1
|
Rawat K, Pal A, Banerjee S, Pal A, Mandal SC, Batabyal S. Ovine CD14- an Immune Response Gene Has a Role Against Gastrointestinal Nematode Haemonchus contortus-A Novel Report. Front Immunol 2021; 12:664877. [PMID: 34335567 PMCID: PMC8324245 DOI: 10.3389/fimmu.2021.664877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
CD14 (also known as the monocyte differentiation antigen) is an important immune response gene known to be primarily responsible for innate immunity against bacterial pathogens, and as a pattern recognition receptor (PRR), binds with LPS (endotoxin), lipoproteins, and lipotechoic acid of bacteria. So far very limited work has been conducted in parasitic immunology. In the current study, we reported the role of CD14 in parasitic immunology in livestock species (sheep) for the first time. Ovine CD14 is characterized as a horse-shoe shaped bent solenoid with a hydrophobic amino-terminal pocket for CD14 along with domains. High mutation frequency was observed, out of total 41 mutations identified, 23 mutations were observed to be thermodynamically unstable and 11 mutations were deleterious in nature, causing major functional alteration of important domains of CD14, an indication of variations in individual susceptibility for sheep against Haemonchus contortus infestations. In silico studies with molecular docking reveal a role of immune response against Haemonchus contortus in sheep, which is later confirmed with experimental evidence through differential mRNA expression analysis for sheep, which revealed better expression of CD14 in Haemonchus contortus infected sheep compared to that of non-infected sheep. We confirmed the above findings with supportive evidence through haematological and biochemical analyses. Phylogenetic analysis was conducted to assess the evolutionary relationship with respect to humans and it was observed that sheep may well be used as model organisms due to better genetic closeness compared to that of mice.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of BioChemistry, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Aruna Pal
- Department of LFC, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Samiddha Banerjee
- Department of Animal Science, Visva Bharati University, Bolpur, India
| | - Abantika Pal
- Department of Computer Science, Indian Institute of Technology, Kharagpur, India
| | - Subhas Chandra Mandal
- Department of Parasitology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Subhasis Batabyal
- Department of BioChemistry, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
2
|
Minias P, Włodarczyk R, Remisiewicz M, Cobzaru I, Janiszewski T. Distinct evolutionary trajectories of MHC class I and class II genes in Old World finches and buntings. Heredity (Edinb) 2021; 126:974-990. [PMID: 33824536 PMCID: PMC8178356 DOI: 10.1038/s41437-021-00427-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Major histocompatibility complex (MHC) genes code for key proteins of the adaptive immune system, which present antigens from intra-cellular (MHC class I) and extra-cellular (MHC class II) pathogens. Because of their unprecedented diversity, MHC genes have long been an object of scientific interest, but due to methodological difficulties in genotyping of duplicated loci, our knowledge on the evolution of the MHC across different vertebrate lineages is still limited. Here, we compared the evolution of MHC class I and class II genes in three sister clades of common passerine birds, finches (Fringillinae and Carduelinae) and buntings (Emberizidae) using a uniform methodological (genotyping and data processing) approach and uniform sample sizes. Our analyses revealed contrasting evolutionary trajectories of the two MHC classes. We found a stronger signature of pervasive positive selection and higher allele diversity (allele numbers) at the MHC class I than class II. In contrast, MHC class II genes showed greater allele divergence (in terms of nucleotide diversity) and a much stronger recombination (gene conversion) signal. Gene copy numbers at both MHC class I and class II evolved via fluctuating selection and drift (Brownian Motion evolution), but the evolutionary rate was higher at class I. Our study constitutes one of few existing examples, where evolution of MHC class I and class II genes was directly compared using a multi-species approach. We recommend that re-focusing MHC research from single-species and single-class approaches towards multi-species analyses of both MHC classes can substantially increase our understanding MHC evolution in a broad phylogenetic context.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Magdalena Remisiewicz
- Bird Migration Research Station, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Ioana Cobzaru
- Institute of Biology Bucharest, Romanian Academy, Bucharest, Romania
| | - Tomasz Janiszewski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
3
|
Těšický M, Velová H, Novotný M, Kreisinger J, Beneš V, Vinkler M. Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae). Mol Ecol 2020; 29:3056-3070. [PMID: 32652716 DOI: 10.1111/mec.15547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll-like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand-binding regions of bacteria-sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N-glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post-translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state-of-the-art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein-coding polymorphisms.
Collapse
Affiliation(s)
- Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Laboratory Heidelberg, Heidelberg, Germany
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Gupta MK, Vadde R. Genetic Basis of Adaptation and Maladaptation via Balancing Selection. ZOOLOGY 2019; 136:125693. [PMID: 31513936 DOI: 10.1016/j.zool.2019.125693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
5
|
Jeon HB, Won H, Suk HY. Polymorphism of MHC class IIB in an acheilognathid species, Rhodeus sinensis shaped by historical selection and recombination. BMC Genet 2019; 20:74. [PMID: 31519169 PMCID: PMC6743125 DOI: 10.1186/s12863-019-0775-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rhodeus sinensis is a bitterling species occurring throughout the numerous freshwater systems on the East Asia. Here, we analyzed the diversity of the MHC class IIB (DAB) genes from this species, which may offer meaningful insights into evolutionary processes in this species as well as other bitterlings. RESULTS Using cDNA and gDNA samples from 50 individuals, we discovered classical 140 allelic sequences that could be allocated into either DAB1 (Rhsi-DAB1) or DAB3 (Rhsi-DAB3). DAB sequences completely lacking the intron, but identical or similar to Rhsi-DAB1, were also discovered from our gDNA samples, and this intron loss likely originated from the retrotransposition events of processed mDNA. The β1 domain was the most polymorphic in both Rhsi-DAB1 and -DAB3. Putative peptide biding residues (PBRs) in Rhsi-DAB1, but not in Rhsi-DAB3, exhibited a significant dN/dS, presumably indicating that different selection pressures have acted on those two DABs. Recombination between different alleles seemed to have contributed to the increase of diversity in Rhsi-DABs. Upon phylogenetic analysis, Rhsi-DAB1 and -DAB3 formed independent clusters. Several alleles from other species of Cypriniformes were embedded in the clade of Rhsi-DAB1, whereas Rhsi-DAB3 clustered with alleles from the wider range of taxa (Cyprinodontiformes), indicating that these two Rhsi-DABs have taken different historical paths. CONCLUSIONS A great deal of MHC class IIB allelic diversity was found in R. sinensis, and gene duplication, selection and recombination may have contributed to this diversity. Based on our data, it is presumed that such historical processes have commonly or differently acted on the polymorphism of Rhsi-DAB1 and -DAB3.
Collapse
Affiliation(s)
- Hyung-Bae Jeon
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
- Department of Biology, Concordia University, 7141 Sherbrooke W, Montreal, Quebec H4B 1R6 Canada
| | - Hari Won
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541 South Korea
| |
Collapse
|
6
|
Wang Z, Zhou X, Lin Q, Fang W, Chen X. Diversity and selection of MHC class I genes in the vulnerable Chinese egret (Egretta eulophotes). PLoS One 2017; 12:e0176671. [PMID: 28467494 PMCID: PMC5415105 DOI: 10.1371/journal.pone.0176671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/16/2017] [Indexed: 11/19/2022] Open
Abstract
The genes of major histocompatibility complex (MHC) are important to vertebrate immune system. In this study, two new MHC class I genes, designated as Egeu-UAA and Egeu-UBA, were discovered in the vulnerable Chinese egret (Egretta eulophotes). Using a full length DNA and cDNA produced by PCR and RACE methods, these two MHC class I loci were characterized in the genome of the Chinese egret and were also found to be expressed in liver and blood. Both new genes showed the expected eight exons and were similar to two copies of the minimal essential MHC complex of chicken. In genetic diversity, 14 alleles (8 for UAA and 6 for UBA) in the MHC class I gene exon 3 were found in 60 individuals using locus-specific primers and showed little polymorphism. Only three potential amino acid residues were detected under positive selection in potential peptide-binding regions (PBRs) by Bayesian analysis. These new results provide the fundamental basis for further studies to elucidate the molecular mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids, finding that have not been previously reported.
Collapse
Affiliation(s)
- Zeng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiaoping Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Qingxian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Wenzhen Fang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
- * E-mail: (WF); (XC)
| | - Xiaolin Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People's Republic of China
- * E-mail: (WF); (XC)
| |
Collapse
|
7
|
Li D, Sun K, Zhao Y, Lin A, Li S, Jiang Y, Feng J. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting ( Emberiza jankowskii). PeerJ 2017; 5:e2917. [PMID: 28149689 PMCID: PMC5270597 DOI: 10.7717/peerj.2917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022] Open
Abstract
Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0.1667. Overall, compared to other passerine birds, a relatively low level of MHC polymorphism was revealed in E. jankowskii, which was similar to that in E. cioides. Positive selection was detected by PAML/SLAC/FEL analyses in the region encoding the peptide-binding region in both species, and no recombination was detected. Phylogenetic analysis showed that the alleles from E. jankowskii and E. cioides belong to the same clade and the two species shared similar alleles, suggesting the occurrence of a trans-species polymorphism between the two Emberiza species.
Collapse
Affiliation(s)
- Dan Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
| | - Yunjiao Zhao
- College of Animal Science and Technology, Jilin Agricultural University , Changchun , China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
| | - Shi Li
- College of Animal Science and Technology, Jilin Agricultural University , Changchun , China
| | - Yunlei Jiang
- College of Animal Science and Technology, Jilin Agricultural University , Changchun , China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , Changchun , China
| |
Collapse
|
8
|
Population genetic diversity and geographical differentiation of MHC class II DAB genes in the vulnerable Chinese egret (Egretta eulophotes). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0876-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Lei W, Zhou X, Fang W, Lin Q, Chen X. Major histocompatibility complex class II DAB alleles associated with intestinal parasite load in the vulnerable Chinese egret (Egretta eulophotes). Ecol Evol 2016; 6:4421-34. [PMID: 27386085 PMCID: PMC4930990 DOI: 10.1002/ece3.2226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 11/09/2022] Open
Abstract
The maintenance of major histocompatibility complex (MHC) polymorphism has been hypothesized to result from many mechanisms such as rare-allele advantage, heterozygote advantage, and allele counting. In the study reported herein, 224 vulnerable Chinese egrets (Egretta eulophotes) were used to examine these hypotheses as empirical results derived from bird studies are rare. Parasite survey showed that 147 (65.63%) individuals were infected with 1-3 helminths, and 82.31% of these infected individuals carried Ascaridia sp. Using asymmetric polymerase chain reaction technique, 10 DAB1, twelve DAB2, and three DAB3 exon 2 alleles were identified at each single locus. A significant association of the rare allele Egeu-DAB2*05 (allele frequency: 0.022) with helminth resistance was found for all helminths, as well as for the most abundant morphotype Ascaridia sp. in the separate analyses. Egeu-DAB2*05 occurred frequently in uninfected individuals, and individuals carrying Egeu-DAB2*05 had significantly lower helminth morphotypes per individual (HMI) (the number of HMI) and the fecal egg count values. Further, the parasite infection measurements were consistently lower in individuals with an intermediate number of different alleles in the duplicated DAB loci. Significantly, heterozygosity within each DAB locus was not correlated with any parasite infection measurements. These results indicate that the diversity in MHC Egeu-DAB gene is associated with intestinal parasite load and maintained by pathogen-driven selection that probably operate through both the rare-allele advantage and the allele counting strategy, and suggest that Egeu-DAB2*05 might be a valuable indicator of better resistance to helminth diseases in the vulnerable Chinese egret.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| |
Collapse
|
10
|
Kohyama TI, Akiyama T, Nishida C, Takami K, Onuma M, Momose K, Masuda R. Isolation and characterization of major histocompatibility complex class II B genes in cranes. Immunogenetics 2015; 67:705-10. [PMID: 26452363 DOI: 10.1007/s00251-015-0874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
Abstract
In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.
Collapse
Affiliation(s)
- Tetsuo I Kohyama
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Takuya Akiyama
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Chizuko Nishida
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kazutoshi Takami
- Osaka Municipal Tennoji Zoological Gardens, 1-108, Chausuyama-cho, Tennoji-ku, Osaka, Osaka, 543-0063, Japan
| | - Manabu Onuma
- Ecological Genetics Analysis Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Kunikazu Momose
- Red-crowned Crane Conservancy, Wakatake-cho, Kushiro, Hokkaido, 085-0036, Japan
| | - Ryuichi Masuda
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
11
|
Lei W, Fang W, Lin Q, Zhou X, Chen X. Characterization of a non-classical MHC class II gene in the vulnerable Chinese egret (Egretta eulophotes). Immunogenetics 2015; 67:463-72. [PMID: 26033691 DOI: 10.1007/s00251-015-0846-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/16/2015] [Indexed: 11/28/2022]
Abstract
Genes of the major histocompatibility complex (MHC) are valuable makers of adaptive genetic variation in evolutionary ecology research, yet the non-classical MHC genes remain largely unstudied in wild vertebrates. In this study, we have characterized the non-classical MHC class II gene, Egeu-DAB4, in the vulnerable Chinese egret (Ciconiiformes, Ardeidae, Egretta eulophotes). Gene expression analyses showed that Egeu-DAB4 gene had a restricted tissue expression pattern, being expressed in seven examined tissues including the liver, heart, kidney, esophagus, stomach, gallbladder, and intestine, but not in muscle. With respect to polymorphism, only one allele of exon 2 was obtained from Egeu-DAB4 using asymmetric PCR, indicating that Egeu-DAB4 is genetically monomorphic in exon 2. Comparative analyses showed that Egeu-DAB4 had an unusual sequence, with amino acid differences suggesting that its function may differ from those of classical MHC genes. Egeu-DAB4 gene was only found in 30.56-36.56 % of examined Chinese egret individuals. Phylogenetic analysis showed a closer relationship between Egeu-DAB4 and the DAB2 genes in nine other ardeid species. These new findings provide a foundation for further studies to clarify the immunogenetics of non-classical MHC class II gene in the vulnerable Chinese egret and other ciconiiform birds.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China,
| | | | | | | | | |
Collapse
|
12
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
13
|
Taniguchi Y, Matsumoto K, Matsuda H, Yamada T, Sugiyama T, Homma K, Kaneko Y, Yamagishi S, Iwaisaki H. Structure and polymorphism of the major histocompatibility complex class II region in the Japanese Crested Ibis, Nipponia nippon. PLoS One 2014; 9:e108506. [PMID: 25247679 PMCID: PMC4172706 DOI: 10.1371/journal.pone.0108506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/21/2014] [Indexed: 12/15/2022] Open
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic genomic region that plays a central role in the immune system. Despite its functional consistency, the genomic structure of the MHC differs substantially among organisms. In birds, the MHC-B structures of Galliformes, including chickens, have been well characterized, but information about other avian MHCs remains sparse. The Japanese Crested Ibis (Nipponia nippon, Pelecaniformes) is an internationally conserved, critically threatened species. The current Japanese population of N. nippon originates from only five founders; thus, understanding the genetic diversity among these founders is critical for effective population management. Because of its high polymorphism and importance for disease resistance and other functions, the MHC has been an important focus in the conservation of endangered species. Here, we report the structure and polymorphism of the Japanese Crested Ibis MHC class II region. Screening of genomic libraries allowed the construction of three contigs representing different haplotypes of MHC class II regions. Characterization of genomic clones revealed that the MHC class II genomic structure of N. nippon was largely different from that of chicken. A pair of MHC-IIA and -IIB genes was arranged head-to-head between the COL11A2 and BRD2 genes. Gene order in N. nippon was more similar to that in humans than to that in chicken. The three haplotypes contained one to three copies of MHC-IIA/IIB gene pairs. Genotyping of the MHC class II region detected only three haplotypes among the five founders, suggesting that the genetic diversity of the current Japanese Crested Ibis population is extremely low. The structure of the MHC class II region presented here provides valuable insight for future studies on the evolution of the avian MHC and for conservation of the Japanese Crested Ibis.
Collapse
Affiliation(s)
- Yukio Taniguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Keisuke Matsumoto
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Matsuda
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahisa Yamada
- Department of Agrobiology, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshie Sugiyama
- Department of Agrobiology, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Kosuke Homma
- Field Center for Sustainable Agriculture and Forestry, Niigata University, Niigata, Japan
| | | | | | - Hiroaki Iwaisaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Alcaide M, Muñoz J, Martínez-de la Puente J, Soriguer R, Figuerola J. Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae). Ecol Evol 2014; 4:688-98. [PMID: 24683452 PMCID: PMC3967895 DOI: 10.1002/ece3.974] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 11/25/2022] Open
Abstract
The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next-generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide-binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high-frequency segregating sites (average Tajima's D = 2.36, P < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non-passerine bird.
Collapse
Affiliation(s)
- Miguel Alcaide
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Joaquin Muñoz
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
- The University of Oklahoma Biological Station15389 Station Road, Kingston, Oklahoma, 73439
| | | | - Ramón Soriguer
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana – CSICAvda. Américo Vespucio s/n, 41092, Sevilla, Spain
| |
Collapse
|
15
|
Wang Z, Zhou X, Lin Q, Fang W, Chen X. Characterization, polymorphism and selection of major histocompatibility complex (MHC) DAB genes in vulnerable Chinese egret (Egretta eulophotes). PLoS One 2013; 8:e74185. [PMID: 24019955 PMCID: PMC3760844 DOI: 10.1371/journal.pone.0074185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/28/2013] [Indexed: 12/15/2022] Open
Abstract
The major histocompatibility complex (MHC) is an excellent molecular marker for the studies of evolutionary ecology and conservation genetics because it is a family of highly polymorphic genes that play a key role in vertebrate immune response. In this study, the functional genes of MHC Class II B (DAB) were isolated for the first time in a vulnerable species, the Chinese egret (Egrettaeulophotes). Using a full length DNA and cDNA produced by PCR and RACE methods, four potential MHC DAB loci were characterized in the genome of this egret and all four were expressed in liver and blood. At least four copies of the MHC gene complex were similar to two copies of the minimal essential MHC complex of chicken, but are less complex than the multiple copies expressed in passerine species. In MHC polymorphism, 19 alleles of exon 2 were isolated from 48 individuals using PCR. No stop codons or frameshift mutations were found in any of the coding regions. The signatures of positive selection detected in potential peptide-binding regions by Bayesian analysis, suggesting that all of these genes were functional. These data will provide the fundamental basis for further studies to elucidate the mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids.
Collapse
Affiliation(s)
- Zeng Wang
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (WF); (XC)
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian, People’s Republic of China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (WF); (XC)
| |
Collapse
|
16
|
Aguilar JRD, Schut E, Merino S, Martínez J, Komdeur J, Westerdahl H. MHC class II B diversity in blue tits: a preliminary study. Ecol Evol 2013; 3:1878-89. [PMID: 23919136 PMCID: PMC3728931 DOI: 10.1002/ece3.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/17/2013] [Indexed: 12/18/2022] Open
Abstract
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.
Collapse
Affiliation(s)
- Juan Rivero-de Aguilar
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Elske Schut
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC)J. Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Javier Martínez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de AlcaláAlcalá de Henares, E-28871, Madrid, Spain
| | - Jan Komdeur
- Behavioural Ecology and Self-Organization, The University of GroningenPO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Ecology Building, Lund UniversitySölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
17
|
Alcaide M, Liu M, Edwards SV. Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3. PeerJ 2013; 1:e86. [PMID: 23781408 PMCID: PMC3685324 DOI: 10.7717/peerj.86] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/23/2013] [Indexed: 01/04/2023] Open
Abstract
Genes of the Major Histocompatibility Complex (MHC) have become an important marker for the investigation of adaptive genetic variation in vertebrates because of their critical role in pathogen resistance. However, despite significant advances in the last few years the characterization of MHC variation in non-model species still remains a challenging task due to the redundancy and high variation of this gene complex. Here we report the utility of a single pair of primers for the cross-amplification of the third exon of MHC class I genes, which encodes the more polymorphic half of the peptide-binding region (PBR), in oscine passerines (songbirds; Aves: Passeriformes), a group especially challenging for MHC characterization due to the presence of large and complex MHC multigene families. In our survey, although the primers failed to amplify exon 3 from two suboscine passerine birds, they amplified exon 3 of multiple MHC class I genes in all 16 species of oscine songbirds tested, yielding a total of 120 sequences. The 16 songbird species belong to 14 different families, primarily within the Passerida, but also in the Corvida. Using a conservative approach based on the analysis of cloned amplicons (n = 16) from each species, we found between 3 and 10 MHC sequences per individual. Each allele repertoire was highly divergent, with the overall number of polymorphic sites per species ranging from 33 to 108 (out of 264 sites) and the average number of nucleotide differences between alleles ranging from 14.67 to 43.67. Our survey in songbirds allowed us to compare macroevolutionary dynamics of exon 3 between songbirds and non-passerine birds. We found compelling evidence of positive selection acting specifically upon peptide-binding codons across birds, and we estimate the strength of diversifying selection in songbirds to be about twice that in non-passerines. Analysis using comparative methods suggest weaker evidence for a higher GC content in the 3rd codon position of exon 3 in non-passerine birds, a pattern that contrasts with among-clade GC patterns found in other avian studies and may suggests different mutational mechanisms. Our primers represent a useful tool for the characterization of functional and evolutionarily relevant MHC variation across the hyperdiverse songbirds.
Collapse
Affiliation(s)
- Miguel Alcaide
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Mark Liu
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|