.
Collapse
|
26
|
Chen G, Wang C, Zhang C, Wang Y, Xu Z, Wang C. A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1619-1627. [PMID: 23507337 DOI: 10.1016/j.fsi.2013.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
The scallop Chlamys farreri is one of the most important aquaculture species in northern coastal provinces. However, the sustainable development of scallop industry is currently threatened by a notorious pathogen named as acute viral necrobiotic virus (AVNV), which often causes mass mortality of the animals. Despite that great attention has been focused on this novel pathogen, little knowledge about the host-virus interactions is available. In this study, suppression subtractive hybridization (SSH) was employed to identify the up-regulated differentially expressed genes in the hemocytes of C. farreri challenged by AVNV. A forward subtracted cDNA library was finally constructed and 288 positive colonies representing differentially genes were screened to perform sequencing. A total of 275 ESTs were used for further analysis using bioinformatics tools after vector screening, among which 167 ESTs could be finally identified, with significant match (E values <1 × 10(-3)) to the deposited genes (proteins) in the corresponding databases. These genes could be classified into ten categories according to their Gene Ontology annotations of biological processes and molecular functions, i.e. cell defense and homeostasis (13.82%), cellular protein metabolic process (14.90), cellular metabolism (13.09%), cytoskeletal or cellular component (5.82%), transcription regulation or RNA processing (2.18%), cell division (meiosis)/apoptosis (2.18%), DNA metabolic process and repair (1.45%), cell adhesion/signaling (1.09%), microsatellite (0.73%), and ungrouped or unknown functions (6.88). The possible biological significance of some novel genes (mainly immune and homeostasis related genes) in the host response to AVNV were discussed. This study is the first global analysis of differentially expressed genes in hemocytes from AVNV-infected C. farreri, and in addition to increasing our understanding of the molecular pathogenesis of this virus-associated scallop disease, the results presented here should provide new insights into the molecular basis of host-pathogen interactions in C. farreri.
Collapse
Affiliation(s)
- Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong Province, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia. Infect Immun 2013; 81:3515-26. [PMID: 23690397 DOI: 10.1128/iai.00380-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans.
Collapse
|
28
|
Chen K, Chen S, Huang C, Cheng H, Zhou R. TCTP increases stability of hypoxia-inducible factor 1α by interaction with and degradation of the tumour suppressor VHL. Biol Cell 2013; 105:208-218. [PMID: 23387829 DOI: 10.1111/boc.201200080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/30/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND INFORMATION The translationally controlled tumour protein (TCTP) plays an important role in maintaining cell proliferation and its high expression is associated with many tumours. The tumour suppressor von Hippel-Lindau protein (VHL) has been shown to function as an E3 ubiquitin ligase. Although great progress has been made, biological roles of these factors and relevant molecular mechanisms remain largely unknown. RESULTS In this study, we have shown that TCTP specifically binds to VHL through its β domain and competes with hypoxia-inducible factor-1α (HIF1α). TCTP over-expression decreased the protein level of VHL and the inhibition of TCTP expression by miRNA resulted in an increase of the VHL protein level. Moreover, TCTP over-expression promoted the K48-linked ubiquitination of VHL, thus degradation through the ubiquitin-proteasome pathway. In addition, we showed that TCTP increased the protein level of HIF1α, which promoted both vascular endothelial growth factor-hypoxic response element-promoter-driven luciferase reporter and endogenous VEGF expression. CONCLUSIONS These data have demonstrated that TCTP binds to the β domain of VHL through competition with HIF1α, which promotes VHL degradation by the ubiquitin-proteasome system and HIF1α stability.
Collapse
Affiliation(s)
- Ke Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Shuliang Chen
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chunhua Huang
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hanhua Cheng
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
29
|
Eichhorn T, Winter D, Büchele B, Dirdjaja N, Frank M, Lehmann WD, Mertens R, Krauth-Siegel RL, Simmet T, Granzin J, Efferth T. Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol 2013; 85:38-45. [DOI: 10.1016/j.bcp.2012.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 01/24/2023]
|
30
|
Kim YM, Han YJ, Hwang OJ, Lee SS, Shin AY, Kim SY, Kim JII. Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 2012; 33:617-26. [PMID: 22610367 PMCID: PMC3887759 DOI: 10.1007/s10059-012-0080-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium- and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA- and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin- and calcium-binding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.
Collapse
Affiliation(s)
- Yong-Min Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Yun-Jeong Han
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Ok-Jin Hwang
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Si-Seok Lee
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Ah-Young Shin
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Soo Young Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| | - Jeong-II Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757,
Korea
| |
Collapse
|
31
|
Association of TCTP with centrosome and microtubules. Biochem Res Int 2012; 2012:541906. [PMID: 22655198 PMCID: PMC3359677 DOI: 10.1155/2012/541906] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/06/2012] [Indexed: 02/01/2023] Open
Abstract
Translationally Controlled Tumour Protein (TCTP) associates with microtubules (MT), however, the details of this association are unknown. Here we analyze the relationship of TCTP with MTs and centrosomes in Xenopus laevis and mammalian cells using immunofluorescence, tagged TCTP expression and immunoelectron microscopy. We show that TCTP associates both with MTs and centrosomes at spindle poles when detected by species-specific antibodies and by Myc-XlTCTP expression in Xenopus and mammalian cells. However, when the antibodies against XlTCTP were used in mammalian cells, TCTP was detected exclusively in the centrosomes. These results suggest that a distinct pool of TCTP may be specific for, and associate with, the centrosomes. Double labelling for TCTP and γ-tubulin with immuno-gold electron microscopy in Xenopus laevis oogonia shows localization of TCTP at the periphery of the γ-tubulin-containing pericentriolar material (PCM) enveloping the centriole. TCTP localizes in the close vicinity of, but not directly on the MTs in Xenopus ovary suggesting that this association requires unidentified linker proteins. Thus, we show for the first time: (1) the association of TCTP with centrosomes, (2) peripheral localization of TCTP in relation to the centriole and the γ-tubulin-containing PCM within the centrosome, and (3) the indirect association of TCTP with MTs.
Collapse
|
32
|
Skelton TS, Tejpal N, Gong Y, Kubiak JZ, Kloc M, Ghobrial RM. Allochimeric molecules and mechanisms in abrogation of cardiac allograft rejection. J Heart Lung Transplant 2012; 31:73-84. [DOI: 10.1016/j.healun.2011.01.715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/30/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022] Open
|
33
|
Molecular cloning, heterologous expression and functional characterization of a novel translationally-controlled tumor protein (TCTP) family member from Loxosceles intermedia (brown spider) venom. Int J Biochem Cell Biol 2012; 44:170-7. [DOI: 10.1016/j.biocel.2011.10.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/27/2011] [Accepted: 10/20/2011] [Indexed: 12/30/2022]
|
34
|
Kashiwakura JC, Ando T, Matsumoto K, Kimura M, Kitaura J, Matho MH, Zajonc DM, Ozeki T, Ra C, MacDonald SM, Siraganian RP, Broide DH, Kawakami Y, Kawakami T. Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy. J Clin Invest 2011; 122:218-28. [PMID: 22133880 DOI: 10.1172/jci59072] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/12/2011] [Indexed: 12/12/2022] Open
Abstract
IgE-mediated activation of mast cells and basophils underlies allergic diseases such as asthma. Histamine-releasing factor (HRF; also known as translationally controlled tumor protein [TCTP] and fortilin) has been implicated in late-phase allergic reactions (LPRs) and chronic allergic inflammation, but its functions during asthma are not well understood. Here, we identified a subset of IgE and IgG antibodies as HRF-interacting molecules in vitro. HRF was able to dimerize and bind to Igs via interactions of its N-terminal and internal regions with the Fab region of Igs. Therefore, HRF together with HRF-reactive IgE was able to activate mast cells in vitro. In mouse models of asthma and allergy, Ig-interacting HRF peptides that were shown to block HRF/Ig interactions in vitro inhibited IgE/HRF-induced mast cell activation and in vivo cutaneous anaphylaxis and airway inflammation. Intranasally administered HRF recruited inflammatory immune cells to the lung in naive mice in a mast cell- and Fc receptor-dependent manner. These results indicate that HRF has a proinflammatory role in asthma and skin immediate hypersensitivity, leading us to suggest HRF as a potential therapeutic target.
Collapse
Affiliation(s)
- Jun-chi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Q, Fang DA, Li WW, Wang J, Jiang H. A novel TCTP gene from the crustacean Eriocheir sinensis: possible role involving metallic Cu2+ stress. THE BIOLOGICAL BULLETIN 2011; 221:290-299. [PMID: 22186917 DOI: 10.1086/bblv221n3p290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The translationally controlled tumor protein (TCTP), which was initially described as a growth-related protein, primarily expresses proteins for numerous biological processes in eukaryotes. In the present study, the TCTP gene in the Chinese mitten crab Eriocheir sinensis (Es-TCTP) was identified from tissues of the hepatopancreas, by the construction of a cDNA library and the rapid amplification of cDNA ends. The results showed that the full length of Es-TCTP cDNA comprises 727 nucleotides, with an open reading frame of 507 bp that encodes 168 amino acid residues. The deduced amino acid sequence of Es-TCTP has a 51%-92% similarity to TCTPs of other eukaryotic species. The mRNA transcripts of Es-TCTP were detected by using RT-PCR for all tissues, with the highest level occurring in the hepatopancreas. In addition, temporal expression of the Es-TCTP was measured to analyze the role of Es-TCTP in an acute stress condition after CuSO(4) treatment. The expression of the Es-TCTP transcripts in hepatopancreas had no significant difference at the first 4 h, but increased significantly after 8 h, peaked at 24 h (4.3-fold higher than the control), and was still high after 72 h. Our results indicate that Es-TCTP is an acute-phase protein that is involved in Cu(2+) stress, with a possible anti-stress function in invertebrates.
Collapse
Affiliation(s)
- Qun Wang
- School of Life Science, East China Normal University, Shanghai, China.
| | | | | | | | | |
Collapse
|
36
|
Chaim OM, Trevisan-Silva D, Chaves-Moreira D, Wille ACM, Ferrer VP, Matsubara FH, Mangili OC, da Silveira RB, Gremski LH, Gremski W, Senff-Ribeiro A, Veiga SS. Brown spider (Loxosceles genus) venom toxins: tools for biological purposes. Toxins (Basel) 2011; 3:309-44. [PMID: 22069711 PMCID: PMC3202818 DOI: 10.3390/toxins3030309] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/26/2011] [Accepted: 03/17/2011] [Indexed: 12/16/2022] Open
Abstract
Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.
Collapse
Affiliation(s)
- Olga Meiri Chaim
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Dilza Trevisan-Silva
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Ana Carolina M. Wille
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, CEP 84030-900 Ponta Grossa, Paraná, Brazil;
| | - Valéria Pereira Ferrer
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Fernando Hitomi Matsubara
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | | | - Rafael Bertoni da Silveira
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, CEP 84030-900 Ponta Grossa, Paraná, Brazil;
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Waldemiro Gremski
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Catholic University of Paraná, Health and Biological Sciences Institute, CEP 80215-901 Curitiba, Paraná, Brazil;
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná, CEP 81531-980 Curitiba, Paraná, Brazil; (O.M.C.); (D.T.-S); (D.C.-M); (A.C.M.W.); (V.P.F.); (F.H.M.); (L.H.G.); (A.S.-R)
- Author to whom correspondence should be addressed; ; Tel.: +55-41-33611776; Fax: +55-41-3266-2042
| |
Collapse
|
37
|
Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M. Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci U S A 2010; 107:16384-9. [PMID: 20736351 PMCID: PMC2941279 DOI: 10.1073/pnas.1007926107] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growth of an organism and its size determination require the tight regulation of cell proliferation and cell growth. However, the mechanisms and regulatory networks that control and integrate these processes remain poorly understood. Here, we address the biological role of Arabidopsis translationally controlled tumor protein (AtTCTP) and test its shared functions in animals and plants. The data support a role of plant AtTCTP as a positive regulator of mitotic growth by specifically controlling the duration of the cell cycle. We show that, in contrast to animal TCTP, plant AtTCTP is not implicated in regulating postmitotic growth. Consistent with this finding, plant AtTCTP can fully rescue cell proliferation defects in Drosophila loss of function for dTCTP. Furthermore, Drosophila dTCTP is able to fully rescue cell proliferation defects in Arabidopsis tctp knockouts. Our data provide evidence that TCTP function in regulating cell division is part of a conserved growth regulatory pathway shared between plants and animals. The study also suggests that, although the cell division machinery is shared in all multicellular organisms to control growth, cell expansion can be uncoupled from cell division in plants but not in animals.
Collapse
Affiliation(s)
- Florian Brioudes
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, Université de Lyon, 69364 Lyon, France; and
| | - Anne-Marie Thierry
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, Université de Lyon, 69364 Lyon, France; and
| | - Pierre Chambrier
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, Université de Lyon, 69364 Lyon, France; and
| | - Bertrand Mollereau
- Laboratoire de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, Université de Lyon, 69364 Lyon, France
| | - Mohammed Bendahmane
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, Université de Lyon, 69364 Lyon, France; and
| |
Collapse
|
38
|
Rid R, Onder K, MacDonald S, Lang R, Hawranek T, Ebner C, Hemmer W, Richter K, Simon-Nobbe B, Breitenbach M. Alternaria alternata TCTP, a novel cross-reactive ascomycete allergen. Mol Immunol 2009; 46:3476-87. [PMID: 19683813 DOI: 10.1016/j.molimm.2009.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 07/26/2009] [Indexed: 12/18/2022]
Abstract
Defining more comprehensively the allergen repertoire of the ascomycete Alternaria alternata is undoubtedly of immense medical significance since this mold represents one of the most important, worldwide occurring fungal species responsible for IgE-mediated hypersensitivity reactions ranging from rhinitis and ocular symptoms to severe involvement of the lower respiratory tract including asthma with its life-threatening complications. Performing a hybridization screening of an excised A. alternata cDNA library with a radioactively labeled Cladosporium herbarum TCTP probe, we were able to identify, clone and purify the respective A. alternata homologue of TCTP which again represents a multifunctional protein that has been evolutionarily conserved from unicellular eukaryotes like yeasts to humans and appears, summarizing current literature, to be involved in housekeeping processes such as cell growth as well as cell-cycle progression, the protection of cells against various stress conditions including for instance apoptosis, and in higher organisms even in the allergic response. In this context, our present study characterizes recombinant A. alternata TCTP as a novel minor allergen candidate that displays a prevalence of IgE reactivity of approximately 4% and interestingly shares common, cross-reactive IgE epitopes with its C. herbarum and human counterparts as determined via Western blotting and in vitro inhibition approaches.
Collapse
Affiliation(s)
- Raphaela Rid
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Meyvis Y, Houthoofd W, Visser A, Borgonie G, Gevaert K, Vercruysse J, Claerebout E, Geldhof P. Analysis of the translationally controlled tumour protein in the nematodes Ostertagia ostertagi and Caenorhabditis elegans suggests a pivotal role in egg production. Int J Parasitol 2009; 39:1205-13. [PMID: 19285501 DOI: 10.1016/j.ijpara.2009.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/16/2022]
Abstract
The translationally controlled tumour protein (TCTP) is a conserved protein which has been described for a wide range of eukaryotic organisms including protozoa, yeasts, plants, nematodes and mammals. Several parasitic organisms have been shown to actively secrete TCTP during host infection as part of their immuno-evasive strategy. In this study, we have studied TCTP in Ostertagia ostertagi, a parasitic nematode of cattle, and in the free-living nematode Caenorhabditis elegans. An analysis of the transcription and expression patterns showed that TCTP was present in the eggs of both species. This localisation is consistent for some other Strongylida such as Teladorsagia circumcincta, Cooperia oncophora and Haemonchus contortus. TCTP was also detected at low levels in excretory-secretory material from adult O. ostertagi worms. The role of TCTP in nematode biology was also investigated by RNA interference in C. elegans. Knock-down of C. elegans tctp (tct-1) transcription reduced the numbers of eggs laid by the hermaphrodite in the F(0) and F(1) generations by 90% and 72%, respectively, indicating a pivotal role of TCTP in reproduction.
Collapse
Affiliation(s)
- Yves Meyvis
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 2008; 8:343-56. [PMID: 18936055 DOI: 10.1074/mcp.m800420-mcp200] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Increasing evidence suggests that proteins present in the angiosperm sieve tube system play an important role in the long distance signaling system of plants. To identify the nature of these putatively non-cell-autonomous proteins, we adopted a large scale proteomics approach to analyze pumpkin phloem exudates. Phloem proteins were fractionated by fast protein liquid chromatography using both anion and cation exchange columns and then either in-solution or in-gel digested following further separation by SDS-PAGE. A total of 345 LC-MS/MS data sets were analyzed using a combination of Mascot and X!Tandem against the NCBI non-redundant green plant database and an extensive Cucurbit maxima expressed sequence tag database. In this analysis, 1,209 different consensi were obtained of which 1,121 could be annotated from GenBank and BLAST search analyses against three plant species, Arabidopsis thaliana, rice (Oryza sativa), and poplar (Populus trichocarpa). Gene ontology (GO) enrichment analyses identified sets of phloem proteins that function in RNA binding, mRNA translation, ubiquitin-mediated proteolysis, and macromolecular and vesicle trafficking. Our findings indicate that protein synthesis and turnover, processes that were thought to be absent in enucleate sieve elements, likely occur within the angiosperm phloem translocation stream. In addition, our GO analysis identified a set of phloem proteins that are associated with the GO term "embryonic development ending in seed dormancy"; this finding raises the intriguing question as to whether the phloem may exert some level of control over seed development. The universal significance of the phloem proteome was highlighted by conservation of the phloem proteome in species as diverse as monocots (rice), eudicots (Arabidopsis and pumpkin), and trees (poplar). These results are discussed from the perspective of the role played by the phloem proteome as an integral component of the whole plant communication system.
Collapse
Affiliation(s)
- Ming-Kuem Lin
- Department of Plant Biology, College of Biological Sciences, Genome Center, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|