1
|
Kakumu Y, Chaudhri AA, Helfrich EJN. The role and mechanisms of canonical and non-canonical tailoring enzymes in bacterial terpenoid biosynthesis. Nat Prod Rep 2025; 42:501-539. [PMID: 39895377 DOI: 10.1039/d4np00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Covering: up to April 2024Terpenoids represent the largest and structurally most diverse class of natural products. According to textbook knowledge, this diversity arises from a two-step biosynthetic process: first, terpene cyclases generate a vast array of mono- and polycyclic hydrocarbon scaffolds with multiple stereocenters from a limited set of achiral precursors, a process extensively studied over the past two decades. Subsequently, tailoring enzymes further modify these complex scaffolds through regio- and stereocontrolled oxidation and other functionalization reactions, a topic of increasing interest in recent years. The resulting highly functionalized terpenoids exhibit a broad spectrum of unique biological activities, making them promising candidates for drug development. Recent advances in genome sequencing technologies along with the development and application of sophisticated genome mining tools have revealed bacteria as a largely untapped resource for the discovery of complex terpenoids. Functional characterization of a limited number of bacterial terpenoid biosynthetic pathways, combined with in-depth mechanistic studies of key enzymes, has begun to reveal the versatility of bacterial enzymatic processes involved in terpenoid modification. In this review, we examine the various tailoring reactions leading to complex bacterial terpenoids. We first discuss canonical terpene-modifying enzymes, that catalyze the functionalization of unactivated C-H bonds, incorporation of diverse functional groups, and oxidative and non-oxidative rearrangements. We then explore non-canonical terpene-modifying enzymes that facilitate oxidative rearrangement, cyclization, isomerization, and dimerization reactions. The increasing number of characterized tailoring enzymes that participate in terpene hydrocarbon scaffold fomation, rather than merely decorating pre-formed scaffolds suggests that a re-evaluation of the traditional two-phase model for terpenoid biosynthesis might be warranted. Finally, we address the potential and challenges of mining bacterial genomes to identify terpene biosynthetic gene clusters and expand the bacterial terpene biosynthetic and chemical space.
Collapse
Affiliation(s)
- Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Wehbi S, Wheeler A, Morel B, Manepalli N, Minh BQ, Lauretta DS, Masel J. Order of amino acid recruitment into the genetic code resolved by last universal common ancestor's protein domains. Proc Natl Acad Sci U S A 2024; 121:e2410311121. [PMID: 39665745 DOI: 10.1073/pnas.2410311121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
The current "consensus" order in which amino acids were added to the genetic code is based on potentially biased criteria, such as the absence of sulfur-containing amino acids from the Urey-Miller experiment which lacked sulfur. More broadly, abiotic abundance might not reflect biotic abundance in the organisms in which the genetic code evolved. Here, we instead identify which protein domains date to the last universal common ancestor (LUCA) and then infer the order of recruitment from deviations of their ancestrally reconstructed amino acid frequencies from the still-ancient post-LUCA controls. We find that smaller amino acids were added to the code earlier, with no additional predictive power in the previous consensus order. Metal-binding (cysteine and histidine) and sulfur-containing (cysteine and methionine) amino acids were added to the genetic code much earlier than previously thought. Methionine and histidine were added to the code earlier than expected from their molecular weights and glutamine later. Early methionine availability is compatible with inferred early use of S-adenosylmethionine and early histidine with its purine-like structure and the demand for metal binding. Even more ancient protein sequences-those that had already diversified into multiple distinct copies prior to LUCA-have significantly higher frequencies of aromatic amino acids (tryptophan, tyrosine, phenylalanine, and histidine) and lower frequencies of valine and glutamic acid than single-copy LUCA sequences. If at least some of these sequences predate the current code, then their distinct enrichment patterns provide hints about earlier, alternative genetic codes.
Collapse
Affiliation(s)
- Sawsan Wehbi
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Andrew Wheeler
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Nandini Manepalli
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Bui Quang Minh
- School of Computing, Australian National University, Canberra, ACT, Australia
| | - Dante S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
3
|
Romero-Pérez PS, Moran HM, Horani A, Truong A, Manriquez-Sandoval E, Ramirez JF, Martinez A, Gollub E, Hunter K, Lotthammer JM, Emenecker RJ, Liu H, Iwasa JH, Boothby TC, Holehouse AS, Fried SD, Sukenik S. Protein surface chemistry encodes an adaptive tolerance to desiccation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.604841. [PMID: 39131385 PMCID: PMC11312438 DOI: 10.1101/2024.07.28.604841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cellular desiccation - the loss of nearly all water from the cell - is a recurring stress in an increasing number of ecosystems that can drive protein unfolding and aggregation. For cells to survive, at least some of the proteome must resume function upon rehydration. Which proteins tolerate desiccation, and the molecular determinants that underlie this tolerance, are largely unknown. Here, we apply quantitative and structural proteomic mass spectrometry to show that certain proteins possess an innate capacity to tolerate rehydration following extreme water loss. Structural analysis points to protein surface chemistry as a key determinant for desiccation tolerance, which we test by showing that rational surface mutants can convert a desiccation sensitive protein into a tolerant one. Desiccation tolerance also has strong overlap with cellular function, with highly tolerant proteins responsible for production of small molecule building blocks, and intolerant proteins involved in energy-consuming processes such as ribosome biogenesis. As a result, the rehydrated proteome is preferentially enriched with metabolite and small molecule producers and depleted of some of the cell's heaviest consumers. We propose this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration.
Collapse
Affiliation(s)
| | - Haley M. Moran
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Azeem Horani
- Quantitative and Systems Biology Program, University of California Merced, Merced, CA 95343, USA
| | - Alexander Truong
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Edgar Manriquez-Sandoval
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - John F. Ramirez
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Alec Martinez
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Edith Gollub
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
| | - Kara Hunter
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Jeffrey M. Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hui Liu
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Janet H. Iwasa
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas C. Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Shahar Sukenik
- Dept of Chemistry and Biochemistry, University of California Merced, Merced, CA 95343, USA
- Quantitative and Systems Biology Program, University of California Merced, Merced, CA 95343, USA
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
4
|
Tanoz I, Timsit Y. Protein Fold Usages in Ribosomes: Another Glance to the Past. Int J Mol Sci 2024; 25:8806. [PMID: 39201491 PMCID: PMC11354259 DOI: 10.3390/ijms25168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
Collapse
Affiliation(s)
- Inzhu Tanoz
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
| | - Youri Timsit
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
5
|
Goldford JE, Smith HB, Longo LM, Wing BA, McGlynn SE. Primitive purine biosynthesis connects ancient geochemistry to modern metabolism. Nat Ecol Evol 2024; 8:999-1009. [PMID: 38519634 DOI: 10.1038/s41559-024-02361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2024] [Indexed: 03/25/2024]
Abstract
An unresolved question in the origin and evolution of life is whether a continuous path from geochemical precursors to the majority of molecules in the biosphere can be reconstructed from modern-day biochemistry. Here we identified a feasible path by simulating the evolution of biosphere-scale metabolism, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, which can be alleviated by non-autocatalytic phosphoryl coupling agents. Early phases of the expansion are enriched with enzymes that are metal dependent and structurally symmetric, supporting models of early biochemical evolution. This expansion trajectory suggests distinct hypotheses regarding the tempo, mode and timing of metabolic pathway evolution, including a late appearance of methane metabolisms and oxygenic photosynthesis consistent with the geochemical record. The concordance between biological and geological analyses suggests that this trajectory provides a plausible evolutionary history for the vast majority of core biochemistry.
Collapse
Affiliation(s)
- Joshua E Goldford
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Seattle, WA, USA.
| | - Harrison B Smith
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Liam M Longo
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Boswell A Wing
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Shawn Erin McGlynn
- Blue Marble Space Institute of Science, Seattle, WA, USA.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Wako, Japan.
| |
Collapse
|
6
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Cuevas-Zuviría B, Adam ZR, Goldman AD, Kaçar B. Informatic Capabilities of Translation and Its Implications for the Origins of Life. J Mol Evol 2023; 91:567-569. [PMID: 37526692 DOI: 10.1007/s00239-023-10125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
The ability to encode and convert heritable information into molecular function is a defining feature of life as we know it. The conversion of information into molecular function is performed by the translation process, in which triplets of nucleotides in a nucleic acid polymer (mRNA) encode specific amino acids in a protein polymer that folds into a three-dimensional structure. The folded protein then performs one or more molecular activities, often as one part of a complex and coordinated physiological network. Prebiotic systems, lacking the ability to explicitly translate information between genotype and phenotype, would have depended upon either chemosynthetic pathways to generate its components-constraining its complexity and evolvability- or on the ambivalence of RNA as both carrier of information and of catalytic functions-a possibility which is still supported by a very limited set of catalytic RNAs. Thus, the emergence of translation during early evolutionary history may have allowed life to unmoor from the setting of its origin. The origin of translation machinery also represents an entirely novel and distinct threshold of behavior for which there is no abiotic counterpart-it could be the only known example of computing that emerged naturally at the chemical level. Here we describe translation machinery's decoding system as the basis of cellular translation's information-processing capabilities, and the four operation types that find parallels in computer systems engineering that this biological machinery exhibits.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Zachary R Adam
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Geosciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
9
|
Goldman AD, Weber JM, LaRowe DE, Barge LM. Electron transport chains as a window into the earliest stages of evolution. Proc Natl Acad Sci U S A 2023; 120:e2210924120. [PMID: 37579147 PMCID: PMC10451490 DOI: 10.1073/pnas.2210924120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
The origin and early evolution of life is generally studied under two different paradigms: bottom up and top down. Prebiotic chemistry and early Earth geochemistry allow researchers to explore possible origin of life scenarios. But for these "bottom-up" approaches, even successful experiments only amount to a proof of principle. On the other hand, "top-down" research on early evolutionary history is able to provide a historical account about ancient organisms, but is unable to investigate stages that occurred during and just after the origin of life. Here, we consider ancient electron transport chains (ETCs) as a potential bridge between early evolutionary history and a protocellular stage that preceded it. Current phylogenetic evidence suggests that ancestors of several extant ETC components were present at least as late as the last universal common ancestor of life. In addition, recent experiments have shown that some aspects of modern ETCs can be replicated by minerals, protocells, or organic cofactors in the absence of biological proteins. Here, we discuss the diversity of ETCs and other forms of chemiosmotic energy conservation, describe current work on the early evolution of membrane bioenergetics, and advocate for several lines of research to enhance this understanding by pairing top-down and bottom-up approaches.
Collapse
Affiliation(s)
- Aaron D. Goldman
- Department of Biology, Oberlin College, Oberlin, OH44074
- Blue Marble Space Institute of Science, Seattle, WA98154
| | - Jessica M. Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | - Douglas E. LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, CA90089
| | - Laura M. Barge
- Blue Marble Space Institute of Science, Seattle, WA98154
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| |
Collapse
|
10
|
Gutierrez-Rus LI, Gamiz-Arco G, Gavira JA, Gaucher EA, Risso VA, Sanchez-Ruiz JM. Protection of catalytic cofactors by polypeptides as a driver for the emergence of primordial enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532612. [PMID: 36993774 PMCID: PMC10055001 DOI: 10.1101/2023.03.14.532612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enzymes catalyze the chemical reactions of life. For nearly half of known enzymes, catalysis requires the binding of small molecules known as cofactors. Polypeptide-cofactor complexes likely formed at a primordial stage and became starting points for the evolution of many efficient enzymes. Yet, evolution has no foresight so the driver for the primordial complex formation is unknown. Here, we use a resurrected ancestral TIM-barrel protein to identify one potential driver. Heme binding at a flexible region of the ancestral structure yields a peroxidation catalyst with enhanced efficiency when compared to free heme. This enhancement, however, does not arise from protein-mediated promotion of catalysis. Rather, it reflects protection of bound heme from common degradation processes and a resulting longer life time and higher effective concentration for the catalyst. Protection of catalytic cofactors by polypeptides emerges as a general mechanism to enhance catalysis and may have plausibly benefited primordial polypeptide-cofactor associations.
Collapse
|
11
|
Álvarez-Lugo A, Becerra A. The Fate of Duplicated Enzymes in Prokaryotes: The Case of Isomerases. J Mol Evol 2023; 91:76-92. [PMID: 36580111 DOI: 10.1007/s00239-022-10085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
The isomerases are a unique enzymatic class of enzymes that carry out a great diversity of chemical reactions at the intramolecular level. This class comprises about 300 members, most of which are involved in carbohydrate and terpenoid/polyketide metabolism. Along with oxidoreductases and translocases, isomerases are one of the classes with the highest ratio of paralogous enzymes. Due to its relatively small number of members, it is plausible to explore it in greater detail to identify specific cases of gene duplication. Here, we present an analysis at the level of individual isomerases and identify different members that seem to be involved in duplication events in prokaryotes. As was suggested in a previous study, there is no homogeneous distribution of paralogs, but rather they accumulate into a few subcategories, some of which differ between Archaea and Bacteria. As expected, the metabolic processes with more paralogous isomerases have to do with carbohydrate metabolism but also with RNA modification (a particular case involving an rRNA-modifying isomerase is thoroughly discussed and analyzed in detail). Overall, our findings suggest that the most common fate for paralogous enzymes is the retention of the original enzymatic function, either associated with a dosage effect or with differential expression in response to changing environments, followed by subfunctionalization and, to a much lesser degree, neofunctionalization, which is consistent with what has been reported elsewhere.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, México.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
12
|
Yamada K, Mendoza J, Koutmos M. 5-Formyltetrahydrofolate promotes conformational remodeling in a methylenetetrahydrofolate reductase active site and inhibits its activity. J Biol Chem 2023; 299:102855. [PMID: 36592927 PMCID: PMC9900621 DOI: 10.1016/j.jbc.2022.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The flavoprotein methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of N5, N10-methylenetetrahydrofolate (CH2-H4folate) to N5-methyltetrahydrofolate (CH3-H4folate), committing a methyl group from the folate cycle to the methionine one. This committed step is the sum of multiple ping-pong electron transfers involving multiple substrates, intermediates, and products all sharing the same active site. Insight into folate substrate binding is needed to better understand this multifunctional active site. Here, we performed activity assays with Thermus thermophilus MTHFR (tMTHFR), which showed pH-dependent inhibition by the substrate analog, N5-formyltetrahydrofolate (CHO-H4folate). Our crystal structure of a tMTHFR•CHO-H4folate complex revealed a unique folate-binding mode; tMTHFR subtly rearranges its active site to form a distinct folate-binding environment. Formation of a novel binding pocket for the CHO-H4folate p-aminobenzoic acid moiety directly affects how bent the folate ligand is and its accommodation in the active site. Comparative analysis of the available active (FAD- and folate-bound) MTHFR complex structures reveals that CHO-H4folate is accommodated in the active site in a conformation that would not support hydride transfer, but rather in a conformation that potentially reports on a different step in the reaction mechanism after this committed step, such as CH2-H4folate ring-opening. This active site remodeling provides insights into the functional relevance of the differential folate-binding modes and their potential roles in the catalytic cycle. The conformational flexibility displayed by tMTHFR demonstrates how a shared active site can use a few amino acid residues in lieu of extra domains to accommodate chemically distinct moieties and functionalities.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| | - Johnny Mendoza
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Goldman AD, Kaçar B. Very early evolution from the perspective of microbial ecology. Environ Microbiol 2023; 25:5-10. [PMID: 35944516 DOI: 10.1111/1462-2920.16144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
The universal ancestor at the root of the species tree of life depicts a population of organisms with a surprising degree of complexity, posessing genomes and translation systems much like that of microbial life today. As the first life forms were most likely to have been simple replicators, considerable evolutionary change must have taken place prior to the last universal common ancestor. It is often assumed that the lack of earlier branches on the tree of life is due to a prevalence of random horizontal gene transfer that obscured the delineations between lineages and hindered their divergence. Therefore, principles of microbial evolution and ecology may give us some insight into these early stages in the history of life. Here, we synthesize the current understanding of organismal and genome evolution from the perspective of microbial ecology and apply these evolutionary principles to the earliest stages of life on Earth. We focus especially on broad evolutionary modes pertaining to horizontal gene transfer, pangenome structure, and microbial mat communities.
Collapse
Affiliation(s)
- Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, Ohio, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Kipnis Y, Chaib AO, Vorobieva AA, Cai G, Reggiano G, Basanta B, Kumar E, Mittl PR, Hilvert D, Baker D. Design and optimization of enzymatic activity in a de novo β-barrel scaffold. Protein Sci 2022; 31:e4405. [PMID: 36305767 PMCID: PMC9601869 DOI: 10.1002/pro.4405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022]
Abstract
While native scaffolds offer a large diversity of shapes and topologies for enzyme engineering, their often unpredictable behavior in response to sequence modification makes de novo generated scaffolds an exciting alternative. Here we explore the customization of the backbone and sequence of a de novo designed eight stranded β-barrel protein to create catalysts for a retro-aldolase model reaction. We show that active and specific catalysts can be designed in this fold and use directed evolution to further optimize activity and stereoselectivity. Our results support previous suggestions that different folds have different inherent amenability to evolution and this property could account, in part, for the distribution of natural enzymes among different folds.
Collapse
Affiliation(s)
- Yakov Kipnis
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA
| | | | - Anastassia A. Vorobieva
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Guangyang Cai
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Gabriella Reggiano
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Benjamin Basanta
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Eshan Kumar
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Peer R.E. Mittl
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Donald Hilvert
- Laboratory of Organic ChemistryETH ZurichZurichSwitzerland
| | - David Baker
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA
| |
Collapse
|
15
|
da Cunha Bataglioli I, de Queiroz JV, Vieira JCS, Cavalline NG, Braga CP, Buzalaf MAR, Zara LF, Adamec J, de Magalhães Padilha P. Mercury metalloproteomic profile in muscle tissue of Arapaima gigas from the Brazilian Amazon. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:705. [PMID: 35999477 DOI: 10.1007/s10661-022-10357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Metalloproteomics is an innovative methodology for identifying of protein-associated mercury. Thus, we analyzed the muscle proteome of Arapaima gigas (pirarucu), collected in the Madeira River of the Brazilian Amazon, to identify protein-associated mercury, with the aim of identifying possible mercury biomarkers in fish muscle tissue. After obtaining the protein pellet, we conducted two-dimensional electrophoresis (2D PAGE) to fractionate the muscle proteome. Total mercury in muscle tissue and protein pellets and mapping of mercury content in protein spots of the 2D PAGE gels was determined using graphite furnace atomic absorption spectrometry (GFAAS). The protein-associated mercury identification was performed using liquid chromatography coupled with sequence mass spectrometry (LC‒MS/MS). Total mercury determinations by GFAAS indicated concentrations on the order of 153 ± 1.90 mg kg-1 and 142 ± 1.50 mg kg-1 (total precipitation of protein fraction) and 139 ± 1.45 mg kg-1 (fractional precipitation of protein fraction) in muscle tissue and protein pellets, respectively. Mercury concentrations in the range of 48 ± 0.90 to 165 ± 3.00 mg kg-1 were found in twelve protein spots. Among the 2D PAGE protein spots, eleven Hg-binding proteins were identified using LC‒MS/MS, which showed characteristics of mercury exposure biomarkers for important metabolic functions, such as five parvalbumin isoforms, triosephosphate isomerase, cofilin 2 (muscle), and fructose-bisphosphate aldolases.
Collapse
Affiliation(s)
| | - João Vitor de Queiroz
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Nubya Gonçalves Cavalline
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | - Luís Fabrício Zara
- College of Planaltina, University of Brasília (UNB), Distrito Federal, Brazil
| | | | - Pedro de Magalhães Padilha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil.
- Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil.
| |
Collapse
|
16
|
Abstract
Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
17
|
Crapitto AJ, Campbell A, Harris AJ, Goldman AD. A consensus view of the proteome of the last universal common ancestor. Ecol Evol 2022; 12:e8930. [PMID: 35784055 PMCID: PMC9165204 DOI: 10.1002/ece3.8930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
The availability of genomic and proteomic data from across the tree of life has made it possible to infer features of the genome and proteome of the last universal common ancestor (LUCA). A number of studies have done so, all using a unique set of methods and bioinformatics databases. Here, we compare predictions across eight such studies and measure both their agreement with one another and with the consensus predictions among them. We find that some LUCA genome studies show a strong agreement with the consensus predictions of the others, but that no individual study shares a high or even moderate degree of similarity with any other individual study. From these observations, we conclude that the consensus among studies provides a more accurate depiction of the core proteome of the LUCA and its functional repertoire. The set of consensus LUCA protein family predictions between all of these studies portrays a LUCA genome that, at minimum, encoded functions related to protein synthesis, amino acid metabolism, nucleotide metabolism, and the use of common, nucleotide-derived organic cofactors.
Collapse
Affiliation(s)
| | - Amy Campbell
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Aaron D. Goldman
- Department of BiologyOberlin CollegeOberlinOhioUSA
- Blue Marble Space Institute of ScienceSeattleWashingtonUSA
| |
Collapse
|
18
|
The Emergence of New Catalytic Abilities in an Endoxylanase from Family GH10 by Removing an Intrinsically Disordered Region. Int J Mol Sci 2022; 23:ijms23042315. [PMID: 35216436 PMCID: PMC8874783 DOI: 10.3390/ijms23042315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (β/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-β-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (β/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (β/α)8-barrel domain.
Collapse
|
19
|
Borisenko I, Daugavet M, Ereskovsky A, Lavrov A, Podgornaya O. Novel protein from larval sponge cells, ilborin, is related to energy turnover and calcium binding and is conserved among marine invertebrates. Open Biol 2022; 12:210336. [PMID: 35193395 PMCID: PMC8864356 DOI: 10.1098/rsob.210336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.
Collapse
Affiliation(s)
- Ilya Borisenko
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Maria Daugavet
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), Université d' Aix-Marseille, CNRS, IRD, Marseille, France,Evolution of Morphogenesis Laboratory, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Lavrov
- Pertsov White Sea Biological Station, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Podgornaya
- Department of Embryology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia,Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
20
|
Carter CW, Popinga A, Bouckaert R, Wills PR. Multidimensional Phylogenetic Metrics Identify Class I Aminoacyl-tRNA Synthetase Evolutionary Mosaicity and Inter-Modular Coupling. Int J Mol Sci 2022; 23:ijms23031520. [PMID: 35163448 PMCID: PMC8835825 DOI: 10.3390/ijms23031520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The role of aminoacyl-tRNA synthetases (aaRS) in the emergence and evolution of genetic coding poses challenging questions concerning their provenance. We seek evidence about their ancestry from curated structure-based multiple sequence alignments of a structurally invariant “scaffold” shared by all 10 canonical Class I aaRS. Three uncorrelated phylogenetic metrics—mutation frequency, its uniformity, and row-by-row cladistic congruence—imply that the Class I scaffold is a mosaic assembled from successive genetic sources. Metrics for different modules vary in accordance with their presumed functionality. Sequences derived from the ATP– and amino acid– binding sites exhibit specific two-way coupling to those derived from Connecting Peptide 1, a third module whose metrics suggest later acquisition. The data help validate: (i) experimental fragmentations of the canonical Class I structure into three partitions that retain catalytic activities in proportion to their length; and (ii) evidence that the ancestral Class I aaRS gene also encoded a Class II ancestor in frame on the opposite strand. A 46-residue Class I “protozyme” roots the Class I tree prior to the adaptive radiation of the Rossmann dinucleotide binding fold that refined substrate discrimination. Such rooting implies near simultaneous emergence of genetic coding and the origin of the proteome, resolving a conundrum posed by previous inferences that Class I aaRS evolved after the genetic code had been implemented in an RNA world. Further, pinpointing discontinuous enhancements of aaRS fidelity establishes a timeline for the growth of coding from a binary amino acid alphabet.
Collapse
Affiliation(s)
- Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
- Correspondence: ; Tel.: +1-919-966-3263
| | - Alex Popinga
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Remco Bouckaert
- Centre for Computational Evolution, University of Auckland, PB 92019, Auckland 1142, New Zealand; (A.P.); (R.B.)
| | - Peter R. Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand;
| |
Collapse
|
21
|
Caetano-Anollés G, Aziz MF, Mughal F, Caetano-Anollés D. Tracing protein and proteome history with chronologies and networks: folding recapitulates evolution. Expert Rev Proteomics 2021; 18:863-880. [PMID: 34628994 DOI: 10.1080/14789450.2021.1992277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION While the origin and evolution of proteins remain mysterious, advances in evolutionary genomics and systems biology are facilitating the historical exploration of the structure, function and organization of proteins and proteomes. Molecular chronologies are series of time events describing the history of biological systems and subsystems and the rise of biological innovations. Together with time-varying networks, these chronologies provide a window into the past. AREAS COVERED Here, we review molecular chronologies and networks built with modern methods of phylogeny reconstruction. We discuss how chronologies of structural domain families uncover the explosive emergence of metabolism, the late rise of translation, the co-evolution of ribosomal proteins and rRNA, and the late development of the ribosomal exit tunnel; events that coincided with a tendency to shorten folding time. Evolving networks described the early emergence of domains and a late 'big bang' of domain combinations. EXPERT OPINION Two processes, folding and recruitment appear central to the evolutionary progression. The former increases protein persistence. The later fosters diversity. Chronologically, protein evolution mirrors folding by combining supersecondary structures into domains, developing translation machinery to facilitate folding speed and stability, and enhancing structural complexity by establishing long-distance interactions in novel structural and architectural designs.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA.,C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Derek Caetano-Anollés
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Modulating Glycoside Hydrolase Activity between Hydrolysis and Transfer Reactions Using an Evolutionary Approach. Molecules 2021; 26:molecules26216586. [PMID: 34770995 PMCID: PMC8587830 DOI: 10.3390/molecules26216586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023] Open
Abstract
The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction specificity is key to modifying and designing enzymes with increased specificity towards individual reactions for further applications in industrial, chemical, or biomedical fields. This work proposes a computational approach for decoding the determinant structural composition defining the reaction specificity. This method is based on the conservation of coevolving residues in spatial contacts associated with reaction specificity. To evaluate the algorithm, mutants of α-amylase (TmAmyA) and glucanotransferase (TmGTase) from Thermotoga maritima were constructed to modify the reaction specificity. The K98P/D99A/H222Q variant from TmAmyA doubled the transglycosydation/hydrolysis (T/H) ratio while the M279N variant from TmGTase increased the hydrolysis/transglycosidation ratio five-fold. Molecular dynamic simulations of the variants indicated changes in flexibility that can account for the modified T/H ratio. An essential contribution of the presented computational approach is its capacity to identify residues outside of the active center that affect the reaction specificity.
Collapse
|
23
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Freire MÁ. Short non-coded peptides interacting with cofactors facilitated the integration of early chemical networks. Biosystems 2021; 211:104547. [PMID: 34547425 DOI: 10.1016/j.biosystems.2021.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/28/2021] [Accepted: 09/15/2021] [Indexed: 11/02/2022]
Abstract
Independently developed iron-sulphur/thioester- and phosphate-driven chemical reactions would have set up two distinct reaction networks prior to coupling in a proto-metabolic system supporting a minimal organisation closure. Each chemical system assisted initially by simple catalysts and then by more complex cofactors would have provided the precursors of the small metabolites and monomer units along with their respective polymers through dehydrating template-independent assemblies. For example, acylation reactions mediated by activated thioester groups produced peptides, fatty acids and polyhydroxyalkanoates, while phosphorylation reactions by phosphorylating agents allowed the synthesis of polysaccharides, polyribonucleotides and polyphosphates. Here, we address how these independent chemical systems might fit together and shaped a proto-metabolic system, focusing specifically on cofactors as molecular fossils of metabolism. As a result, the proposed overview suggests that non-coded peptides capable of binding a variety of ligands, but in particular with a redox active versatility and/or group transfer potential could have facilitated the chemical connections that led to a minimal closure with a proto-metabolism. Later developments would have made it possible to establish a cellular organisation with more complex and interdependent metabolic pathways.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC). Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
25
|
Romero-Romero S, Kordes S, Michel F, Höcker B. Evolution, folding, and design of TIM barrels and related proteins. Curr Opin Struct Biol 2021; 68:94-104. [PMID: 33453500 PMCID: PMC8250049 DOI: 10.1016/j.sbi.2020.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Proteins are chief actors in life that perform a myriad of exquisite functions. This diversity has been enabled through the evolution and diversification of protein folds. Analysis of sequences and structures strongly suggest that numerous protein pieces have been reused as building blocks and propagated to many modern folds. This information can be traced to understand how the protein world has diversified. In this review, we discuss the latest advances in the analysis of protein evolutionary units, and we use as a model system one of the most abundant and versatile topologies, the TIM-barrel fold, to highlight the existing common principles that interconnect protein evolution, structure, folding, function, and design.
Collapse
Affiliation(s)
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Florian Michel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
26
|
Janaki C, Gowri VS, Srinivasan N. Master Blaster: an approach to sensitive identification of remotely related proteins. Sci Rep 2021; 11:8746. [PMID: 33888741 PMCID: PMC8062480 DOI: 10.1038/s41598-021-87833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2021] [Indexed: 11/11/2022] Open
Abstract
Genome sequencing projects unearth sequences of all the protein sequences encoded in a genome. As the first step, homology detection is employed to obtain clues to structure and function of these proteins. However, high evolutionary divergence between homologous proteins challenges our ability to detect distant relationships. In the past, an approach involving multiple Position Specific Scoring Matrices (PSSMs) was found to be more effective than traditional single PSSMs. Cascaded search is another successful approach where hits of a search are queried to detect more homologues. We propose a protocol, ‘Master Blaster’, which combines the principles adopted in these two approaches to enhance our ability to detect remote homologues even further. Assessment of the approach was performed using known relationships available in the SCOP70 database, and the results were compared against that of PSI-BLAST and HHblits, a hidden Markov model-based method. Compared to PSI-BLAST, Master Blaster resulted in 10% improvement with respect to detection of cross superfamily connections, nearly 35% improvement in cross family and more than 80% improvement in intra family connections. From the results it was observed that HHblits is more sensitive in detecting remote homologues compared to Master Blaster. However, there are true hits from 46-folds for which Master Blaster reported homologs that are not reported by HHblits even using the optimal parameters indicating that for detecting remote homologues, use of multiple methods employing a combination of different approaches can be more effective in detecting remote homologs. Master Blaster stand-alone code is available for download in the supplementary archive.
Collapse
Affiliation(s)
- Chintalapati Janaki
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Centre for Development of Advanced Computing, Knowledge Park, Byappanahalli, Bangalore, 560038, India
| | - Venkatraman S Gowri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.,Department of Chemistry, Auxilium College, Gandhinagar, Vellore, 632006, India
| | | |
Collapse
|
27
|
Cobbold SA, V Tutor M, Frasse P, McHugh E, Karnthaler M, Creek DJ, Odom John A, Tilley L, Ralph SA, McConville MJ. Non-canonical metabolic pathways in the malaria parasite detected by isotope-tracing metabolomics. Mol Syst Biol 2021; 17:e10023. [PMID: 33821563 PMCID: PMC8022201 DOI: 10.15252/msb.202010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, proliferates rapidly in human erythrocytes by actively scavenging multiple carbon sources and essential nutrients from its host cell. However, a global overview of the metabolic capacity of intraerythrocytic stages is missing. Using multiplex 13 C-labelling coupled with untargeted mass spectrometry and unsupervised isotopologue grouping, we have generated a draft metabolome of P. falciparum and its host erythrocyte consisting of 911 and 577 metabolites, respectively, corresponding to 41% of metabolites and over 70% of the metabolic reaction predicted from the parasite genome. An additional 89 metabolites and 92 reactions were identified that were not predicted from genomic reconstructions, with the largest group being associated with metabolite damage-repair systems. Validation of the draft metabolome revealed four previously uncharacterised enzymes which impact isoprenoid biosynthesis, lipid homeostasis and mitochondrial metabolism and are necessary for parasite development and proliferation. This study defines the metabolic fate of multiple carbon sources in P. falciparum, and highlights the activity of metabolite repair pathways in these rapidly growing parasite stages, opening new avenues for drug discovery.
Collapse
Affiliation(s)
- Simon A Cobbold
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Madel V Tutor
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Philip Frasse
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Emma McHugh
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Markus Karnthaler
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVic.Australia
| | - Audrey Odom John
- The Children’s Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Leann Tilley
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular BiologyBio21 Institute of Molecular Science and BiotechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
28
|
Glasgow EM, Kemna EI, Bingman CA, Ing N, Deng K, Bianchetti CM, Takasuka TE, Northen TR, Fox BG. A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis. J Biol Chem 2021; 295:17752-17769. [PMID: 33454012 DOI: 10.1074/jbc.ra120.015328] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/15/2020] [Indexed: 11/06/2022] Open
Abstract
Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)-linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble β-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset.
Collapse
Affiliation(s)
- Evan M Glasgow
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA
| | - Elias I Kemna
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA
| | - Nicole Ing
- Joint BioEnergy Institute, Emeryville, California, USA; Sandia National Laboratories, Livermore, California, USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, California, USA; Sandia National Laboratories, Livermore, California, USA
| | - Christopher M Bianchetti
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA
| | | | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, California, USA; Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA; Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA.
| |
Collapse
|
29
|
Fernandez PL, Nagorski RW, Cristobal JR, Amyes TL, Richard JP. Phosphodianion Activation of Enzymes for Catalysis of Central Metabolic Reactions. J Am Chem Soc 2021; 143:2694-2698. [PMID: 33560827 PMCID: PMC7919737 DOI: 10.1021/jacs.0c13423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The activation barriers ΔG⧧ for
kcat/Km for the reactions of
whole substrates catalyzed by 6-phosphogluconate dehydrogenase, glucose 6-phosphate
dehydrogenase, and glucose 6-phosphate isomerase are reduced by 11–13 kcal/mol by
interactions between the protein and the substrate phosphodianion. Between 4 and 6
kcal/mol of this dianion binding energy is expressed at the transition state for
phosphite dianion activation of the respective enzyme-catalyzed reactions of truncated
substrates d-xylonate or d-xylose. These and earlier results from
studies on β-phosphoglucomutase, triosephosphate isomerase, and glycerol
3-phosphate dehydrogenase define a cluster of six enzymes that catalyze reactions in
glycolysis or of glycolytic intermediates, and which utilize substrate dianion binding
energy for enzyme activation. Dianion-driven conformational changes, which convert
flexible open proteins to tight protein cages for the phosphorylated substrate, have
been thoroughly documented for five of these six enzymes. The clustering of metabolic
enzymes which couple phosphodianion-driven conformational changes to enzyme activation
suggests that this catalytic motif has been widely propagated in the proteome.
Collapse
Affiliation(s)
- Patrick L Fernandez
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Richard W Nagorski
- Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160, United States
| | - Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
30
|
Goldman AD, Kacar B. Cofactors are Remnants of Life's Origin and Early Evolution. J Mol Evol 2021; 89:127-133. [PMID: 33547911 PMCID: PMC7982383 DOI: 10.1007/s00239-020-09988-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
The RNA World is one of the most widely accepted hypotheses explaining the origin of the genetic system used by all organisms today. It proposes that the tripartite system of DNA, RNA, and proteins was preceded by one consisting solely of RNA, which both stored genetic information and performed the molecular functions encoded by that genetic information. Current research into a potential RNA World revolves around the catalytic properties of RNA-based enzymes, or ribozymes. Well before the discovery of ribozymes, Harold White proposed that evidence for a precursor RNA world could be found within modern proteins in the form of coenzymes, the majority of which contain nucleobases or nucleoside moieties, such as Coenzyme A and S-adenosyl methionine, or are themselves nucleotides, such as ATP and NADH (a dinucleotide). These coenzymes, White suggested, had been the catalytic active sites of ancient ribozymes, which transitioned to their current forms after the surrounding ribozyme scaffolds had been replaced by protein apoenzymes during the evolution of translation. Since its proposal four decades ago, this groundbreaking hypothesis has garnered support from several different research disciplines and motivated similar hypotheses about other classes of cofactors, most notably iron-sulfur cluster cofactors as remnants of the geochemical setting of the origin of life. Evidence from prebiotic geochemistry, ribozyme biochemistry, and evolutionary biology, increasingly supports these hypotheses. Certain coenzymes and cofactors may bridge modern biology with the past and can thus provide insights into the elusive and poorly-recorded period of the origin and early evolution of life.
Collapse
Affiliation(s)
- Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, 44074, USA. .,Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.
| | - Betul Kacar
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA. .,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA. .,Lunar and Planetary Laboratory and Department of Astronomy, University of Arizona, Tucson, AZ, 85721, USA. .,Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan.
| |
Collapse
|
31
|
Gamiz-Arco G, Gutierrez-Rus LI, Risso VA, Ibarra-Molero B, Hoshino Y, Petrović D, Justicia J, Cuerva JM, Romero-Rivera A, Seelig B, Gavira JA, Kamerlin SCL, Gaucher EA, Sanchez-Ruiz JM. Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nat Commun 2021; 12:380. [PMID: 33452262 PMCID: PMC7810902 DOI: 10.1038/s41467-020-20630-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosidases are phylogenetically widely distributed enzymes that are crucial for the cleavage of glycosidic bonds. Here, we present the exceptional properties of a putative ancestor of bacterial and eukaryotic family-1 glycosidases. The ancestral protein shares the TIM-barrel fold with its modern descendants but displays large regions with greatly enhanced conformational flexibility. Yet, the barrel core remains comparatively rigid and the ancestral glycosidase activity is stable, with an optimum temperature within the experimental range for thermophilic family-1 glycosidases. None of the ∼5500 reported crystallographic structures of ∼1400 modern glycosidases show a bound porphyrin. Remarkably, the ancestral glycosidase binds heme tightly and stoichiometrically at a well-defined buried site. Heme binding rigidifies this TIM-barrel and allosterically enhances catalysis. Our work demonstrates the capability of ancestral protein reconstructions to reveal valuable but unexpected biomolecular features when sampling distant sequence space. The potential of the ancestral glycosidase as a scaffold for custom catalysis and biosensor engineering is discussed. Family 1 glycosidases (GH1) are present in the three domains of life and share classical TIM-barrel fold. Structural and biochemical analyses of a resurrected ancestral GH1 enzyme reveal heme binding, not known in its modern descendants. Heme rigidifies the TIM-barrel and allosterically enhances catalysis.
Collapse
Affiliation(s)
- Gloria Gamiz-Arco
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Luis I Gutierrez-Rus
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Valeria A Risso
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Beatriz Ibarra-Molero
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Yosuke Hoshino
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Dušan Petrović
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden.,Hit Discovery, Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, 431 50, Gothenburg, Sweden
| | - Jose Justicia
- Departamento de Quimica Organica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Juan Manuel Cuerva
- Departamento de Quimica Organica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Adrian Romero-Rivera
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America, & BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Jose A Gavira
- Laboratorio de Estudios Cristalograficos, Instituto Andaluz de Ciencias de la Tierra, CSIC, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Avenida de las Palmeras 4, Granada, 18100, Armilla, Spain
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23, Uppsala, Sweden.
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica. Facultad de Ciencias, Unidad de Excelencia de Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
32
|
Gao S, Thompson EJ, Barrow SL, Zhang W, Iavarone AT, Klinman JP. Hydrogen-Deuterium Exchange within Adenosine Deaminase, a TIM Barrel Hydrolase, Identifies Networks for Thermal Activation of Catalysis. J Am Chem Soc 2020; 142:19936-19949. [PMID: 33181018 DOI: 10.1021/jacs.0c07866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteins are intrinsically flexible macromolecules that undergo internal motions with time scales spanning femtoseconds to milliseconds. These fluctuations are implicated in the optimization of reaction barriers for enzyme catalyzed reactions. Time, temperature, and mutation dependent hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been previously employed to identify spatially resolved, catalysis-linked dynamical regions of enzymes. We now extend this technique to pursue the correlation of protein flexibility and chemical reactivity within the diverse and widespread TIM barrel proteins, targeting murine adenosine deaminase (mADA) that catalyzes the irreversible deamination of adenosine to inosine and ammonia. Following a structure-function analysis of rate and activation energy for a series of mutations at a second sphere phenylalanine positioned in proximity to the bound substrate, the catalytically impaired Phe61Ala with an elevated activation energy (Ea = 7.5 kcal/mol) and the wild type (WT) mADA (Ea = 5.0 kcal/mol) were selected for HDX-MS experiments. The rate constants and activation energies of HDX for peptide segments are quantified and used to assess mutation-dependent changes in local and distal motions. Analyses reveal that approximately 50% of the protein sequence of Phe61Ala displays significant changes in the temperature dependence of HDX behaviors, with the dominant change being an increase in protein flexibility. Utilizing Phe61Ile, which displays the same activation energy for kcat as WT, as a control, we were able to further refine the HDX analysis, highlighting the regions of mADA that are altered in a functionally relevant manner. A map is constructed that illustrates the regions of protein that are proposed to be essential for the thermal optimization of active site configurations that dominate reaction barrier crossings in the native enzyme.
Collapse
Affiliation(s)
| | | | | | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | |
Collapse
|
33
|
Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int J Mol Sci 2020; 21:ijms21218052. [PMID: 33126770 PMCID: PMC7663094 DOI: 10.3390/ijms21218052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular communications play pivotal roles in multi-cellular species, but they do so also in uni-cellular species. Moreover, cells communicate with each other not only within the same individual, but also with cells in other individuals belonging to the same or other species. These communications occur between two unicellular species, two multicellular species, or between unicellular and multicellular species. The molecular mechanisms involved exhibit diversity and specificity, but they share common basic features, which allow common pathways of communication between different species, often phylogenetically very distant. These interactions are possible by the high degree of conservation of the basic molecular mechanisms of interaction of many ligand-receptor pairs in evolutionary remote species. These inter-species cellular communications played crucial roles during Evolution and must have been positively selected, particularly when collectively beneficial in hostile environments. It is likely that communications between cells did not arise after their emergence, but were part of the very nature of the first cells. Synchronization of populations of non-living protocells through chemical communications may have been a mandatory step towards their emergence as populations of living cells and explain the large commonality of cell communication mechanisms among microorganisms, plants, and animals.
Collapse
|
34
|
Takagi YA, Nguyen DH, Wexler TB, Goldman AD. The Coevolution of Cellularity and Metabolism Following the Origin of Life. J Mol Evol 2020; 88:598-617. [PMID: 32809045 PMCID: PMC7445158 DOI: 10.1007/s00239-020-09961-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023]
Abstract
The emergence of cellular organisms occurred sometime between the origin of life and the evolution of the last universal common ancestor and represents one of the major transitions in evolutionary history. Here we describe a series of artificial life simulations that reveal a close relationship between the evolution of cellularity, the evolution of metabolism, and the richness of the environment. When environments are rich in processing energy, a resource that the digital organisms require to both process their genomes and replicate, populations evolve toward a state of non-cellularity. But when processing energy is not readily available in the environment and organisms must produce their own processing energy from food puzzles, populations always evolve both a proficient metabolism and a high level of cellular impermeability. Even between these two environmental extremes, the population-averaged values of cellular impermeability and metabolic proficiency exhibit a very strong correlation with one another. Further investigations show that non-cellularity is selectively advantageous when environmental processing energy is abundant because it allows organisms to access the available energy, while cellularity is selectively advantageous when environmental processing energy is scarce because it affords organisms the genetic fidelity required to incrementally evolve efficient metabolisms. The selection pressures favoring either non-cellularity or cellularity can be reversed when the environment transitions from one of abundant processing energy to one of scarce processing energy. These results have important implications for when and why cellular organisms evolved following the origin of life.
Collapse
Affiliation(s)
- Yuta A Takagi
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Diep H Nguyen
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA.,Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tom B Wexler
- Department of Computer Science, Oberlin College, Oberlin, OH, 44074, USA.,Verily Life Sciences, Cambridge, MA, USA
| | - Aaron D Goldman
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA. .,Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.
| |
Collapse
|
35
|
Chioccioli S, Del Duca S, Vassallo A, Castronovo LM, Fani R. Exploring the role of the histidine biosynthetic hisF gene in cellular metabolism and in the evolution of (ancestral) genes: from LUCA to the extant (micro)organisms. Microbiol Res 2020; 240:126555. [PMID: 32673985 DOI: 10.1016/j.micres.2020.126555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 01/14/2023]
Abstract
Histidine biosynthesis is an ancestral pathway that was assembled before the appearance of the Last Universal Common Ancestor; afterwards, it remained unaltered in all the extant histidine-synthesizing (micro)organisms. It is a metabolic cross-road interconnecting histidine biosynthesis to nitrogen metabolism and the de novo synthesis of purines. This interconnection is due to the reaction catalyzed by the products of hisH and hisF genes. The latter gene is an excellent model to study which trajectories have been followed by primordial cells to build the first metabolic routes, since its evolution is the result of different molecular rearrangement events, i.e. gene duplication, gene fusion, gene elongation, and domain shuffling. Additionally, this review summarizes data concerning the involvement of hisF and its product in other different cellular processes, revealing that HisF very likely plays a role also in cell division control and involvement in virulence and nodule development in different bacteria. From the metabolic viewpoint, these results suggest that HisF plays a central role in cellular metabolism, highlighting the interconnections of different metabolic pathways.
Collapse
Affiliation(s)
- Sofia Chioccioli
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Sara Del Duca
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Alberto Vassallo
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | | | - Renato Fani
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
36
|
Chu XY, Zhang HY. Cofactors as Molecular Fossils To Trace the Origin and Evolution of Proteins. Chembiochem 2020; 21:3161-3168. [PMID: 32515532 DOI: 10.1002/cbic.202000027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Due to their early origin and extreme conservation, cofactors are valuable molecular fossils for tracing the origin and evolution of proteins. First, as the order of protein folds binding with cofactors roughly coincides with protein-fold chronology, cofactors are considered to have facilitated the origin of primitive proteins by selecting them from pools of random amino acid sequences. Second, in the subsequent evolution of proteins, cofactors still played an important role. More interestingly, as metallic cofactors evolved with geochemical variations, some geochemical events left imprints in the chronology of protein architecture; this provides further evidence supporting the coevolution of biochemistry and geochemistry. In this paper, we attempt to review the molecular fossils used in tracing the origin and evolution of proteins, with a special focus on cofactors.
Collapse
Affiliation(s)
- Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
37
|
Zhang J, Balsbaugh JL, Gao S, Ahn NG, Klinman JP. Hydrogen deuterium exchange defines catalytically linked regions of protein flexibility in the catechol O-methyltransferase reaction. Proc Natl Acad Sci U S A 2020; 117:10797-10805. [PMID: 32371482 PMCID: PMC7245127 DOI: 10.1073/pnas.1917219117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human catechol O-methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from S-adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H. J. Kulik, T. J. Martinez, J. P. Klinman, Proc. Natl. Acad. Sci. U.S.A. 112, 7954-7959 (2015)]. This predicts the involvement of spatially defined protein dynamical effects that further tune the donor/acceptor distance and geometry as well as the electrostatics of the reactants. Here, we present a hydrogen/deuterium exchange (HDX)-mass spectrometric study of wild type and mutant COMT, comparing temperature dependences of HDX against corresponding kinetic and cofactor binding parameters. The data show that the impaired Tyr68Ala mutant displays similar breaks in Arrhenius plots of both kinetic and HDX properties that are absent in the wild type enzyme. The spatial resolution of HDX below a break point of 15-20 °C indicates changes in flexibility across ∼40% of the protein structure that is confined primarily to the periphery of the AdoMet binding site. Above 20 °C, Tyr68Ala behaves more like WT in HDX, but its rate and enthalpic barrier remain significantly altered. The impairment of catalysis by Tyr68Ala can be understood in the context of a mutationally induced alteration in protein motions that becomes manifest along and perpendicular to the primary group transfer coordinate.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Jeremy L Balsbaugh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309;
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA 94720;
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
38
|
Nödling AR, Santi N, Williams TL, Tsai YH, Luk LYP. Enabling protein-hosted organocatalytic transformations. RSC Adv 2020; 10:16147-16161. [PMID: 33184588 PMCID: PMC7654312 DOI: 10.1039/d0ra01526a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
In this review, the development of organocatalytic artificial enzymes will be discussed. This area of protein engineering research has underlying importance, as it enhances the biocompatibility of organocatalysis for applications in chemical and synthetic biology research whilst expanding the catalytic repertoire of enzymes. The approaches towards the preparation of organocatalytic artificial enzymes, techniques used to improve their performance (selectivity and reactivity) as well as examples of their applications are presented. Challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Alexander R Nödling
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Nicolò Santi
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| |
Collapse
|
39
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
40
|
Rosas‐Lemus M, Minasov G, Shuvalova L, Wawrzak Z, Kiryukhina O, Mih N, Jaroszewski L, Palsson B, Godzik A, Satchell KJF. Structure of galactarate dehydratase, a new fold in an enolase involved in bacterial fitness after antibiotic treatment. Protein Sci 2020; 29:711-722. [PMID: 31811683 PMCID: PMC7021002 DOI: 10.1002/pro.3796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022]
Abstract
Galactarate dehydratase (GarD) is the first enzyme in the galactarate/glucarate pathway and catalyzes the dehydration of galactarate to 3-keto-5-dehydroxygalactarate. This protein is known to increase colonization fitness of intestinal pathogens in antibiotic-treated mice and to promote bacterial survival during stress. The galactarate/glucarate pathway is widespread in bacteria, but not in humans, and thus could be a target to develop new inhibitors for use in combination therapy to combat antibiotic resistance. The structure of almost all the enzymes of the galactarate/glucarate pathway were solved previously, except for GarD, for which only the structure of the N-terminal domain was determined previously. Herein, we report the first crystal structure of full-length GarD solved using a seleno-methoionine derivative revealing a new protein fold. The protein consists of three domains, each presenting a novel twist as compared to their distant homologs. GarD in the crystal structure forms dimers and each monomer consists of three domains. The N-terminal domain is comprised of a β-clip fold, connected to the second domain by a long unstructured linker. The second domain serves as a dimerization interface between two monomers. The C-terminal domain forms an unusual variant of a Rossmann fold with a crossover and is built around a seven-stranded parallel β-sheet supported by nine α-helices. A metal binding site in the C-terminal domain is occupied by Ca2+ . The activity of GarD was corroborated by the production of 5-keto-4-deoxy-D-glucarate under reducing conditions and in the presence of iron. Thus, GarD is an unusual enolase with a novel protein fold never previously seen in this class of enzymes.
Collapse
Affiliation(s)
- Monica Rosas‐Lemus
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - George Minasov
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Ludmilla Shuvalova
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center–LS‐CATNorthwestern UniversityArgonneIllinois
| | - Olga Kiryukhina
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| | - Nathan Mih
- Department of BioengineeringUniversity of California San DiegoLa JollaCalifornia
| | - Lukasz Jaroszewski
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Department of Biomedical SciencesUniversity of California at RiversideRiversideCalifornia
| | - Bernhard Palsson
- Department of BioengineeringUniversity of California San DiegoLa JollaCalifornia
- Systems Biology Center for Antibiotic ResistanceUniversity of California San DiegoLa JollaCalifornia
| | - Adam Godzik
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Department of Biomedical SciencesUniversity of California at RiversideRiversideCalifornia
| | - Karla J. F. Satchell
- Department of Microbiology‐ImmunologyNorthwestern University, Feinberg School of MedicineChicagoIllinois
- Center for Structural Genomics of Infectious DiseasesNorthwestern University, Feinberg School of MedicineChicagoIllinois
| |
Collapse
|
41
|
Northover DE, Shank SD, Liberles DA. Characterizing lineage-specific evolution and the processes driving genomic diversification in chordates. BMC Evol Biol 2020; 20:24. [PMID: 32046633 PMCID: PMC7011509 DOI: 10.1186/s12862-020-1585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
Background Understanding the origins of genome content has long been a goal of molecular evolution and comparative genomics. By examining genome evolution through the guise of lineage-specific evolution, it is possible to make inferences about the evolutionary events that have given rise to species-specific diversification. Here we characterize the evolutionary trends found in chordate species using The Adaptive Evolution Database (TAED). TAED is a database of phylogenetically indexed gene families designed to detect episodes of directional or diversifying selection across chordates. Gene families within the database have been assessed for lineage-specific estimates of dN/dS and have been reconciled to the chordate species to identify retained duplicates. Gene families have also been mapped to the functional pathways and amino acid changes which occurred on high dN/dS lineages have been mapped to protein structures. Results An analysis of this exhaustive database has enabled a characterization of the processes of lineage-specific diversification in chordates. A pathway level enrichment analysis of TAED determined that pathways most commonly found to have elevated rates of evolution included those involved in metabolism, immunity, and cell signaling. An analysis of protein fold presence on proteins, after normalizing for frequency in the database, found common folds such as Rossmann folds, Jelly Roll folds, and TIM barrels were overrepresented on proteins most likely to undergo directional selection. A set of gene families which experience increased numbers of duplications within short evolutionary times are associated with pathways involved in metabolism, olfactory reception, and signaling. An analysis of protein secondary structure indicated more relaxed constraint in β-sheets and stronger constraint on alpha Helices, amidst a general preference for substitutions at exposed sites. Lastly a detailed analysis of the ornithine decarboxylase gene family, a key enzyme in the pathway for polyamine synthesis, revealed lineage-specific evolution along the lineage leading to Cetacea through rapid sequence evolution in a duplicate gene with amino acid substitutions causing active site rearrangement. Conclusion Episodes of lineage-specific evolution are frequent throughout chordate species. Both duplication and directional selection have played large roles in the evolution of the phylum. TAED is a powerful tool for facilitating this understanding of lineage-specific evolution.
Collapse
Affiliation(s)
- David E Northover
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Stephen D Shank
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA. .,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
42
|
Plebanek A, Larnerd C, Popović M, Wei C, Pohorille A, Ditzler MA. Big on Change, Small on Innovation: Evolutionary Consequences of RNA Sequence Duplication. J Mol Evol 2019; 87:240-253. [PMID: 31435687 PMCID: PMC6711949 DOI: 10.1007/s00239-019-09906-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 01/11/2023]
Abstract
The potential for biopolymers to evolve new structures has important consequences for their ability to optimize function and our attempts to reconstruct their evolutionary histories. Prior work with in vitro systems suggests that structural remodeling of RNA is difficult to achieve through the accumulation of point mutations or through recombination events. Sequence duplication may represent an alternative mechanism that can more readily lead to the evolution of new structures. Structural and sequence elements in many RNAs and proteins appear to be the products of duplication events, indicating that this mechanism plays a major role in molecular evolution. Despite the potential significance of this mechanism, little experimental data is available concerning the structural and evolutionary consequences of duplicating biopolymer sequences. To assess the structural consequences of sequence duplication on the evolution of RNA, we mutagenized an RNA sequence containing two copies of an ATP aptamer and subjected the resulting population to multiple in vitro evolution experiments. We identified multiple routes by which duplication, followed by the accumulation of functional point mutations, allowed our populations to sample two entirely different secondary structures. The two structures have no base pairs in common, but both structures contain two copies of the same ATP-binding motif. We do not observe the emergence of any other functional secondary structures beyond these two. Although this result suggests a limited capacity for duplication to support short-term functional innovation, major changes in secondary structure, like the one observed here, should be given careful consideration as they are likely to frustrate attempts to infer deep evolutionary histories of functional RNAs.
Collapse
Affiliation(s)
- Andrew Plebanek
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Caleb Larnerd
- NASA Internship Program, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Milena Popović
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Blue Marble Space Institute of Science, Seattle, WA, 98145, USA
| | - Chenyu Wei
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, USA.,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Andrew Pohorille
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, USA.,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Mark A Ditzler
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA. .,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| |
Collapse
|
43
|
Matsui M, Iwasaki W. Graph Splitting: A Graph-Based Approach for Superfamily-Scale Phylogenetic Tree Reconstruction. Syst Biol 2019; 69:265-279. [DOI: 10.1093/sysbio/syz049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
A protein superfamily contains distantly related proteins that have acquired diverse biological functions through a long evolutionary history. Phylogenetic analysis of the early evolution of protein superfamilies is a key challenge because existing phylogenetic methods show poor performance when protein sequences are too diverged to construct an informative multiple sequence alignment (MSA). Here, we propose the Graph Splitting (GS) method, which rapidly reconstructs a protein superfamily-scale phylogenetic tree using a graph-based approach. Evolutionary simulation showed that the GS method can accurately reconstruct phylogenetic trees and be robust to major problems in phylogenetic estimation, such as biased taxon sampling, heterogeneous evolutionary rates, and long-branch attraction when sequences are substantially diverge. Its application to an empirical data set of the triosephosphate isomerase (TIM)-barrel superfamily suggests rapid evolution of protein-mediated pyrimidine biosynthesis, likely taking place after the RNA world. Furthermore, the GS method can also substantially improve performance of widely used MSA methods by providing accurate guide trees.
Collapse
Affiliation(s)
- Motomu Matsui
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
44
|
Dong LB, Liu YC, Cepeda AJ, Kalkreuter E, Deng MR, Rudolf JD, Chang C, Joachimiak A, Phillips GN, Shen B. Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:12406-12412. [PMID: 31291107 DOI: 10.1021/jacs.9b06183] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme diiron monooxygenases make up a rapidly growing family of oxygenases that are rarely identified in secondary metabolism. Herein, we report the in vivo, in vitro, and structural characterizations of a nonheme diiron monooxygenase, PtmU3, that installs a C-5 β-hydroxyl group in the unified biosynthesis of platensimycin and platencin, two highly functionalized diterpenoids that act as potent and selective inhibitors of bacterial and mammalian fatty acid synthases. This hydroxylation sets the stage for the subsequent A-ring cleavage step key to the unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 adopts an unprecedented triosephosphate isomerase (TIM) barrel structural fold for this class of enzymes and possesses a noncanonical diiron active site architecture with a saturated six-coordinate iron center lacking a μ-oxo bridge. This study reveals the first member of a previously unidentified superfamily of TIM-barrel-fold enzymes for metal-dependent dioxygen activation, with the majority predicted to act on CoA-linked substrates, thus expanding our knowledge of nature's repertoire of nonheme diiron monooxygenases and TIM-barrel-fold enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changsoo Chang
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- Department of Biosciences , Rice University , Houston , Texas 77030 , United States
| | | |
Collapse
|
45
|
Abstract
![]()
The enormous rate accelerations observed
for many enzyme catalysts
are due to strong stabilizing interactions between the protein and
reaction transition state. The defining property of these catalysts
is their specificity for binding the transition state with a much
higher affinity than substrate. Experimental results are presented
which show that the phosphodianion-binding energy of phosphate monoester
substrates is used to drive conversion of their protein catalysts
from flexible and entropically rich ground states to stiff and catalytically
active Michaelis complexes. These results are generalized to other
enzyme-catalyzed reactions. The existence of many enzymes in flexible,
entropically rich, and inactive ground states provides a mechanism
for utilization of ligand-binding energy to mold these catalysts into
stiff and active forms. This reduces the substrate-binding energy
expressed at the Michaelis complex, while enabling the full and specific
expression of large transition-state binding energies. Evidence is
presented that the complexity of enzyme conformational changes increases
with increases in the enzymatic rate acceleration. The requirement
that a large fraction of the total substrate-binding energy be utilized
to drive conformational changes of floppy enzymes is proposed to favor
the selection and evolution of protein folds with multiple flexible
unstructured loops, such as the TIM-barrel fold. The effect of protein
motions on the kinetic parameters for enzymes that undergo ligand-driven
conformational changes is considered. The results of computational
studies to model the complex ligand-driven conformational change in
catalysis by triosephosphate isomerase are presented.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry , SUNY, University at Buffalo , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
46
|
Glasgow EM, Vander Meulen KA, Takasuka TE, Bianchetti CM, Bergeman LF, Deutsch S, Fox BG. Extent and Origins of Functional Diversity in a Subfamily of Glycoside Hydrolases. J Mol Biol 2019; 431:1217-1233. [PMID: 30685401 DOI: 10.1016/j.jmb.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/19/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
Some glycoside hydrolases have broad specificity for hydrolysis of glycosidic bonds, potentially increasing their functional utility and flexibility in physiological and industrial applications. To deepen the understanding of the structural and evolutionary driving forces underlying specificity patterns in glycoside hydrolase family 5, we quantitatively screened the activity of the catalytic core domains from subfamily 4 (GH5_4) and closely related enzymes on four substrates: lichenan, xylan, mannan, and xyloglucan. Phylogenetic analysis revealed that GH5_4 consists of three major clades, and one of these clades, referred to here as clade 3, displayed average specific activities of 4.2 and 1.2 U/mg on lichenan and xylan, approximately 1 order of magnitude larger than the average for active enzymes in clades 1 and 2. Enzymes in clade 3 also more consistently met assay detection thresholds for reaction with all four substrates. We also identified a subfamily-wide positive correlation between lichenase and xylanase activities, as well as a weaker relationship between lichenase and xyloglucanase. To connect these results to structural features, we used the structure of CelE from Hungateiclostridium thermocellum (PDB 4IM4) as an example clade 3 enzyme with activities on all four substrates. Comparison of the sequence and structure of this enzyme with others throughout GH5_4 and neighboring subfamilies reveals at least two residues (H149 and W203) that are linked to strong activity across the substrates. Placing GH5_4 in context with other related subfamilies, we highlight several possibilities for the ongoing evolutionary specialization of GH5_4 enzymes.
Collapse
Affiliation(s)
- Evan M Glasgow
- Great Lakes Bioenergy Research Center, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706 USA
| | - Kirk A Vander Meulen
- Great Lakes Bioenergy Research Center, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706 USA
| | - Taichi E Takasuka
- Great Lakes Bioenergy Research Center, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706 USA; Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Christopher M Bianchetti
- Great Lakes Bioenergy Research Center, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706 USA; Department of Chemistry, University of Wisconsin, Oshkosh, 54901 USA
| | - Lai F Bergeman
- Great Lakes Bioenergy Research Center, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706 USA
| | | | - Brian G Fox
- Great Lakes Bioenergy Research Center, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin, Madison, WI 53706 USA.
| |
Collapse
|
47
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
48
|
Liao Q, Kulkarni Y, Sengupta U, Petrović D, Mulholland AJ, van der Kamp MW, Strodel B, Kamerlin SCL. Loop Motion in Triosephosphate Isomerase Is Not a Simple Open and Shut Case. J Am Chem Soc 2018; 140:15889-15903. [PMID: 30362343 DOI: 10.1021/jacs.8b09378] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conformational changes are crucial for the catalytic action of many enzymes. A prototypical and well-studied example is loop opening and closure in triosephosphate isomerase (TIM), which is thought to determine the rate of catalytic turnover in many circumstances. Specifically, TIM loop 6 "grips" the phosphodianion of the substrate and, together with a change in loop 7, sets up the TIM active site for efficient catalysis. Crystal structures of TIM typically show an open or a closed conformation of loop 6, with the tip of the loop moving ∼7 Å between conformations. Many studies have interpreted this motion as a two-state, rigid-body transition. Here, we use extensive molecular dynamics simulations, with both conventional and enhanced sampling techniques, to analyze loop motion in apo and substrate-bound TIM in detail, using five crystal structures of the dimeric TIM from Saccharomyces cerevisiae. We find that loop 6 is highly flexible and samples multiple conformational states. Empirical valence bond simulations of the first reaction step show that slight displacements away from the fully closed-loop conformation can be sufficient to abolish most of the catalytic activity; full closure is required for efficient reaction. The conformational change of the loops in TIM is thus not a simple "open and shut" case and is crucial for its catalytic action. Our detailed analysis of loop motion in a highly efficient enzyme highlights the complexity of loop conformational changes and their role in biological catalysis.
Collapse
Affiliation(s)
- Qinghua Liao
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden
| | - Yashraj Kulkarni
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden
| | - Ushnish Sengupta
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany.,German Research School for Simulation Sciences , RWTH Aachen University , 52062 Aachen , Germany
| | - Dušan Petrović
- Department of Chemistry - BMC , Uppsala University , BMC Box 576, 751 23 Uppsala , Sweden.,Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , United Kingdom
| | - Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , United Kingdom.,School of Biochemistry , University of Bristol , University Walk , BS8 1TD Bristol , United Kingdom
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , 40225 Düsseldorf , Germany
| | | |
Collapse
|
49
|
Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 2018; 15:20180159. [PMID: 30045888 PMCID: PMC6073634 DOI: 10.1098/rsif.2018.0159] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
Life is that which replicates and evolves, but there is no consensus on how life emerged. We advocate a systems protobiology view, whereby the first replicators were assemblies of spontaneously accreting, heterogeneous and mostly non-canonical amphiphiles. This view is substantiated by rigorous chemical kinetics simulations of the graded autocatalysis replication domain (GARD) model, based on the notion that the replication or reproduction of compositional information predated that of sequence information. GARD reveals the emergence of privileged non-equilibrium assemblies (composomes), which portray catalysis-based homeostatic (concentration-preserving) growth. Such a process, along with occasional assembly fission, embodies cell-like reproduction. GARD pre-RNA evolution is evidenced in the selection of different composomes within a sparse fitness landscape, in response to environmental chemical changes. These observations refute claims that GARD assemblies (or other mutually catalytic networks in the metabolism first scenario) cannot evolve. Composomes represent both a genotype and a selectable phenotype, anteceding present-day biology in which the two are mostly separated. Detailed GARD analyses show attractor-like transitions from random assemblies to self-organized composomes, with negative entropy change, thus establishing composomes as dissipative systems-hallmarks of life. We show a preliminary new version of our model, metabolic GARD (M-GARD), in which lipid covalent modifications are orchestrated by non-enzymatic lipid catalysts, themselves compositionally reproduced. M-GARD fills the gap of the lack of true metabolism in basic GARD, and is rewardingly supported by a published experimental instance of a lipid-based mutually catalytic network. Anticipating near-future far-reaching progress of molecular dynamics, M-GARD is slated to quantitatively depict elaborate protocells, with orchestrated reproduction of both lipid bilayer and lumenal content. Finally, a GARD analysis in a whole-planet context offers the potential for estimating the probability of life's emergence. The invigorated GARD scrutiny presented in this review enhances the validity of autocatalytic sets as a bona fide early evolution scenario and provides essential infrastructure for a paradigm shift towards a systems protobiology view of life's origin.
Collapse
Affiliation(s)
- Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Zidovetzki
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Omer Markovitch
- Origins Center, Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Blue Marble Space Institute of Science, Seattle, WA, USA
| |
Collapse
|
50
|
Noda-Garcia L, Liebermeister W, Tawfik DS. Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annu Rev Biochem 2018; 87:187-216. [DOI: 10.1146/annurev-biochem-062917-012023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How individual enzymes evolved is relatively well understood. However, individual enzymes rarely confer a physiological advantage on their own. Judging by its current state, the emergence of metabolism seemingly demanded the simultaneous emergence of many enzymes. Indeed, how multicomponent interlocked systems, like metabolic pathways, evolved is largely an open question. This complexity can be unlocked if we assume that survival of the fittest applies not only to genes and enzymes but also to the metabolites they produce. This review develops our current knowledge of enzyme evolution into a wider hypothesis of pathway and network evolution. We describe the current models for pathway evolution and offer an integrative metabolite–enzyme coevolution hypothesis. Our hypothesis addresses the origins of new metabolites and of new enzymes and the order of their recruitment. We aim to not only survey established knowledge but also present open questions and potential ways of addressing them.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| | - Wolfram Liebermeister
- INRA, Unité MaIAGE, 78352 Jouy en Josas, France
- Institute of Biochemistry, Charité Universitätsmedizin, Berlin, 10117 Berlin, Germany
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| |
Collapse
|