1
|
Xue Y, Shi R, Chen L, Ju S, Yan T, Tan X, Hou L, Jin L, Shen B. Label-Free Liquid Crystal Aptamer Sensors Based on Single-Stranded Nucleic Acid π-Structures for Detecting cTnI. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26988-26996. [PMID: 39662973 DOI: 10.1021/acs.langmuir.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cardiac troponin I (cTnI) is a highly sensitive and important serological marker for clinical diagnosis of myocardial injury. Its rapid detection is crucial for the early diagnosis of cardiovascular diseases such as acute myocardial infarction. In this study, based on nucleic acid molecular hybridization and aptamer-specific binding to target molecules, a label-free liquid crystal aptamer sensor based on single-stranded nucleic acid π-structures was developed and applied for the quantitative detection of cTnI. The CP1 and CP2 oligonucleotide chains, complementary to the bases at both ends of the aptamer, are covalently bonded to the sensor substrate via APTES and GA-mediated molecules. The aptamer forms a π-structure with CP1 and CP2 through nucleic acid hybridization, serving as a target molecule capture probe. When cTnI is present in the system, cTnI and the complementary oligonucleotide chains competitively bind with the aptamer, causing the breakdown of the π-structure within the sensor. This reinstates the long-range ordered alignment of the 5CB liquid crystal molecules within the sensor, enabling quantitative measurement of cTnI through variations in optical images. Experimental results show that within the range of 0.01 to 25 ng/mL for cTnI concentration, there is a linear correlation between the brightness area coverage (Br) in the polarized light microscopy images of the sensor and the logarithm of the cTnI concentration, with a correlation coefficient (r). The detection limit is 5.16 pg/mL. This method is label-free, simple to operate, and low-cost, with good specificity and a low detection limit, achieving cTnI detection in serum samples.
Collapse
Affiliation(s)
- Yunpeng Xue
- Department of Biomedical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Ruyu Shi
- Department of Biomedical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Liangyu Chen
- Department of Biomedical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Shaowei Ju
- Department of Bioengineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Tianhang Yan
- Department of Bioengineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xin Tan
- Department of Bioengineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Lijie Hou
- Department of Biomedical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Lihong Jin
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Bingjun Shen
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, PR China
| |
Collapse
|
2
|
Aborode AT, Olamilekan Adesola R, Idris I, Adio WS, Scott GY, Chakoma M, Oluwaseun AA, Onifade IA, Adeoye AF, Aluko BA, Abok JI. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review. Gene 2024; 927:148651. [PMID: 38871035 DOI: 10.1016/j.gene.2024.148651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations. MAIN BODY Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood. CONCLUSION This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches.
Collapse
Affiliation(s)
| | - Ridwan Olamilekan Adesola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ibrahim Idris
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria.
| | - Waheed Sakariyau Adio
- Department of Chemistry and Biochemistry, College of Health and Natural Science, The University of Tulsa, Tulsa, USA.
| | - Godfred Yawson Scott
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Mugove Chakoma
- Department of Primary Healthcare, Faculty of Medicine and Healthcare, University of Zimbabwe, Zimbabwe.
| | | | | | | | | | - Jeremiah I Abok
- Department of Chemistry & Chemical Biology University of New Mexico, USA.
| |
Collapse
|
3
|
Ronca F, Raggi A. Role of the interaction between troponin T and AMP deaminase by zinc bridge in modulating muscle contraction and ammonia production. Mol Cell Biochem 2024; 479:793-809. [PMID: 37184757 PMCID: PMC11016001 DOI: 10.1007/s11010-023-04763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
The N-terminal region of troponin T (TnT) does not bind any protein of the contractile machinery and the role of its hypervariability remains uncertain. In this review we report the evidence of the interaction between TnT and AMP deaminase (AMPD), a regulated zinc enzyme localized on the myofibril. In periods of intense muscular activity, a decrease in the ATP/ADP ratio, together with a decrease in the tissue pH, is the stimulus for the activation of the enzyme that deaminating AMP to IMP and NH3 displaces the myokinase reaction towards the formation of ATP. In skeletal muscle subjected to strong tetanic contractions, a calpain-like proteolytic activity produces the removal in vivo of a 97-residue N-terminal fragment from the enzyme that becomes desensitized towards the inhibition by ATP, leading to an unrestrained production of NH3. When a 95-residue N-terminal fragment is removed from AMPD by trypsin, simulating in vitro the calpain action, rabbit fast TnT or its phosphorylated 50-residue N-terminal peptide binds AMPD restoring the inhibition by ATP. Taking in consideration that the N-terminus of TnT expressed in human as well as rabbit white muscle contains a zinc-binding motif, we suggest that TnT might mimic the regulatory action of the inhibitory N-terminal domain of AMPD due to the presence of a zinc ion connecting the N-terminal and C-terminal regions of the enzyme, indicating that the two proteins might physiologically associate to modulate muscle contraction and ammonia production in fast-twitching muscle under strenuous conditions.
Collapse
Affiliation(s)
- Francesca Ronca
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Antonio Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| |
Collapse
|
4
|
Feng HZ, Huang X, Jin JP. N-terminal truncated cardiac troponin I enhances Frank-Starling response by increasing myofilament sensitivity to resting tension. J Gen Physiol 2023; 155:e202012821. [PMID: 36880803 PMCID: PMC10005897 DOI: 10.1085/jgp.202012821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 03/08/2023] Open
Abstract
Cardiac troponin I (cTnI) of higher vertebrates has evolved with an N-terminal extension, of which deletion via restrictive proteolysis occurs as a compensatory adaptation in chronic heart failure to increase ventricular relaxation and stroke volume. Here, we demonstrate in a transgenic mouse model expressing solely N-terminal truncated cTnI (cTnI-ND) in the heart with deletion of the endogenous cTnI gene. Functional studies using ex vivo working hearts showed an extended Frank-Starling response to preload with reduced left ventricular end diastolic pressure. The enhanced Frank-Starling response effectively increases systolic ventricular pressure development and stroke volume. A novel finding is that cTnI-ND increases left ventricular relaxation velocity and stroke volume without increasing the end diastolic volume. Consistently, the optimal resting sarcomere length (SL) for maximum force development in cTnI-ND cardiac muscle was not different from wild-type (WT) control. Despite the removal of the protein kinase A (PKA) phosphorylation sites in cTnI, β-adrenergic stimulation remains effective on augmenting the enhanced Frank-Starling response of cTnI-ND hearts. Force-pCa relationship studies using skinned preparations found that while cTnI-ND cardiac muscle shows a resting SL-resting tension relationship similar to WT control, cTnI-ND significantly increases myofibril Ca2+ sensitivity to resting tension. The results demonstrate that restrictive N-terminal deletion of cTnI enhances Frank-Starling response by increasing myofilament sensitivity to resting tension rather than directly depending on SL. This novel function of cTnI regulation suggests a myofilament approach to utilizing Frank-Starling mechanism for the treatment of heart failure, especially diastolic failure where ventricular filling is limited.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Xupei Huang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Jian-Ping Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Joyce W, Ripley DM, Gillis T, Black AC, Shiels HA, Hoffmann FG. A Revised Perspective on the Evolution of Troponin I and Troponin T Gene Families in Vertebrates. Genome Biol Evol 2022; 15:6904147. [PMID: 36518048 PMCID: PMC9825255 DOI: 10.1093/gbe/evac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The troponin (Tn) complex, responsible for the Ca2+ activation of striated muscle, is composed of three interacting protein subunits: TnC, TnI, and TnT, encoded by TNNC, TNNI, and TNNT genes. TNNI and TNNT are sister gene families, and in mammals the three TNNI paralogs (TNNI1, TNNI2, TNNI3), which encode proteins with tissue-specific expression, are each in close genomic proximity with one of the three TNNT paralogs (TNNT2, TNNT3, TNNT1, respectively). It has been widely presumed that all vertebrates broadly possess genes of these same three classes, although earlier work has overlooked jawless fishes (cyclostomes) and cartilaginous fishes (chimeras, rays, and sharks), which are distantly related to other jawed vertebrates. With a new phylogenetic and synteny analysis of a diverse array of vertebrates including these taxonomic groups, we define five distinct TNNI classes (TNNI1-5), with TNNI4 and TNNI5 being only present in non-amniote vertebrates and typically found in tandem, and four classes of TNNT (TNNT1-4). These genes are located in four genomic loci that were generated by the 2R whole-genome duplications. TNNI3, encoding "cardiac TnI" in tetrapods, was independently lost in cartilaginous and ray-finned fishes. Instead, ray-finned fishes predominantly express TNNI1 in the heart. TNNI5 is highly expressed in shark hearts and contains a N-terminal extension similar to that of TNNI3 found in tetrapod hearts. Given that TNNI3 and TNNI5 are distantly related, this supports the hypothesis that the N-terminal extension may be an ancestral feature of vertebrate TNNI and not an innovation unique to TNNI3, as has been commonly believed.
Collapse
Affiliation(s)
| | - Daniel M Ripley
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Todd Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Amanda Coward Black
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762, USA
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | | |
Collapse
|
6
|
Early Divergence of the C-Terminal Variable Region of Troponin T Via a Pair of Mutually Exclusive Alternatively Spliced Exons Followed by a Selective Fixation in Vertebrate Heart. J Mol Evol 2022; 90:452-467. [PMID: 36171395 PMCID: PMC10080876 DOI: 10.1007/s00239-022-10075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Troponin T (TnT) is the thin filament anchoring subunit of troponin complex and plays an organizer role in the Ca2+-regulation of striated muscle contraction. From an ancestral gene emerged ~ 700 million years ago in Bilateria, three homologous genes have evolved in vertebrates to encode muscle type-specific isoforms of TnT. Alternative splicing variants of TnT are present in vertebrate and invertebrate muscles to add functional diversity. While the C-terminal region of TnT is largely conserved, it contains an alternatively spliced segment emerged early in C. elegans, which has evolved into a pair of mutually exclusive exons in arthropods (10A and 10B of Drosophila TpnT gene) and vertebrates (16 and 17 of fast skeletal muscle Tnnt3 gene). The C-terminal alternatively spliced segment of TnT interfaces with the other two subunits of troponin with functional significance. The vertebrate cardiac TnT gene that emerged from duplication of the fast TnT gene has eliminated this alternative splicing by the fixation of an exon 17-like constitutive exon, indicating a functional value in slower and rhythmic contractions. The vertebrate slow skeletal muscle TnT gene that emerged from duplication of the cardiac TnT gene has the exon 17-like structure conserved, indicating its further function in sustained and fatigue resistant contractions. This functionality-based evolution is consistent with the finding that exon 10B-encoded segment of Drosophila TnT homologous to the exon 17-encoded segment of vertebrate fast TnT is selectively expressed in insect heart and leg muscles. The evolution of the C-terminal variable region of TnT demonstrates a submolecular mechanism in modifying striated muscle contractility and for the treatment of muscle and heart diseases.
Collapse
|
7
|
Rasmussen M, Jin JP. Monoclonal Antibodies as Probes to Study Ligand-Induced Conformations of Troponin Subunits. Front Physiol 2022; 13:828144. [PMID: 35399275 PMCID: PMC8990283 DOI: 10.3389/fphys.2022.828144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Striated muscle contraction and relaxation is regulated by Ca2+ at the myofilament level via conformational modulations of the troponin complex. To understand the structure-function relationship of troponin in normal muscle and in myopathies, it is necessary to study the functional effects of troponin isoforms and mutations at the level of allosteric conformations of troponin subunits. Traditional methodologies assessing such conformational studies are laborious and require significant amounts of purified protein, while many current methodologies require non-physiological conditions or labeling of the protein, which may affect their physiological conformation and function. To address these issues, we developed a novel approach using site-specific monoclonal antibodies (mAb) as molecular probes to detect and monitor conformational changes of proteins. Here, we present examples for its application in studies of two subunits of troponin: the Ca2+-binding subunit, TnC, and the tropomyosin-binding/thin filament-anchoring subunit, TnT. Studies using a high-throughput microplate assay are compared with that using localized surface plasmon resonance (LSPR) to demonstrate the effectiveness of using mAb probes to assess ligand-induced conformations of troponin subunits in physiological conditions. The assays utilize relatively small amounts of protein and are free of protein modification, which may bias results. Detailed methodologies using various monoclonal antibodies (mAbs) are discussed with considerations for the optimization of assay conditions and the broader application in studies of other proteins as well as in screening of therapeutic reagents that bind a specific target site with conformational and functional effects.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Rasmussen M, Feng HZ, Jin JP. Evolution of the N-Terminal Regulation of Cardiac Troponin I for Heart Function of Tetrapods: Lungfish Presents an Example of the Emergence of Novel Submolecular Structure to Lead the Capacity of Adaptation. J Mol Evol 2022; 90:30-43. [PMID: 34966949 PMCID: PMC10926322 DOI: 10.1007/s00239-021-10039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Troponin-based Ca2+ regulation of striated muscle contraction emerged approximately 700 million years ago with largely conserved functions during evolution. Troponin I (TnI) is the inhibitory subunit of troponin and has evolved into three muscle type-specific isoforms in vertebrates. Cardiac TnI is specifically expressed in the adult heart and has a unique N-terminal extension implicating a specific value during natural selection. The N-terminal extension of cardiac TnI in higher vertebrates contains β-adrenergic-regulated protein kinase A (PKA) phosphorylation sites as a mechanism to enhance cardiac muscle relaxation and facilitate ventricular filling. Phylogenic studies showed that the N-terminal extension of cardiac TnI first emerged in the genomes of early tetrapods as well as primordial lobe-finned fishes such as the coelacanth whereas it is absent in ray-finned fish. This apparently rapid evolution of β-adrenergic regulation of cardiac function suggests a high selection value for the heart of vertebrate animals on land to work under higher metabolic demands. Sequencing and PKA phosphorylation data showed that lungfish cardiac TnI has evolved with an amphibian-like N-terminal extension with prototype PKA phosphorylation sites while its overall structure remained fish like. The data demonstrate that the submolecular structure of TnI may evolve ahead of the whole protein for cardiac muscle contractility to adapt to new environmental conditions. Understanding the evolution of the β-adrenergic regulation of TnI and cardiac adaptation to the increased energetic demands of life on land adds knowledge for the treatment of human heart diseases and failure.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Han-Zhong Feng
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents. Int J Mol Sci 2021; 22:ijms22179625. [PMID: 34502534 PMCID: PMC8431798 DOI: 10.3390/ijms22179625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.
Collapse
|
11
|
Cao T, Sujkowski A, Cobb T, Wessells RJ, Jin JP. The glutamic acid-rich-long C-terminal extension of troponin T has a critical role in insect muscle functions. J Biol Chem 2020; 295:3794-3807. [PMID: 32024695 PMCID: PMC7086023 DOI: 10.1074/jbc.ra119.012014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The troponin complex regulates the Ca2+ activation of myofilaments during striated muscle contraction and relaxation. Troponin genes emerged 500-700 million years ago during early animal evolution. Troponin T (TnT) is the thin-filament-anchoring subunit of troponin. Vertebrate and invertebrate TnTs have conserved core structures, reflecting conserved functions in regulating muscle contraction, and they also contain significantly diverged structures, reflecting muscle type- and species-specific adaptations. TnT in insects contains a highly-diverged structure consisting of a long glutamic acid-rich C-terminal extension of ∼70 residues with unknown function. We found here that C-terminally truncated Drosophila TnT (TpnT-CD70) retains binding of tropomyosin, troponin I, and troponin C, indicating a preserved core structure of TnT. However, the mutant TpnTCD70 gene residing on the X chromosome resulted in lethality in male flies. We demonstrate that this X-linked mutation produces dominant-negative phenotypes, including decreased flying and climbing abilities, in heterozygous female flies. Immunoblot quantification with a TpnT-specific mAb indicated expression of TpnT-CD70 in vivo and normal stoichiometry of total TnT in myofilaments of heterozygous female flies. Light and EM examinations revealed primarily normal sarcomere structures in female heterozygous animals, whereas Z-band streaming could be observed in the jump muscle of these flies. Although TpnT-CD70-expressing flies exhibited lower resistance to cardiac stress, their hearts were significantly more tolerant to Ca2+ overloading induced by high-frequency electrical pacing. Our findings suggest that the Glu-rich long C-terminal extension of insect TnT functions as a myofilament Ca2+ buffer/reservoir and is potentially critical to the high-frequency asynchronous contraction of flight muscles.
Collapse
Affiliation(s)
- Tianxin Cao
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Robert J Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| |
Collapse
|
12
|
Invertebrate troponin: Insights into the evolution and regulation of striated muscle contraction. Arch Biochem Biophys 2019; 666:40-45. [PMID: 30928296 DOI: 10.1016/j.abb.2019.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
The troponin complex plays a central role in regulating the contraction and relaxation of striated muscles. Among the three protein subunits of troponin, the calcium receptor subunit, TnC, belongs to the calmodulin family of calcium signaling proteins whereas the inhibitory subunit, TnI, and tropomyosin-binding/thin filament-anchoring subunit, TnT, are striated muscle-specific regulatory proteins. TnI and TnT emerged early in bilateral symmetric invertebrate animals and have co-evolved during the 500-700 million years of muscle evolution. To understand the divergence as well as conservation of the structures of TnI and TnT in invertebrate and vertebrate organisms adds novel insights into the structure-function relationship of troponin and the muscle type isoforms of TnI and TnT. Based on the significant growth of genomic database of multiple species in the past decade, this focused review studied the primary structure features of invertebrate troponin subunits in comparisons with the vertebrate counterparts. The evolutionary data demonstrate valuable information for a better understanding of the thin filament regulation of striated muscle contractility in health and diseases.
Collapse
|
13
|
Isolation and characterization of three skeletal troponin genes and association with growth-related traits in Exopalaemon carinicauda. Mol Biol Rep 2018; 46:705-718. [DOI: 10.1007/s11033-018-4526-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022]
|
14
|
Johnson D, Angus CW, Chalovich JM. Stepwise C-Terminal Truncation of Cardiac Troponin T Alters Function at Low and Saturating Ca 2. Biophys J 2018; 115:702-712. [PMID: 30057009 DOI: 10.1016/j.bpj.2018.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Abstract
Activation of striated muscle contraction occurs in response to Ca2+ binding to troponin C. The resulting reorganization of troponin repositions tropomyosin on actin and permits activation of myosin-catalyzed ATP hydrolysis. It now appears that the C-terminal 14 amino acids of cardiac troponin T (TnT) control the level of activity at both low and high Ca2+. We made a series of C-terminal truncation mutants of human cardiac troponin T, isoform 2, to determine if the same residues of TnT are involved in the low and high Ca2+ effects. We measured the effect of these mutations on the normalized ATPase activity at saturating Ca2+. Changes in acrylodan tropomyosin fluorescence and the degree of Ca2+ stimulation of the rate of binding of rigor myosin subfragment 1 to pyrene-labeled actin-tropomyosin-troponin were measured at low Ca2+. These measurements define the distribution of actin-tropomyosin-troponin among the three regulatory states. Residues SKTR and GRWK of TnT were required for the functioning of TnT at both low and high Ca2+. Thus, the effects on forming the inactive B-state and in retarding formation of the active M-state require the same regions of TnT. We also observed that the rate of binding of rigor subfragment 1 to pyrene-labeled regulated actin at saturating Ca2+ was higher for the truncation mutants than for wild-type TnT. This violated an assumption necessary for determining the B-state population by this kinetic method.
Collapse
Affiliation(s)
- Dylan Johnson
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - C William Angus
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Joseph M Chalovich
- Department of Biochemistry, Brody School of Medicine, East Carolina University, Greenville, North Carolina.
| |
Collapse
|
15
|
Mondal A, Jin JP. Protein Structure-Function Relationship at Work: Learning from Myopathy Mutations of the Slow Skeletal Muscle Isoform of Troponin T. Front Physiol 2016; 7:449. [PMID: 27790152 PMCID: PMC5062619 DOI: 10.3389/fphys.2016.00449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 12/03/2022] Open
Abstract
Troponin T (TnT) is the sarcomeric thin filament anchoring subunit of the troponin complex in striated muscles. A nonsense mutation in exon 11 of the slow skeletal muscle isoform of TnT (ssTnT) gene (TNNT1) was found in the Amish populations in Pennsylvania and Ohio. This single nucleotide substitution causes a truncation of the ssTnT protein at Glu180 and the loss of the C-terminal tropomyosin (Tm)-binding site 2. As a consequence, it abolishes the myofilament integration of ssTnT and the loss of function causes an autosomal recessive nemaline myopathy (NM). More TNNT1 mutations have recently been reported in non-Amish ethnic groups with similar recessive NM phenotypes. A nonsense mutation in exon 9 truncates ssTnT at Ser108, deleting Tm-binding site 2 and a part of the middle region Tm-binding site 1. Two splicing site mutations result in truncation of ssTnT at Leu203 or deletion of the exon 14-encoded C-terminal end segment. Another splicing mutation causes an internal deletion of the 39 amino acids encoded by exon 8, partially damaging Tm-binding site 1. The three splicing mutations of TNNT1 all preserve the high affinity Tm-binding site 2 but still present recessive NM phenotypes. The molecular mechanisms for these mutations to cause myopathy provide interesting models to study and understand the structure-function relationship of TnT. This focused review summarizes the current knowledge of TnT isoform regulation, structure-function relationship of TnT and how various ssTnT mutations cause recessive NM, in order to promote in depth studies for further understanding the pathogenesis and pathophysiology of TNNT1 myopathies toward the development of effective treatments.
Collapse
Affiliation(s)
- Anupom Mondal
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
16
|
Amarasinghe C, Hossain MM, Jin JP. Functional Basis of Three New Recessive Mutations of Slow Skeletal Muscle Troponin T Found in Non-Amish TNNT1 Nemaline Myopathies. Biochemistry 2016; 55:4560-7. [DOI: 10.1021/acs.biochem.6b00577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chinthaka Amarasinghe
- Department
of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - M. Moazzem Hossain
- Department
of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - J.-P. Jin
- Department
of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
17
|
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601:11-21. [PMID: 26851561 PMCID: PMC4899195 DOI: 10.1016/j.abb.2016.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/29/2022]
Abstract
Cardiac troponin (cTn) acts as a pivotal regulator of muscle contraction and relaxation and is composed of three distinct subunits (cTnC: a highly conserved Ca(2+) binding subunit, cTnI: an actomyosin ATPase inhibitory subunit, and cTnT: a tropomyosin binding subunit). In this mini-review, we briefly summarize the structure-function relationship of cTn and its subunits, its modulation by PKA-mediated phosphorylation of cTnI, and what is known about how these properties are altered by hypertrophic cardiomyopathy (HCM) associated mutations of cTnI. This includes recent work using computational modeling approaches to understand the atomic-based structural level basis of disease-associated mutations. We propose a viewpoint that it is alteration of cTnC-cTnI interaction (rather than the Ca(2+) binding properties of cTn) per se that disrupt the ability of PKA-mediated phosphorylation at cTnI Ser-23/24 to alter contraction and relaxation in at least some HCM-associated mutations. The combination of state of the art biophysical approaches can provide new insight on the structure-function mechanisms of contractile dysfunction resulting cTnI mutations and exciting new avenues for the diagnosis, prevention, and even treatment of heart diseases.
Collapse
Affiliation(s)
- Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, WA, USA
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, WA, USA.
| |
Collapse
|
18
|
Genge CE, Stevens CM, Davidson WS, Singh G, Peter Tieleman D, Tibbits GF. Functional Divergence in Teleost Cardiac Troponin Paralogs Guides Variation in the Interaction of TnI Switch Region with TnC. Genome Biol Evol 2016; 8:994-1011. [PMID: 26979795 PMCID: PMC4860682 DOI: 10.1093/gbe/evw044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene duplication results in extra copies of genes that must coevolve with their interacting partners in multimeric protein complexes. The cardiac troponin (Tn) complex, containing TnC, TnI, and TnT, forms a distinct functional unit critical for the regulation of cardiac muscle contraction. In teleost fish, the function of the Tn complex is modified by the consequences of differential expression of paralogs in response to environmental thermal challenges. In this article, we focus on the interaction between TnI and TnC, coded for by genes that have independent evolutionary origins, but the co-operation of their protein products has necessitated coevolution. In this study, we characterize functional divergence of TnC and TnI paralogs, specifically the interrelated roles of regulatory subfunctionalization and structural subfunctionalization. We determined that differential paralog transcript expression in response to temperature acclimation results in three combinations of TnC and TnI in the zebrafish heart: TnC1a/TnI1.1, TnC1b/TnI1.1, and TnC1a/TnI1.5. Phylogenetic analysis of these highly conserved proteins identified functionally divergent residues in TnI and TnC. The structural and functional effect of these Tn combinations was modeled with molecular dynamics simulation to link divergent sites to changes in interaction strength. Functional divergence in TnI and TnC were not limited to the residues involved with TnC/TnI switch interaction, which emphasizes the complex nature of Tn function. Patterns in domain-specific divergent selection and interaction energies suggest that substitutions in the TnI switch region are crucial to modifying TnI/TnC function to maintain cardiac contraction with temperature changes. This integrative approach introduces Tn as a model of functional divergence that guides the coevolution of interacting proteins.
Collapse
Affiliation(s)
- Christine E Genge
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Charles M Stevens
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada Cardiovascular Sciences, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - William S Davidson
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gurpreet Singh
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Alberta, Canada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Alberta, Canada
| | - Glen F Tibbits
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada Cardiovascular Sciences, Child and Family Research Institute, Vancouver, British Columbia, Canada Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
19
|
TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 2016; 582:1-13. [PMID: 26774798 DOI: 10.1016/j.gene.2016.01.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
Troponin T (TnT) is a central player in the calcium regulation of actin thin filament function and is essential for the contraction of striated muscles. Three homologous genes have evolved in vertebrates to encode three muscle type-specific TnT isoforms: TNNT1 for slow skeletal muscle TnT, TNNT2 for cardiac muscle TnT, and TNNT3 for fast skeletal muscle TnT. Alternative splicing and posttranslational modifications confer additional structural and functional variations of TnT during development and muscle adaptation to various physiological and pathological conditions. This review focuses on the TnT isoform genes and their molecular evolution, alternative splicing, developmental regulation, structure-function relationships of TnT proteins, posttranslational modifications, and myopathic mutations and abnormal splicing. The goal is to provide a concise summary of the current knowledge and some perspectives for future research and translational applications.
Collapse
|
20
|
Jin JP. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: Modulation of Muscle Contractility and Beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 321:1-28. [DOI: 10.1016/bs.ircmb.2015.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Wei B, Wei H, Jin JP. Dysferlin deficiency blunts β-adrenergic-dependent lusitropic function of mouse heart. J Physiol 2015; 593:5127-44. [PMID: 26415898 DOI: 10.1113/jp271225] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/22/2015] [Indexed: 11/08/2022] Open
Abstract
Dysferlin is a cell membrane bound protein with a role in the repair of skeletal and cardiac muscle cells. Deficiency of dysferlin leads to limb-girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy. In cardiac muscle, dysferlin is located at the intercalated disc and transverse tubule membranes. Loss of dysferlin causes death of cardiomyocytes, notably in ageing hearts, leading to dilated cardiomyopathy and heart failure in LGM2B patients. To understand the primary pathogenesis and pathophysiology of dysferlin cardiomyopathy, we studied cardiac phenotypes of young adult dysferlin knockout mice and found early myocardial hypertrophy with largely compensated baseline cardiac function. Cardiomyocytes isolated from dysferlin-deficient mice showed normal shortening and re-lengthening velocities in the absence of external load with normal peak systolic Ca(2+) but slower Ca(2+) re-sequestration than wild-type controls. The effects of isoproterenol on relaxation velocity, left ventricular systolic pressure and stroke volume were blunted in dysferlin-deficient mouse hearts compared with that in wild-type hearts. Young dysferlin-deficient mouse hearts expressed normal isoforms of myofilament proteins whereas the phosphorylation of ventricular myosin light chain 2 was significantly increased, implying a molecular response to the impaired lusitropic function. These early phenotypes of diastolic cardiac dysfunction and blunted lusitropic response of cardiac muscle to β-adrenergic stimulation indicate a novel pathogenic mechanism of dysferlin cardiomyopathy.
Collapse
Affiliation(s)
- Bin Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
22
|
Sheng JJ, Jin JP. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Gene 2015; 576:385-94. [PMID: 26526134 DOI: 10.1016/j.gene.2015.10.052] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Troponin I (TnI) is the inhibitory subunit of the troponin complex in the sarcomeric thin filament of striated muscle and plays a central role in the calcium regulation of contraction and relaxation. Vertebrate TnI has evolved into three isoforms encoded by three homologous genes: TNNI1 for slow skeletal muscle TnI, TNNI2 for fast skeletal muscle TnI and TNNI3 for cardiac TnI, which are expressed under muscle type-specific and developmental regulations. To summarize the current knowledge on the TnI isoform genes and products, this review focuses on the evolution, gene regulation, posttranslational modifications, and structure-function relationship of TnI isoform proteins. Their physiological and medical significances are also discussed.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
23
|
Amarasinghe C, Jin JP. N-Terminal Hypervariable Region of Muscle Type Isoforms of Troponin T Differentially Modulates the Affinity of Tropomyosin-Binding Site 1. Biochemistry 2015; 54:3822-30. [DOI: 10.1021/acs.biochem.5b00348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chinthaka Amarasinghe
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
24
|
Wei H, Jin JP. NH2-terminal truncations of cardiac troponin I and cardiac troponin T produce distinct effects on contractility and calcium homeostasis in adult cardiomyocytes. Am J Physiol Cell Physiol 2015; 308:C397-404. [PMID: 25518962 PMCID: PMC4346733 DOI: 10.1152/ajpcell.00358.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Abstract
Cardiac troponin I (TnI) has an NH2-terminal extension that is an adult heart-specific regulatory structure. Restrictive proteolytic truncation of the NH2-terminal extension of cardiac TnI occurs in normal hearts and is upregulated in cardiac adaptation to hemodynamic stress or β-adrenergic deficiency. NH2-terminal truncated cardiac TnI (cTnI-ND) alters the conformation of the core structure of cardiac TnI similarly to that produced by PKA phosphorylation of Ser(23/24) in the NH2-terminal extension. At organ level, cTnI-ND enhances ventricular diastolic function. The NH2-terminal region of cardiac troponin T (TnT) is another regulatory structure that can be selectively cleaved via restrictive proteolysis. Structural variations in the NH2-terminal region of TnT also alter the molecular conformation and function. Transgenic mouse hearts expressing NH2-terminal truncated cardiac TnT (cTnT-ND) showed slower contractile velocity to prolong ventricular rapid-ejection time, resulting in higher stroke volume. Our present study compared the effects of cTnI-ND and cTnT-ND in cardiomyocytes isolated from transgenic mice on cellular morphology, contractility, and calcium kinetics. Resting cTnI-ND, but not cTnT-ND, cardiomyocytes had shorter length than wild-type cells with no change in sarcomere length. cTnI-ND, but not cTnT-ND, cardiomyocytes produced higher contractile amplitude and faster shortening and relengthening velocities in the absence of external load than wild-type controls. Although the baseline and peak levels of cytosolic Ca(2+) were not changed, Ca(2+) resequestration was faster in both cTnI-ND and cTnT-ND cardiomyocytes than in wild-type control. The distinct effects of cTnI-ND and cTnT-ND demonstrate their roles in selectively modulating diastolic or systolic functions of the heart.
Collapse
Affiliation(s)
- Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
25
|
Akhter S, Jin JP. Distinct conformational and functional effects of two adjacent pathogenic mutations in cardiac troponin I at the interface with troponin T. FEBS Open Bio 2015; 5:64-75. [PMID: 25685665 PMCID: PMC4325132 DOI: 10.1016/j.fob.2015.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 11/29/2022] Open
Abstract
Mutations in the TnT-interface of cardiac TnI cause cardiomyopathies. Mutations A117G and K118C resulted in distinct changes in protein conformation. K118C, but not A117G, decreased the binding affinity for TnT. K118C decreased binding affinity for TnC in a Ca2+-dependent manner – A117G had a similar but less profound effect. PKA treatment or N-terminal truncation produces similar changes in cardiac TnI.
The α-helix in troponin I (TnI) at the interface with troponin T (TnT) is a highly conserved structure. A point mutation in this region, A116G, was found in human cardiac TnI in a case of cardiomyopathy. An adjacent dominantly negative mutation found in turkey cardiac TnI (R111C, equivalent to K117C in human and K118C in mouse) decreased diastolic function and blunted beta-adrenergic response in transgenic mice. To investigate the functional importance of the TnI–TnT interface and pathological impact of the cardiac TnI mutations, we engineered K118C and A117G mutations in mouse cardiac TnI for functional studies. Despite their adjacent locations, A117G substitution results in faster mobility of cardiac TnI in SDS–PAGE whereas K118C decreases gel mobility, indicating significant and distinct changes in overall protein conformation. Consistently, monoclonal antibody epitope analysis demonstrated distinct local and remote conformational alterations in the two mutant proteins. Protein binding assays showed that K118C, but not A117G, decreased the relative binding affinity of cardiac TnI for TnT. K118C mutation decreased binding affinity for troponin C in a Ca2+-dependent manner, whereas A117G had a similar but less profound effect. Protein kinase A phosphorylation or truncation to remove the cardiac specific N-terminal extension of cardiac TnI resulted in similar conformational changes in the region interfacing with TnT and minimized the functional impacts of the mutations. The data demonstrate potent conformational and functional impacts of the TnT-interfacing helix in TnI and suggest a role of the N-terminal extension of cardiac TnI in modulating TnI–TnT interface functions.
Collapse
Key Words
- BSA, bovine serum albumin
- Cardiac muscle
- ELISA, enzyme linked immunosorbent assay
- McTnI, wild type mouse cardiac TnI
- McTnI-ND, N-terminal truncated mouse cardiac TnI
- McTnI-NDA117G, N-terminal truncated McTnIA117G
- McTnI-NDK118C, N-terminal truncated McTnIK118C
- McTnIA117G, mouse cardiac TnI A117G mutation
- McTnIK118C, mouse cardiac TnI K118C mutation
- PKA, protein kinase A
- Protein conformation
- TnC, troponin C
- TnI, troponin I
- TnT, troponin T
- Troponin
- Troponin I mutation
- Troponin I–Troponin T interface
Collapse
Affiliation(s)
- Shirin Akhter
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
26
|
Brunet NM, Chase PB, Mihajlović G, Schoffstall B. Ca(2+)-regulatory function of the inhibitory peptide region of cardiac troponin I is aided by the C-terminus of cardiac troponin T: Effects of familial hypertrophic cardiomyopathy mutations cTnI R145G and cTnT R278C, alone and in combination, on filament sliding. Arch Biochem Biophys 2014; 552-553:11-20. [PMID: 24418317 PMCID: PMC4043889 DOI: 10.1016/j.abb.2013.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/10/2013] [Accepted: 12/28/2013] [Indexed: 01/10/2023]
Abstract
Investigations of cardiomyopathy mutations in Ca(2+) regulatory proteins troponin and tropomyosin provide crucial information about cardiac disease mechanisms, and also provide insights into functional domains in the affected polypeptides. Hypertrophic cardiomyopathy-associated mutations TnI R145G, located within the inhibitory peptide (Ip) of human cardiac troponin I (hcTnI), and TnT R278C, located immediately C-terminal to the IT arm in human cardiac troponin T (hcTnT), share some remarkable features: structurally, biochemically, and pathologically. Using bioinformatics, we find compelling evidence that TnI and TnT, and more specifically the affected regions of hcTnI and hcTnT, may be related not just structurally but also evolutionarily. To test for functional interactions of these mutations on Ca(2+)-regulation, we generated and characterized Tn complexes containing either mutation alone, or both mutations simultaneously. The most important results from in vitro motility assays (varying [Ca(2+)], temperature or HMM density) show that the TnT mutant "rescued" some deleterious effects of the TnI mutant at high Ca(2+), but exacerbated the loss of function, i.e., switching off the actomyosin interaction, at low Ca(2+). Taken together, our experimental results suggest that the C-terminus of cTnT aids Ca(2+)-regulatory function of cTnI Ip within the troponin complex.
Collapse
Affiliation(s)
- Nicolas M Brunet
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - P Bryant Chase
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Goran Mihajlović
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Brenda Schoffstall
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
27
|
Restrictive cardiomyopathy mutations demonstrate functions of the C-terminal end-segment of troponin I. Arch Biochem Biophys 2014; 552-553:3-10. [DOI: 10.1016/j.abb.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 11/22/2022]
|
28
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
29
|
Wei B, Lu Y, Jin JP. Deficiency of slow skeletal muscle troponin T causes atrophy of type I slow fibres and decreases tolerance to fatigue. J Physiol 2014; 592:1367-80. [PMID: 24445317 DOI: 10.1113/jphysiol.2013.268177] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The total loss of slow skeletal muscle troponin T (ssTnT encoded by TNNT1 gene) due to a nonsense mutation in codon Glu(180) causes a lethal form of recessively inherited nemaline myopathy (Amish nemaline myopathy, ANM). To investigate the pathogenesis and muscle pathophysiology of ANM, we studied the phenotypes of partial and total loss of ssTnT in Tnnt1 gene targeted mice. An insertion of neomycin resistance cassette in intron 10 of Tnnt1 gene caused an approximately 60% decrease in ssTnT protein expression whereas cre-loxP-mediated deletion of exons 11-13 resulted in total loss of ssTnT, as seen in ANM muscles. In diaphragm and soleus muscles of the knockdown and knockout mouse models, we demonstrated that ssTnT deficiency resulted in significantly decreased levels of other slow fibre-specific myofilament proteins whereas fast fibre-specific myofilament proteins were increased correspondingly. Immunohistochemical studies revealed that ssTnT deficiency produced significantly smaller type I slow fibres and compensatory growth of type II fast fibres. Along with the slow fibre atrophy and the changes in myofilament protein isoform contents, ssTnT deficiency significantly reduced the tolerance to fatigue in soleus muscle. ssTnT-deficient soleus muscle also contains significant numbers of small-sized central nuclei type I fibres, indicating active regeneration. The data provide strong support for the essential role of ssTnT in skeletal muscle function and the causal effect of its loss in the pathology of ANM. This observation further supports the hypothesis that the function of slow fibres can be restored in ANM patients if a therapeutic supplement of ssTnT is achieved.
Collapse
Affiliation(s)
- Bin Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit MI 48201, USA.
| | | | | |
Collapse
|
30
|
Renaud G, Llano-Diez M, Ravara B, Gorza L, Feng HZ, Jin JP, Cacciani N, Gustafson AM, Ochala J, Corpeno R, Li M, Hedström Y, Ford GC, Nair KS, Larsson L. Sparing of muscle mass and function by passive loading in an experimental intensive care unit model. J Physiol 2013; 591:1385-402. [PMID: 23266938 PMCID: PMC3607878 DOI: 10.1113/jphysiol.2012.248724] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/21/2012] [Indexed: 11/08/2022] Open
Abstract
The response to mechanical stimuli, i.e., tensegrity, plays an important role in regulating cell physiological and pathophysiological function, and the mechanical silencing observed in intensive care unit (ICU) patients leads to a severe and specific muscle wasting condition. This study aims to unravel the underlying mechanisms and the effects of passive mechanical loading on skeletal muscle mass and function at the gene, protein and cellular levels. A unique experimental rat ICU model has been used allowing long-term (weeks) time-resolved analyses of the effects of standardized unilateral passive mechanical loading on skeletal muscle size and function and underlying mechanisms. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded versus the unloaded muscles after a 2-week ICU intervention. We demonstrate that the improved maintenance of muscle mass and function is probably a consequence of a reduced oxidative stress revealed by lower levels of carbonylated proteins, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, extracellular matrix/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle size and function associated with the mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients.
Collapse
Affiliation(s)
- Guillaume Renaud
- Department of Neuroscience, Clinical Neurophysiology, University Hospital, Entrance 85, 3rd floor, SE-751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Feng HZ, Chen X, Hossain MM, Jin JP. Toad heart utilizes exclusively slow skeletal muscle troponin T: an evolutionary adaptation with potential functional benefits. J Biol Chem 2012; 287:29753-64. [PMID: 22778265 PMCID: PMC3436204 DOI: 10.1074/jbc.m112.373191] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/02/2012] [Indexed: 11/06/2022] Open
Abstract
The three isoforms of vertebrate troponin T (TnT) are normally expressed in a muscle type-specific manner. Here we report an exception that the cardiac muscle of toad (Bufo) expresses exclusively slow skeletal muscle TnT (ssTnT) together with cardiac forms of troponin I and myosin as determined using immunoblotting, cDNA cloning, and/or LC-MS/MS. Using RT-PCR and 3'- and 5'-rapid amplification of cDNA ends on toad cardiac mRNA, we cloned full-length cDNAs encoding two alternatively spliced variants of ssTnT. Expression of the cloned cDNAs in Escherichia coli confirmed that the toad cardiac muscle expresses solely ssTnT, predominantly the low molecular weight variant with the exon 5-encoded NH(2)-terminal segment spliced out. Functional studies were performed in ex vivo working toad hearts and compared with the frog (Rana) hearts. The results showed that toad hearts had higher contractile and relaxation velocities and were able to work against a significantly higher afterload than that of frog hearts. Therefore, the unique evolutionary adaptation of utilizing exclusively ssTnT in toad cardiac muscle corresponded to a fitness value from improving systolic function of the heart. The data demonstrated a physiological importance of the functional diversity of TnT isoforms. The structure-function relationship of TnT may be explored for the development of new treatment of heart failure.
Collapse
Affiliation(s)
- Han-Zhong Feng
- From the Department of Physiology, Wayne State University School of
Medicine, Detroit, Michigan 48201
| | - Xuequn Chen
- From the Department of Physiology, Wayne State University School of
Medicine, Detroit, Michigan 48201
| | - M. Moazzem Hossain
- From the Department of Physiology, Wayne State University School of
Medicine, Detroit, Michigan 48201
| | - Jian-Ping Jin
- From the Department of Physiology, Wayne State University School of
Medicine, Detroit, Michigan 48201
| |
Collapse
|
32
|
Yu ZB, Wei H, Jin JP. Chronic coexistence of two troponin T isoforms in adult transgenic mouse cardiomyocytes decreased contractile kinetics and caused dilatative remodeling. Am J Physiol Cell Physiol 2012; 303:C24-32. [PMID: 22538236 DOI: 10.1152/ajpcell.00026.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213-C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97-H105, 2010). Here we characterized Ca(2+)-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca(2+) was unchanged, but the peak Ca(2+) transient was lowered and the durations of Ca(2+) rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca(2+) transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca(2+), resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences.
Collapse
Affiliation(s)
- Zhi-Bin Yu
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
33
|
Akhter S, Zhang Z, Jin JP. The heart-specific NH2-terminal extension regulates the molecular conformation and function of cardiac troponin I. Am J Physiol Heart Circ Physiol 2011; 302:H923-33. [PMID: 22140044 DOI: 10.1152/ajpheart.00637.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In addition to the core structure conserved in all troponin I isoforms, cardiac troponin I (cTnI) has an ∼30 amino acids NH(2)-terminal extension. This peptide segment is a heart-specific regulatory structure containing two Ser residues that are substrates of PKA. Under β-adrenergic regulation, phosphorylation of cTnI in the NH(2)-terminal extension increases the rate of myocardial relaxation. The NH(2)-terminal extension of cTnI is also removable by restrictive proteolysis to produce functional adaptation to hemodynamic stresses. The molecular mechanism for the NH(2)-terminal modifications to regulate the function of cTnI is not fully understood. In the present study, we tested a hypothesis that the NH(2)-terminal extension functions by modulating the conformation of other regions of cTnI. Monoclonal antibody epitope analysis and protein binding experiments demonstrated that deletion of the NH(2)-terminal segment altered epitopic conformation in the middle, but not COOH-terminal, region of cTnI. PKA phosphorylation produced similar effects. This targeted long-range conformational modulation corresponded to changes in the binding affinities of cTnI for troponin T and for troponin C in a Ca(2+)-dependent manner. The data suggest that the NH(2)-terminal extension of cTnI regulates cardiac muscle function through modulating molecular conformation and function of the core structure of cTnI.
Collapse
Affiliation(s)
- Shirin Akhter
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
34
|
Zhang Z, Akhter S, Mottl S, Jin JP. Calcium-regulated conformational change in the C-terminal end segment of troponin I and its binding to tropomyosin. FEBS J 2011; 278:3348-59. [PMID: 21777381 DOI: 10.1111/j.1742-4658.2011.08250.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The troponin complex plays an essential role in the thin filament regulation of striated muscle contraction. Of the three subunits of troponin, troponin I (TnI) is the actomyosin ATPase inhibitory subunit and its effect is released upon Ca(2+) binding to troponin C. The exon-8-encoded C-terminal end segment represented by the last 24 amino acids of cardiac TnI is highly conserved and is critical to the inhibitory function of troponin. Here, we investigated the function and calcium regulation of the C-terminal end segment of TnI. A TnI model molecule was labeled with Alexa Fluor 532 at a Cys engineered at the C-terminal end and used to reconstitute the tertiary troponin complex. A Ca(2+) -regulated conformational change in the C-terminus of TnI was shown by a sigmoid-shape fluorescence intensity titration curve similar to that of the CD calcium titration curve of troponin C. Such corresponding Ca(2+) responses are consistent with the function of troponin as a coordinated molecular switch. Reconstituted troponin complex containing a mini-troponin T lacking its two tropomyosin-binding sites showed a saturable binding to tropomyosin at pCa 9 but not at pCa 4. This Ca(2+) -regulated binding was diminished when the C-terminal 19 amino acids of cardiac TnI were removed. These results provided novel evidence for suggesting that the C-terminal end segment of TnI participates in the Ca(2+) regulation of muscle thin filament through interaction with tropomyosin.
Collapse
Affiliation(s)
- Zhiling Zhang
- Evanston Northwestern Healthcare and Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
35
|
Wei B, Jin JP. Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 2011; 505:144-54. [PMID: 20965144 PMCID: PMC3018564 DOI: 10.1016/j.abb.2010.10.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 12/11/2022]
Abstract
Troponin-mediated Ca²(+)-regulation governs the actin-activated myosin motor function which powers striated (skeletal and cardiac) muscle contraction. This review focuses on the structure-function relationship of troponin T, one of the three protein subunits of the troponin complex. Molecular evolution, gene regulation, alternative RNA splicing, and posttranslational modifications of troponin T isoforms in skeletal and cardiac muscles are summarized with emphases on recent research progresses. The physiological and pathophysiological significances of the structural diversity and regulation of troponin T are discussed for impacts on striated muscle function and adaptation in health and diseases.
Collapse
Affiliation(s)
- Bin Wei
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
36
|
Jin JP, Chong SM. Localization of the two tropomyosin-binding sites of troponin T. Arch Biochem Biophys 2010; 500:144-50. [PMID: 20529660 PMCID: PMC2904419 DOI: 10.1016/j.abb.2010.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 11/28/2022]
Abstract
Troponin T (TnT) binds to tropomyosin (Tm) to anchor the troponin complex in the thin filament, and it thus serves as a vital link in the Ca(2+) regulation of striated muscle contraction. Pioneer work three decades ago determined that the T1 and T2 chymotryptic fragments of TnT each contains a Tm-binding site. A more precise localization of the two Tm-binding sites of TnT remains to be determined. In the present study, we tested serial deletion constructs of TnT and carried out monoclonal antibody competition experiments to show that the T1 region Tm-binding site involves mainly a 39 amino acids segment in the N-terminal portion of the conserved middle region of TnT. We further employed another set of TnT fragments to locate the T2 region Tm-binding site to a segment of 25 amino acids near the beginning of the T2 fragment. The localization of the two Tm-binding sites of TnT provided new information for the structure-function relationship of TnT and the anchoring of troponin complex on muscle thin filament.
Collapse
Affiliation(s)
- J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | |
Collapse
|
37
|
Shaffer JF, Gillis TE. Evolution of the regulatory control of vertebrate striated muscle: the roles of troponin I and myosin binding protein-C. Physiol Genomics 2010; 42:406-19. [PMID: 20484158 DOI: 10.1152/physiolgenomics.00055.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Troponin I (TnI) and myosin binding protein-C (MyBP-C) are key regulatory proteins of contractile function in vertebrate muscle. TnI modulates the Ca2+ activation signal, while MyBP-C regulates cross-bridge cycling kinetics. In vertebrates, each protein is distributed as tissue-specific paralogs in fast skeletal (fs), slow skeletal (ss), and cardiac (c) muscles. The purpose of this study is to characterize how TnI and MyBP-C have changed during the evolution of vertebrate striated muscle and how tissue-specific paralogs have adapted to different physiological conditions. To accomplish this we have completed phylogenetic analyses using the amino acid sequences of all known TnI and MyBP-C isoforms. This includes 99 TnI sequences (fs, ss, and c) from 51 different species and 62 MyBP-C sequences from 26 species, with representatives from each vertebrate group. Results indicate that the role of protein kinase A (PKA) and protein kinase C (PKC) in regulating contractile function has changed during the evolution of vertebrate striated muscle. This is reflected in an increased number of phosphorylatable sites in cTnI and cMyBP-C in endothermic vertebrates and the loss of two PKC sites in fsTnI in a common ancestor of mammals, birds, and reptiles. In addition, we find that His132, Val134, and Asn141 in human ssTnI, previously identified as enabling contractile function during cellular acidosis, are present in all vertebrate cTnI isoforms except those from monotremes, marsupials, and eutherian mammals. This suggests that the replacement of these residues with alternative residues coincides with the evolution of endothermy in the mammalian lineage.
Collapse
Affiliation(s)
- Justin F. Shaffer
- Department of Bioengineering, University of Washington, Seattle, Washington; and
| | - Todd E. Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
38
|
Biesiadecki BJ, Tachampa K, Yuan C, Jin JP, de Tombe PP, Solaro RJ. Removal of the cardiac troponin I N-terminal extension improves cardiac function in aged mice. J Biol Chem 2010; 285:19688-98. [PMID: 20410305 PMCID: PMC2885247 DOI: 10.1074/jbc.m109.086892] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 04/02/2010] [Indexed: 01/08/2023] Open
Abstract
The cardiac troponin I (cTnI) isoform contains a unique N-terminal extension that functions to modulate activation of cardiac myofilaments. During cardiac remodeling restricted proteolysis of cTnI removes this cardiac specific N-terminal modulatory extension to alter myofilament regulation. We have demonstrated expression of the N-terminal-deleted cTnI (cTnI-ND) in the heart decreased the development of the cardiomyopathy like phenotype in a beta-adrenergic-deficient transgenic mouse model. To investigate the potential beneficial effects of cTnI-ND on the development of naturally occurring cardiac dysfunction, we measured the hemodynamic and biochemical effects of cTnI-ND transgenic expression in the aged heart. Echocardiographic measurements demonstrate cTnI-ND transgenic mice exhibit increased systolic and diastolic functions at 16 months of age compared with age-matched controls. This improvement likely results from decreased Ca(2+) sensitivity and increased cross-bridge kinetics as observed in skinned papillary bundles from young transgenic mice prior to the effects of aging. Hearts of cTnI-ND transgenic mice further exhibited decreased beta myosin heavy chain expression compared to age matched non-transgenic mice as well as altered cTnI phosphorylation. Finally, we demonstrated cTnI-ND expressed in the heart is not phosphorylated indicating the cTnI N-terminal is necessary for the higher level phosphorylation of cTnI. Taken together, our data suggest the regulated proteolysis of cTnI during cardiac stress to remove the unique cardiac N-terminal extension functions to improve cardiac contractility at the myofilament level and improve overall cardiac function.
Collapse
Affiliation(s)
- Brandon J Biesiadecki
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Wei B, Gao J, Huang XP, Jin JP. Mutual rescues between two dominant negative mutations in cardiac troponin I and cardiac troponin T. J Biol Chem 2010; 285:27806-16. [PMID: 20551314 DOI: 10.1074/jbc.m110.137844] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin T (TnT) and troponin I (TnI) are two evolutionarily and functionally linked subunits of the troponin complex that regulates striated muscle contraction. We previously reported a single amino acid substitution in the highly conserved TnT-binding helix of cardiac TnI (cTnI) in wild turkey hearts in concurrence with an abnormally spliced myopathic cardiac TnT (cTnT) (Biesiadecki, B. J., Schneider, K. L., Yu, Z. B., Chong, S. M., and Jin, J. P. (2004) J. Biol. Chem. 279, 13825-13832). To investigate the functional effect of this cTnI mutation and its potential value in compensating for the cTnT abnormality, we developed transgenic mice expressing the mutant cTnI (K118C) in the heart with or without the deletion of the endogenous cTnI gene to mimic the homozygote and heterozygote of wild turkeys. Double and triple transgenic mice were created by crossing the cTnI-K118C lines with transgenic mice overexpressing the myopathic cTnT (exon 7 deletion). Functional studies of ex vivo working hearts found that cTnI-K118C alone had a dominantly negative effect on diastolic function and blunted the inotropic responses of cardiac muscle to beta-adrenergic stimuli without abolishing the protein kinase A-dependent phosphorylation of cTnI. When co-expressed with the cTnT mutation, cTnI-K118C corrected the significant depression of systolic function caused by cTnT exon 7 deletion, and the co-existence of exon 7-deleted cTnT minimized the diastolic abnormality of cTnI-K118C. Characterization of this naturally selected pair of mutually rescuing mutations demonstrated that TnI-TnT interaction is a critical link in the Ca(2+) signaling and beta-adrenergic regulation in cardiac muscle, suggesting a potential target for the treatment of troponin cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Bin Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
40
|
Feng HZ, Wei B, Jin JP. Deletion of a genomic segment containing the cardiac troponin I gene knocks down expression of the slow troponin T gene and impairs fatigue tolerance of diaphragm muscle. J Biol Chem 2009; 284:31798-806. [PMID: 19797054 DOI: 10.1074/jbc.m109.020826] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The loss of slow skeletal muscle troponin T (TnT) results in a recessive nemaline myopathy in the Amish featured with lethal respiratory failure. The genes encoding slow TnT and cardiac troponin I (TnI) are closely linked. Ex vivo promoter analysis suggested that the 5'-enhancer region of the slow TnT gene overlaps with the structure of the upstream cardiac TnI gene. Using transgenic expression of exogenous cardiac TnI to rescue the postnatal lethality of a mouse line in which the entire cardiac TnI gene was deleted, we investigated the effect of enhancer deletion on slow TnT gene expression in vivo and functional consequences. The levels of slow TnT mRNA and protein were significantly reduced in the diaphragm muscle of adult double transgenic mice. The slow TnT-deficient (ssTnT-KD) diaphragm muscle exhibited atrophy and decreased ratios of slow versus fast isoforms of TnT, TnI, and myosin. Consistent with the changes toward more fast myofilament contents, ssTnT-KD diaphragm muscle required stimulation at higher frequency for optimal tetanic force production. The ssTnT-KD diaphragm muscle also exhibited significantly reduced fatigue tolerance, showing faster and more declines of force with slower and less recovery from fatigue as compared with the wild type controls. The natural switch to more slow fiber contents during aging was partially blunted in the ssTnT-KD skeletal muscle. The data demonstrated a critical role of slow TnT in diaphragm function and in the pathogenesis and pathophysiology of Amish nemaline myopathy.
Collapse
Affiliation(s)
- Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|