1
|
Ekimova IA, Schepetov DM, Green B, Stanovova MV, Antokhina TI, Gosliner T, Malaquias MAE, Valdés Á. Scaling the high latitudes: evolution, diversification, and dispersal of Coryphella nudibranchs across the Northern Hemisphere. Mol Phylogenet Evol 2024; 201:108214. [PMID: 39369862 DOI: 10.1016/j.ympev.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Nudibranch molluscs Coryphella are widely distributed and species-rich gastropod group lacking fossil record and displaying a complex distribution across both Southern and Northern hemispheres. In this paper we provide a detailed review of the morphology, ecology, and distribution of Coryphella, estimation of divergence times between species, an ancestral area reconstruction, and a population analysis of widely distributed trans-Arctic species Coryphella verrucosa to investigate the evolution, phylogeographic patterns and reconstruct possible historical routes of oceanic dispersal. The inclusion of a larger sample size and five molecular markers has revealed a complex evolutionary history of Coryphella, shaped by transgression, vicariance, and dietary shifts, and overall driven by the pervasive effect of glacial cycles. We also revealed the presence of additional cryptic diversity, which suggests that further sampling may produce additional species in this group of nudibranchs. Tree calibration indicates the genus Coryphella originates in the middle Miocene in the Pacific Ocean and the early divergence within this group also occurred in the Pacific, specifically in different regions of the North Pacific. The ancestral area reconstruction inferred five independent instances of transgression from the Pacific Ocean to the Atlantic via different migration routes, including the Panamanian seaway and the Bering Strait. Among them, we identified three cases of successful transition to the Arctic waters from the North Pacific via the Bering Strait, associated with interglacial conditions of middle Pleistocene. Consequently, Pleistocene glacial cycles likely prompted pulses of boreal faunal elements to disperse southwards followed by range disjunction and temporary isolation of distant populations and resulting in allopatric speciation. Evidence from the population structure of contemporary trans-Arctic species suggests an occurrence of independent recolonization pathways of Arctic waters from both southernly and northernly refugia after the Last Glacial Maximum.
Collapse
Affiliation(s)
- Irina A Ekimova
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia.
| | | | - Brenna Green
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA, USA
| | - Maria V Stanovova
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Terrence Gosliner
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA, USA
| | | | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| |
Collapse
|
2
|
Winker K, Withrow JJ, Gibson DD, Pruett CL. Beringia as a high-latitude engine of avian speciation. Biol Rev Camb Philos Soc 2023; 98:1081-1099. [PMID: 36879465 DOI: 10.1111/brv.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Beringia is a biogeographically dynamic region that extends from northeastern Asia into northwestern North America. This region has affected avian divergence and speciation in three important ways: (i) by serving as a route for intercontinental colonisation between Asia and the Americas; (ii) by cyclically splitting (and often reuniting) populations, subspecies, and species between these continents; and (iii) by providing isolated refugia through glacial cycles. The effects of these processes can be seen in taxonomic splits of shallow to increasing depths and in the presence of regional endemics. We review the taxa involved in the latter two processes (splitting-reuniting and isolation), with a focus on three research topics: avian diversity, time estimates of the generation of that diversity, and the regions within Beringia that might have been especially important. We find that these processes have generated substantial amounts of avian diversity, including 49 pairs of avian subspecies or species whose breeding distributions largely replace one another across the divide between the Old World and the New World in Beringia, and 103 avian species and subspecies endemic to this region. Among endemics, about one in three is recognised as a full biological species. Endemic taxa in the orders Charadriiformes (shorebirds, alcids, gulls, and terns) and Passeriformes (perching birds) are particularly well represented, although they show very different levels of diversity through evolutionary time. Endemic Beringian Charadriiformes have a 1.31:1 ratio of species to subspecies. In Passeriformes, endemic taxa have a 0.09:1 species-to-subspecies ratio, suggesting that passerine (and thus terrestrial) endemism might be more prone to long-term extinction in this region, although such 'losses' could occur through their being reconnected with wider continental populations during favourable climatic cycles (e.g. subspecies reintegration with other populations). Genetic evidence suggests that most Beringian avian taxa originated over the past 3 million years, confirming the importance of Quaternary processes. There seems to be no obvious clustering in their formation through time, although there might be temporal gaps with lower rates of diversity generation. For at least 62 species, taxonomically undifferentiated populations occupy this region, providing ample potential for future evolutionary diversification.
Collapse
Affiliation(s)
- Kevin Winker
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Jack J Withrow
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Daniel D Gibson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Christin L Pruett
- Department of Biology, Ouachita Baptist University, 410 Ouachita St, Arkadelphia, AR, 71998, USA
| |
Collapse
|
3
|
Phillips JD, Athey TB, McNicholas PD, Hanner RH. VLF: An R package for the analysis of very low frequency variants in DNA sequences. Biodivers Data J 2023; 11:e96480. [PMID: 38327328 PMCID: PMC10848336 DOI: 10.3897/bdj.11.e96480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/30/2022] [Indexed: 01/27/2023] Open
Abstract
Here, we introduce VLF, an R package to determine the distribution of very low frequency variants (VLFs) in nucleotide and amino acid sequences for the analysis of errors in DNA sequence records. The package allows users to assess VLFs in aligned and trimmed protein-coding sequences by automatically calculating the frequency of nucleotides or amino acids in each sequence position and outputting those that occur under a user-specified frequency (default of p = 0.001). These results can then be used to explore fundamental population genetic and phylogeographic patterns, mechanisms and processes at the microevolutionary level, such as nucleotide and amino acid sequence conservation. Our package extends earlier work pertaining to an implementation of VLF analysis in Microsoft Excel, which was found to be both computationally slow and error prone. We compare those results to our own herein. Results between the two implementations are found to be highly consistent for a large DNA barcode dataset of bird species. Differences in results are readily explained by both manual human error and inadequate Linnean taxonomy (specifically, species synonymy). Here, VLF is also applied to a subset of avian barcodes to assess the extent of biological artifacts at the species level for Canada goose (Branta canadensis), as well as within a large dataset of DNA barcodes for fishes of forensic and regulatory importance. The novelty of VLF and its benefit over the previous implementation include its high level of automation, speed, scalability and ease-of-use, each desirable characteristics which will be extremely valuable as more sequence data are rapidly accumulated in popular reference databases, such as BOLD and GenBank.
Collapse
Affiliation(s)
- Jarrett D. Phillips
- School of Computer Science and Department of Integrative Biology, University of Guelph, Guelph, CanadaSchool of Computer Science and Department of Integrative Biology, University of GuelphGuelphCanada
| | - Taryn B.T. Athey
- Stollery Children's Hospital, Edmonton, CanadaStollery Children's HospitalEdmontonCanada
| | - Paul D. McNicholas
- Department of Mathematics and Statistics, McMaster University, Hamilton, CanadaDepartment of Mathematics and Statistics, McMaster UniversityHamiltonCanada
| | - Robert H. Hanner
- Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Guelph, CanadaBiodiversity Institute of Ontario and Department of Integrative Biology, University of GuelphGuelphCanada
| |
Collapse
|
4
|
Kolbasova G, Schmidt-Rhaesa A, Syomin V, Bredikhin D, Morozov T, Neretina T. Cryptic species complex or an incomplete speciation? Phylogeographic analysis reveals an intricate Pleistocene history of Priapulus caudatus Lamarck, 1816. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Elayadeth-Meethal M, Thazhathu Veettil A, Asaf M, Pramod S, Maloney SK, Martin GB, Rivero MJ, Sejian V, Naseef PP, Kuruniyan MS, Lee MRF. Comparative Expression Profiling and Sequence Characterization of ATP1A1 Gene Associated with Heat Tolerance in Tropically Adapted Cattle. Animals (Basel) 2021; 11:2368. [PMID: 34438824 PMCID: PMC8388727 DOI: 10.3390/ani11082368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Climate change is an imminent threat to livestock production. One adaptation strategy is selection for heat tolerance. While it is established that the ATP1A1 gene and its product play an important role in the response to many stressors, there has been no attempt to characterize the sequence or to perform expression profiling of the gene in production animals. We undertook a field experiment to compare the expression profiles of ATP1A1 in heat-tolerant Vechur and Kasaragod cattle (Bos taurus indicus) with the profile of a heat-susceptible crossbreed (B. t. taurus × B. t. indicus). The cattle were exposed to heat stress while on pasture in the hot summer season. The environmental stress was quantified using the temperature humidity index (THI), while the heat tolerance of each breed was assessed using a heat tolerance coefficient (HTC). The ATP1A1 mRNA of Vechur cattle was amplified from cDNA and sequenced. The HTC varied significantly between the breeds and with time-of-day (p < 0.01). The breed-time-of-day interaction was also significant (p < 0.01). The relative expression of ATP1A1 differed between heat-tolerant and heat-susceptible breeds (p = 0.02). The expression of ATP1A1 at 08:00, 10:00 and 12:00, and the breed-time-of-day interaction, were not significant. The nucleotide sequence of Vechur ATP1A1 showed 99% homology with the B. t. taurus sequence. The protein sequence showed 98% homology with B. t. taurus cattle and with B. grunniens (yak) and 97.7% homology with Ovis aries (sheep). A molecular clock analysis revealed evidence of divergent adaptive evolution of the ATP1A1 gene favoring climate resilience in Vechur cattle. These findings further our knowledge of the relationship between the ATP1A1 gene and heat tolerance in phenotypically incongruent animals. We propose that ATP1A1 could be used in marker assisted selection (MAS) for heat tolerance.
Collapse
Affiliation(s)
- Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 673576, Kerala, India;
- Livestock Research Station, Thiruvazhamkunnu, Palakkad 678601, Kerala, India;
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia;
| | - Aravindakshan Thazhathu Veettil
- Centre for Advanced Studies in Animal Genetics and Breeding, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 680651, Kerala, India;
| | - Muhasin Asaf
- Department of Animal Breeding and Genetics, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 673576, Kerala, India;
| | | | - Shane K. Maloney
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Graeme B. Martin
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia;
| | | | - Veerasamy Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi 560030, Bangalore, India;
| | | | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Michael R. F. Lee
- School of Sustainable Food and Farming, Harper Adams University, Edgmond, Newport TF10 8NB, UK;
| |
Collapse
|
6
|
Laakkonen HM, Hardman M, Strelkov P, Väinölä R. Cycles of trans-Arctic dispersal and vicariance, and diversification of the amphi-boreal marine fauna. J Evol Biol 2020; 34:73-96. [PMID: 32671913 DOI: 10.1111/jeb.13674] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The amphi-boreal faunal element comprises closely related species and conspecific populations with vicarious distributions in the North Atlantic and North Pacific basins. It originated from an initial trans-Arctic dispersal in the Pliocene after the first opening of the Bering Strait, and subsequent inter-oceanic vicariance through the Pleistocene when the passage through the Arctic was severed by glaciations and low sea levels. Opportunities for further trans-Arctic dispersal have risen at times, however, and molecular data now expose more complex patterns of inter-oceanic affinities and dispersal histories. For a general view on the trans-Arctic dynamics and of the roles of potential dispersal-vicariance cycles in generating systematic diversity, we produced new phylogeographic data sets for amphi-boreal taxa in 21 genera of invertebrates and vertebrates, and combined them with similar published data sets of mitochondrial coding gene variation, adding up to 89 inter-oceanic comparisons involving molluscs, crustaceans, echinoderms, polychaetes, fishes and mammals. Only 39% of the cases correspond to a simple history of Pliocene divergence; in most taxonomical groups, the range of divergence estimates implies connections through the entire Pliocene-Pleistocene-Holocene time frame. Repeated inter-oceanic exchange was inferred for 23 taxa, and the latest connection was usually post-glacial. Such repeated invasions have usually led to secondary contacts and occasionally to widespread hybridization between the different invasion waves. Late- or post-glacial exchange was inferred in 46% of the taxa, stressing the importance of the relatively recent invasions to the current diversity in the North Atlantic. Individual taxa also showed complex idiosyncratic patterns and histories, and several instances of cryptic speciation were recognized. In contrast to a simple inter-oceanic vicariance scenario underlying amphi-boreal speciation, the data expose complex patterns of reinvasion and reticulation that complicate the interpretation of taxon boundaries in the region.
Collapse
Affiliation(s)
- Hanna M Laakkonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Michael Hardman
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Petr Strelkov
- Department of Ichthyology and Hydrobiology, Saint Petersburg State University, St. Petersburg, Russia
| | - Risto Väinölä
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
On the genus Crossaster (Echinodermata: Asteroidea) and its distribution. PLoS One 2020; 15:e0227223. [PMID: 31910238 PMCID: PMC6946177 DOI: 10.1371/journal.pone.0227223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/13/2019] [Indexed: 11/22/2022] Open
Abstract
Several starfish (Echinodermata, Asteroidea) are keystone species of marine ecosystems, but some of the species are difficult to identify using morphological criteria only. The common sunstar, Crossaster papposus (Linnaeus, 1767), is a conspicuous species with a wide circumboreal distribution. In 1900, a closely similar species, C. squamatus (Döderlein, 1900) was described from the NE Atlantic Ocean, but subsequent authors have differed in their views on whether this is a valid taxon or rather an ecotype associated with temperature variations. We assessed the differentiating morphological characters of specimens from Norwegian and Greenland waters identified as C. papposus and C. squamatus and compared their distributions in the NE Atlantic as inferred from research cruises. The field data show that C. papposus is found mainly in temperate and shallow waters, whereas C. squamatus resides on the shelf-break in colder, mixed water masses. Intraspecific diversity and interspecific genetic differentiation of the two putative species, and their phylogenetic relationships to several Crossaster congeners worldwide, were explored using mitochondrial and nuclear DNA sequences. The molecular evidence suggests that C. papposus is the more diverse and geographically structured taxon, in line with its wide distribution. C. papposus and C. squamatus are closely related, yet clearly distinct taxa, while C. papposus and C. multispinus H.L. Clark, 1916, the latter from the South Pacific Ocean, are closely related, possibly sister taxa.
Collapse
|
8
|
Marshall CR. Using the Fossil Record to Evaluate Timetree Timescales. Front Genet 2019; 10:1049. [PMID: 31803226 PMCID: PMC6871265 DOI: 10.3389/fgene.2019.01049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
The fossil and geologic records provide the primary data used to established absolute timescales for timetrees. For the paleontological evaluation of proposed timetree timescales, and for node-based methods for constructing timetrees, the fossil record is used to bracket divergence times. Minimum brackets (minimum ages) can be established robustly using well-dated fossils that can be reliably assigned to lineages based on positive morphological evidence. Maximum brackets are much harder to establish, largely because it is difficult to establish definitive evidence that the absence of a taxon in the fossil record is real and not just due to the incompleteness of the fossil and rock records. Five primary methods have been developed to estimate maximum age brackets, each of which is discussed. The fact that the fossilization potential of a group typically decreases the closer one approaches its time of origin increases the challenge of estimating maximum age brackets. Additional complications arise: 1) because fossil data actually bracket the time of origin of the first relevant fossilizable morphology (apomorphy), not the divergence time itself; 2) due to the phylogenetic uncertainty in the placement of fossils; 3) because of idiosyncratic temporal and geographic gaps in the rock and fossil records; and 4) if the preservation potential of a group changed significantly during its history. In contrast, uncertainties in the absolute ages of fossils are typically relatively unimportant, even though the vast majority of fossil cannot be dated directly. These issues and relevant quantitative methods are reviewed, and their relative magnitudes assessed, which typically correlate with the age of the group, its geographic range, and species richness.
Collapse
Affiliation(s)
- Charles R. Marshall
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Ekimova I, Valdés Á, Chichvarkhin A, Antokhina T, Lindsay T, Schepetov D. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol Phylogenet Evol 2019; 141:106609. [PMID: 31494182 DOI: 10.1016/j.ympev.2019.106609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
While the majority nudibranch clades are more species rich in the tropics, the genus Dendronotus is mainly represented in Arctic and boreal regions. This distribution pattern remains poorly understood. An integrative approach and novel data provided valuable insights into processes driving Dendronotus radiation and speciation. We propose an evolutionary scenario based on molecular phylogenetics and morphological, ecological, ontogenetic data, combined with data on complex geology and paleoclimatology of this region. Estimated phylogenetic relationships based on four molecular markers (COI, 16S, H3 and 28S) shows strong correlation with radular morphology, diet and biogeographical pattern. Ancestral area reconstruction (AAR) provides evidence for a tropical Pacific origin of the genus. Based on AAR and divergence time estimates we conclude that the evolution of Dendronotus has been shaped by different processes: initial migration out of the tropics, diet-driven adaptive radiation in the North Pacific influenced by Miocene climate change, and subsequent allopatric speciation resulting from successive closings of the Bering strait and cooling of the Arctic Ocean during the Pliocene-Pleistocene. At the same time, contemporary amphiboreal species appear to have dispersed into the Atlantic fairly recently.
Collapse
Affiliation(s)
- Irina Ekimova
- Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; Far Eastern Federal University, Sukhanova str., 8, 690950 Vladivostok, Russia.
| | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Anton Chichvarkhin
- Far Eastern Federal University, Sukhanova str., 8, 690950 Vladivostok, Russia; A.V. Zhirmunsky Institute of Marine Biology, Russian Academy of Sciences, Palchevskogo 17, 690041 Vladivostok, Russia
| | - Tatiana Antokhina
- A.N. Severstov Institute of Ecology and Evolution, Leninskiy prosp. 33, 119071 Moscow, Russia
| | - Tabitha Lindsay
- Department of Biology, South Seattle Community College, 6000 16th Ave SW, Seattle, WA 98106, USA
| | - Dimitry Schepetov
- Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; N.K. Koltzov Institute of Developmental Biology RAS, Vavilov Str. 26, 119334 Moscow, Russia; National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| |
Collapse
|
10
|
Loeza-Quintana T, Carr CM, Khan T, Bhatt YA, Lyon SP, Hebert PD, Adamowicz SJ. Recalibrating the molecular clock for Arctic marine invertebrates based on DNA barcodes. Genome 2019; 62:200-216. [DOI: 10.1139/gen-2018-0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Divergence times for species assemblages of Arctic marine invertebrates have often been estimated using a standard rate (1.4%/MY) of molecular evolution calibrated using a single sister pair of tropical crustaceans. Because rates of molecular evolution vary among taxa and environments, it is essential to obtain clock calibrations from northern lineages. The recurrent opening and closure of the Bering Strait provide an exceptional opportunity for clock calibration. Here, we apply the iterative calibration approach to investigate patterns of molecular divergence among lineages of northern marine molluscs and arthropods using publicly available sequences of the cytochrome c oxidase subunit I (COI) gene and compare these results with previous estimates of trans-Bering divergences for echinoderms and polychaetes. The wide range of Kimura two-parameter (K2P) divergences among 73 trans-Bering sister pairs (0.12%–16.89%) supports multiple pulses of migration through the Strait. Overall, the results indicate a rate of K2P divergence of 3.2%/MY in molluscs, 5%–5.2%/MY in arthropods, and 3.5%–4.7%/MY in polychaetes. While these rates are considerably higher than the often-adopted 1.4%/MY rate, they are similar to calibrations (3%–5%/MY) in several other studies of marine invertebrates. This upward revision in rates means there is a need both to reevaluate the evolutionary history of marine lineages and to reexamine the impact of prior climatic changes upon the diversification of marine life.
Collapse
Affiliation(s)
- Tzitziki Loeza-Quintana
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Christina M. Carr
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- University of Northern Iowa, 187 McCollum Science Hall, Cedar Falls, IA 50614, USA
| | - Tooba Khan
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Yash A. Bhatt
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Faculty of Science, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Samantha P. Lyon
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Paul D.N. Hebert
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Sarah J. Adamowicz
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Orton MG, May JA, Ly W, Lee DJ, Adamowicz SJ. Is molecular evolution faster in the tropics? Heredity (Edinb) 2018; 122:513-524. [PMID: 30202084 PMCID: PMC6461915 DOI: 10.1038/s41437-018-0141-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 11/30/2022] Open
Abstract
The evolutionary speed hypothesis (ESH) suggests that molecular evolutionary rates are higher among species inhabiting warmer environments. Previously, the ESH has been investigated using small numbers of latitudinally-separated sister lineages; in animals, these studies typically focused on subsets of Chordata and yielded mixed support for the ESH. This study analyzed public DNA barcode sequences from the cytochrome c oxidase subunit I (COI) gene for six of the largest animal phyla (Arthropoda, Chordata, Mollusca, Annelida, Echinodermata, and Cnidaria) and paired latitudinally-separated taxa together informatically. Of 8037 lineage pairs, just over half (51.6%) displayed a higher molecular rate in the lineage inhabiting latitudes closer to the equator, while the remainder (48.4%) displayed a higher rate in the higher-latitude lineage. To date, this study represents the most comprehensive analysis of latitude-related molecular rate differences across animals. While a statistically-significant pattern was detected from our large sample size, our findings suggest that the EHS may not serve as a strong universal mechanism underlying the latitudinal diversity gradient and that COI molecular clocks may generally be applied across latitudes. This study also highlights the merits of using automation to analyze large DNA barcode datasets.
Collapse
Affiliation(s)
- Matthew G Orton
- Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.,School of Biological Sciences and Applied Chemistry, Seneca College, 1750 Finch Ave E, North York, ON, M2J 2X5, Canada
| | - Jacqueline A May
- Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Winfield Ly
- School of Biological Sciences and Applied Chemistry, Seneca College, 1750 Finch Ave E, North York, ON, M2J 2X5, Canada
| | - David J Lee
- School of Biological Sciences and Applied Chemistry, Seneca College, 1750 Finch Ave E, North York, ON, M2J 2X5, Canada
| | - Sarah J Adamowicz
- Department of Integrative Biology & Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|