1
|
Shi J, Chen X, Jing Y, Yan Y, Zhang G, Yang B, Peng L. The chloroplast genome sequence and phylogenetic analysis of Rubia alata Wall and Rubia ovatifolia Z. Ying Zhang. (Rubiaceae). Mol Biol Rep 2024; 51:1140. [PMID: 39527330 DOI: 10.1007/s11033-024-10046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Rubia alata Wall (R. alata) and Rubia ovatifolia Z. Ying Zhang (R. ovatifolia) are unique medicinal plants native to China. Sequencing their chloroplast genomes is important for understanding species differentiation and establishing phylogenetic relationships. METHODS AND RESULTS The chloroplast genomes of R. alata and R. ovatifolia were sequenced using the Illumina HiSeq platform. The chloroplast genome of R. alata is 154,973 base pairs (bp) in length, containing a large single-copy region (LSC) of 84,801 bp, a small single-copy region (SSC) of 17,138 bp, and a pair of inverted repeats (IRs) of the same length. The length of the chloroplast genome, LSC, SSC, and IR regions of R. ovatifolia is 26,517 bp, 84,716 bp, 17,116 bp and 26,517 bp, respectively. Codon usag e analysis revealed that R. alata had the highest frequency of Aspartic acid (Asp) (1650 occurrences) in protein-coding sequences (CDS), while R. ovatifolia showed the highest frequency of Tyrosine (Try) (1479 occurrences). Comparative analysis of chloroplast genomes across seven species from the genus Rubia identified the most divergent coding regions, including rps16, psbI-trns-CGA, and petN, while plastid rRNAs were the most conserved. Phylogenetic analysis showed R. alata clustering with R. cordifolia (66.3% support), and R. ovatifolia clustering with Rubia podantha (100% support). CONCLUSIONS These findings enhance our understanding of the chloroplast genome structure in Rubia species and provide molecular information for the future development and utilization of R. alata and R. ovatifolia resources.
Collapse
Affiliation(s)
- JiaZhou Shi
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - XiaoYing Chen
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - YiYao Jing
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Yonggang Yan
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Gang Zhang
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - BingYue Yang
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| | - Liang Peng
- Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
2
|
Liu Y, Ding K, Liang L, Zhang Z, Chen K, Li H. Comparative study on chloroplast genome of Tamarix species. Ecol Evol 2024; 14:e70353. [PMID: 39360124 PMCID: PMC11445282 DOI: 10.1002/ece3.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
Tamaricaceae comprises about 120 species and has a long evolutionary history, Tamarix Linn accounts for approximately 75% of the total species in this family. It is the most widely distributed and diverse genus in the family. They have important ecological significance for transforming deserts and improving climate conditions. However, Tamarix is the most poorly classified genera among flowering plants owing to its large variability and high susceptibility to interspecific hybridization. In this study, the complete chloroplast genomes of three Tamarix species and one draft chloroplast genome were obtained in this study. Combined with eight chloroplast genomes deposited in GenBank, complete chloroplast sequences of 12 Tamarix species were used for further analysis. There are 176 non-SSR-related indels and 681 non-indel-related SSRs in the 12 Tamarix chloroplast genomes. The mononucleotide SSRs are the most prevalent among all types of SSRs. The mVISTA results indicate high sequence similarities across the chloroplast genome, suggesting that the chloroplast genomes are highly conserved, except for sample Tamarix androssowii (ENC850343). The IR regions and the coding regions are more conserved than the single-copy and noncoding regions. The trnF-ndhJ, ndhC-trnM-CAU, ycf1, and trnL-UAG-ndhF regions are the most variable and have higher variability than those of the universal DNA markers. Finally, the first phylogenetic tree of Tamaricaceae was constructed which confirmed the monophyly of Tamarix in Tamaricaceae. The first phylogenetic tree of Tamarix was based on the complete chloroplast genome to date, the changes in branch length and support rate can potentially help us clarify the phylogenetic relationships of Tamarix. All the obtained genetic resources will facilitate future studies in population genetics, species identification, and conservation biology of Tamarix.
Collapse
Affiliation(s)
- Yanlei Liu
- School of Landscape and Ecological Engineering Hebei University of Engineering Handan China
| | - Kuo Ding
- Bingtuan Xingxin Vocational and Technical College Tiemenguan China
| | - Lixiong Liang
- School of Landscape and Ecological Engineering Hebei University of Engineering Handan China
| | - Zhan Zhang
- Bingtuan Xingxin Vocational and Technical College Tiemenguan China
| | - Kai Chen
- Bingtuan Xingxin Vocational and Technical College Tiemenguan China
| | - Haiwen Li
- College of Life Sciences and Technology Tarim University Alar China
| |
Collapse
|
3
|
Wang Y, Zhao X, Chen Q, Yang J, Hu J, Jia D, Ma R. Complete Chloroplast Genome of Alternanthera sessilis and Comparative Analysis with Its Congeneric Invasive Weed Alternanthera philoxeroides. Genes (Basel) 2024; 15:544. [PMID: 38790173 PMCID: PMC11121667 DOI: 10.3390/genes15050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant's environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186-8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus.
Collapse
Affiliation(s)
- Yuanxin Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Xueying Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Qianhui Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Jun Yang
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Jun Hu
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Dong Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Effciency in Loess Plateau, Taigu 030801, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
4
|
Yang W, Wu K, Fang L, Zeng S, Li L. The Complete Chloroplast Genomes of Blepharoglossum elegans and B. grossum and Comparative Analysis with Related Species (Orchidaceae, Malaxideae). Genes (Basel) 2023; 14:genes14051069. [PMID: 37239429 DOI: 10.3390/genes14051069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Blepharoglossum is a rare orchid genus of the Malaxidinae primarily distributed in tropical Pacific islands, with several species occurring in the Taiwan and Hainan Islands of China. Currently, the monophyletic status of Blepharoglossum has been challenged, and the phylogenetic relationships among its allied groups have remained unresolved with traditional DNA markers. In this study, we initially sequenced and annotated the chloroplast (cp) genomes of two Blepharoglossum species, Blepharoglossum elegans (Lindl.) L. Li and Blepharoglossum grossum (Rchb.f.) L. Li. These cp genomes of Blepharoglossum share the typical quadripartite and circular structure. Each of the genomes encodes a total of 133 functional genes, including 87 protein-coding genes (CDS), 38 tRNA genes and 8 rRNA genes. By comparing the sequence differences between these two cp genomes, it was found that they are relatively conserved in terms of overall gene content and gene arrangement. However, a total of 684 SNPs and 2664 indels were still identified, with ycf1, clpP, and trnK-UUU protein-coding genes having the highest number of SNPs and indels. In further comparative analyses among the six cp genomes in Malaxidinae, significant sequence divergences were identified in the intergenic regions, namely rps16-trnQ-UUG, trnS-GCU-trnG-GCC, rpoB-trnC-GCA, trnE-UUC-trnT-GGU, trnF-GAA-trnV-UAC, atpB-rbcL, petA-psbJ, psbE-petL, psbB-psbT, trnN-GUU-rpl32, trnV-GAC-rps7, and rps7-trnL-CAA, and five coding regions, including matK, and rpoC2, ycf1, and two ycf2 genes. Phylogenetic analysis indicated that Blepharoglossum and Oberonia form a highly supported sister group relationship. Our results are consistent with previous studies and present increased resolution among major clades.
Collapse
Affiliation(s)
- Wenting Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhao Y, Qu D, Ma Y. Characterization of the Chloroplast Genome of Argyranthemum frutescens and a Comparison with Other Species in Anthemideae. Genes (Basel) 2022; 13:genes13101720. [PMID: 36292605 PMCID: PMC9602088 DOI: 10.3390/genes13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Argyranthemum frutescens, which belongs to the Anthemideae (Asteraceae), is widely cultivated as an ornamental plant. In this study, the complete chloroplast genome of A. frutescens was obtained based on the sequences generated by Illumina HiSeq. The chloroplast genome of A. frutescens was 149,626 base pairs (bp) in length, containing a pair of inverted repeats (IR, 24,510 bp) regions separated by a small single-copy (SSC, 18,352 bp) sequence and a large single-copy (LSC, 82,254 bp) sequence. The genome contained 132 genes, consisting of 85 coding DNA sequences, 37 tRNA genes, and 8 rRNA genes, with nineteen genes duplicated in the IR region. A comparison chloroplast genome analysis among ten species from the tribe of Anthemideae revealed that the chloroplast genome size varied, but the genome structure, gene content, and oligonucleotide repeats were highly conserved. Highly divergent regions, e.g., ycf1, trnK-psbK, petN-psbM intronic, were detected. Phylogenetic analysis supported Argyranthemum as a separate genus. The findings of this study will be helpful in the exploration of the phylogenetic relationships of the tribe of Anthemideae and contribute to the breeding improvement of A. frutescens.
Collapse
|
6
|
Richards SM, Li L, Breen J, Hovhannisyan N, Estrada O, Gasparyan B, Gilliham M, Smith A, Cooper A, Zhang H. Recovery of chloroplast genomes from medieval millet grains excavated from the Areni-1 cave in southern Armenia. Sci Rep 2022; 12:15164. [PMID: 36071150 PMCID: PMC9452526 DOI: 10.1038/s41598-022-17931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Panicum miliaceum L. was domesticated in northern China at least 7000 years ago and was subsequentially adopted in many areas throughout Eurasia. One such locale is Areni-1 an archaeological cave site in Southern Armenia, where vast quantities archaeobotanical material were well preserved via desiccation. The rich botanical material found at Areni-1 includes P. miliaceum grains that were identified morphologically and14C dated to the medieval period (873 ± 36 CE and 1118 ± 35 CE). To investigate the demographic and evolutionary history of the Areni-1 millet, we used ancient DNA extraction, hybridization capture enrichment, and high throughput sequencing to assemble three chloroplast genomes from the medieval grains and then compared these sequences to 50 modern P. miliaceum chloroplast genomes. Overall, the chloroplast genomes contained a low amount of diversity with domesticated accessions separated by a maximum of 5 SNPs and little inference on demography could be made. However, in phylogenies the chloroplast genomes separated into two clades, similar to what has been reported for nuclear DNA from P. miliaceum. The chloroplast genomes of two wild (undomesticated) accessions of P. miliaceum contained a relatively large number of variants, 11 SNPs, not found in the domesticated accessions. These results demonstrate that P. miliaceum grains from archaeological sites can preserve DNA for at least 1000 years and serve as a genetic resource to study the domestication of this cereal crop.
Collapse
Affiliation(s)
- Stephen M Richards
- School of Biological Science, The University of Adelaide, Adelaide, Australia.
| | - Leiting Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James Breen
- School of Biological Science, The University of Adelaide, Adelaide, Australia.,Telethon Kids Institute, Australian National University, Canberra, Australia
| | | | - Oscar Estrada
- School of Biological Science, The University of Adelaide, Adelaide, Australia.,Grupo de Agrobiotecnología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Matthew Gilliham
- Waite Research Institute and School of Agriculture, Food, and Wine, ARC Centre of Excellence in Plant Energy Biology, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| | - Alexia Smith
- Department of Anthropology, University of Connecticut, Connecticut, USA
| | - Alan Cooper
- BlueSky Genetics, Ashton, SA, Australia.,South Australian Museum, Adelaide, SA, Australia
| | - Heng Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [DOI: https:/doi.org/10.1186/s12870-022-03736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/21/2023]
Abstract
AbstractBackgroundCalanthe(Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of theCalanthealliance (Calanthe,Cephalantheropsis, andPhaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed ade novoassembly, and did a comparative analysis of 8Calanthegroup species' plastomes: 6Calantheand 2Phaiusspecies. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae.ResultsThe complete plastomes of theCalanthegroup species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost inC.delavayi(P. delavayi), includingndhC,ndhF, andndhKgenes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in theCalanthegroup, and confirmed the position ofPhaius delavayiin the genusCalantheas opposed to its previous placement inPhaius.ConclusionThis study provides a report on the complete plastomes of 6Calantheand 2Phaiusspecies and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
|
8
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [PMID: 35918646 PMCID: PMC9347164 DOI: 10.1186/s12870-022-03736-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae. RESULTS The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius. CONCLUSION This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
Affiliation(s)
- Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Wyclif Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
9
|
A rapid, simple, and reliable assay to authenticate Peruvian kiwicha (A. caudatus) for food applications. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractAmaranth has acquired great economic impact as functional food, with species originating from Mexico dominating global trade. In contrast, the Peruvian A. caudatus (kiwicha) has been vastly neglected, although it is endowed with very promising nutritive traits. Morphological plasticity and taxonomic ambiguities render authentication of Amaranth difficult, such that the identity of commercial samples is often unclear. To safeguard the authenticity of kiwicha and, thus, consumer safety, we characterised a germplasm collection of 84 Amaranth accessions on both, the morphological and the genetic level. We show that kiwicha can be delineated phenotypically from other species by its late flowering, taller posture, and lower grain yields. Instead, flower and seed color, often used as proxy for identity, do not qualify as taxonomic markers. Using the plastidic barcoding marker psbA-trnH igs we were able to identify a specific Single Nucleotide Polymorphism (SNP) that separated kiwicha from all other species of Amaranth. This allowed us to develop a sequencing-free authentication assay using an Amplified Refractory Mutation System (ARMS) strategy. As a result kiwicha in commercial samples can be authenticated by a single duplex-PCR yielding a diagnostic side band reporting A. caudatus against all other species of Amaranthus. This fingerprinting assay will help to develop the nutritive potential of kiwicha and to safeguard seed material for A. caudatus against adulteration by the far more prevalent species from Mexico.
Collapse
|
10
|
Duan Q, Liu F, Gui D, Fan W, Cui G, Jia W, Zhu A, Wang J. Phylogenetic Analysis of Wild Species and the Maternal Origin of Cultivars in the Genus Lilium Using 114 Plastid Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:865606. [PMID: 35937320 PMCID: PMC9355515 DOI: 10.3389/fpls.2022.865606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/16/2022] [Indexed: 05/24/2023]
Abstract
Lilies are one of the most important ornamental flowers worldwide with approximately 100 wild species and numerous cultivars, but the phylogenetic relationships among wild species and their contributions to these cultivars are poorly resolved. We collected the major Lilium species and cultivars and assembled their plastome sequences. Our phylogenetic reconstruction using 114 plastid genomes, including 70 wild species representing all sections and 42 cultivars representing six hybrid divisions and two outgroups, uncovered well-supported genetic relationships within Lilium. The wild species were separated into two distinct groups (groups A and B) associated with geographical distribution, which further diversified into eight different clades that were phylogenetically well supported. Additional support was provided by the distributions of indels and single-nucleotide variants, which were consistent with the topology. The species of sections Archelirion, Sinomartagon III, and Leucolirion 6a and 6b were the maternal donors for Oriental hybrids, Asiatic hybrids, Trumpet hybrids, and Longiflorum hybrids, respectively. The maternal donors of the OT hybrids originated from the two sections Archelirion and Leucolirion 6a, and LA hybrids were derived from the two sections Leucolirion 6b and Sinomartagon. Our study provides an important basis for clarifying the infrageneric classification and the maternal origin of cultivars in Lilium.
Collapse
Affiliation(s)
- Qing Duan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
- Joint Lab of Yunnan Seed Industry, Kunming, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Daping Gui
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Guangfen Cui
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
- Joint Lab of Yunnan Seed Industry, Kunming, China
| | - Wenjie Jia
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
- Joint Lab of Yunnan Seed Industry, Kunming, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jihua Wang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming, China
- Joint Lab of Yunnan Seed Industry, Kunming, China
| |
Collapse
|
11
|
Sarker U, Lin YP, Oba S, Yoshioka Y, Hoshikawa K. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:104-123. [PMID: 35487123 DOI: 10.1016/j.plaphy.2022.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as 'hidden hunger.' Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Ya-Ping Lin
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan
| | - Shinya Oba
- Faculty of Applied Biological Science, Gifu University, Gifu, 501-1193, Japan
| | - Yosuke Yoshioka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Ibaraki, Japan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
12
|
Genetic variation and structure of complete chloroplast genome in alien monoecious and dioecious Amaranthus weeds. Sci Rep 2022; 12:8255. [PMID: 35585207 PMCID: PMC9117656 DOI: 10.1038/s41598-022-11983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
Amaranthus is a complex taxon with economic importance as well as harmful weeds. We studied the genetic variation and structure of the chloroplast genomes of 22 samples from 17 species of three subgenera. It was found that the length of the chloroplast genome of Amaranthus varied from 149,949 bp of A. polygonoides to 150,757 bp of A. albus. The frequencies of SNPs and InDels in chloroplast genomes were 1.79% and 2.86%, and the variation mainly occurred in the non-coding regions. The longest InDel was 387 bp, which occurred on ycf2, followed by 384 bp InDel on psbM-trnD. Two InDels in ndhE-I on the SSC make the three subgenera clearly distinguished. In LSC, SSC and IRs regions, there were four 30 bp forward and reverse repeats, and the repeats in SSC and LSC were in nearly opposite positions in circular genome structure, and almost divided the circular genome into symmetrical structures. In the topological tree constructed by chloroplast genome, species in subgen. Amaranthus and subgen. Acnida form monophyletic branches separately and cluster together. A. albus, A. blitoides and A. polygonoides were separated from subgen. Albersia, and the rest of subgen. Albersia were clustered into a monophyletic branch. The rpoC2, ycf1, ndhF-rpl32 were good at distinguishing most amaranths. The trnk-UUU-atpF, trnT-UGU-atpB, psbE-clpP, rpl14-rps19, and ndhF-D can distinguish several similar species. In general, the chloroplast genome is of certain value for the identification of the similar species of Amaranthus, which provides more evidence for clarifying the phylogenetic relationships within the genus.
Collapse
|
13
|
Fu N, Ji M, Rouard M, Yan HF, Ge XJ. Comparative plastome analysis of Musaceae and new insights into phylogenetic relationships. BMC Genomics 2022; 23:223. [PMID: 35313810 PMCID: PMC8939231 DOI: 10.1186/s12864-022-08454-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/08/2022] [Indexed: 01/16/2023] Open
Abstract
Background Musaceae is an economically important family consisting of 70-80 species. Elucidation of the interspecific relationships of this family is essential for a more efficient conservation and utilization of genetic resources for banana improvement. However, the scarcity of herbarium specimens and quality molecular markers have limited our understanding of the phylogenetic relationships in wild species of Musaceae. Aiming at improving the phylogenetic resolution of Musaceae, we analyzed a comprehensive set of 49 plastomes for 48 species/subspecies representing all three genera of this family. Results Musaceae plastomes have a relatively well-conserved genomic size and gene content, with a full length ranging from 166,782 bp to 172,514 bp. Variations in the IR borders were found to show phylogenetic signals to a certain extent in Musa. Codon usage bias analysis showed different preferences for the same codon between species and three genera and a common preference for A/T-ending codons. Among the two genes detected under positive selection (dN/dS > 1), ycf2 was indicated under an intensive positive selection. The divergent hotspot analysis allowed the identification of four regions (ndhF-trnL, ndhF, matK-rps16, and accD) as specific DNA barcodes for Musaceae species. Bayesian and maximum likelihood phylogenetic analyses using full plastome resulted in nearly identical tree topologies with highly supported relationships between species. The monospecies genus Musella is sister to Ensete, and the genus Musa was divided into two large clades, which corresponded well to the basic number of n = x = 11 and n = x =10/9/7, respectively. Four subclades were divided within the genus Musa. A dating analysis covering the whole Zingiberales indicated that the divergence of Musaceae family originated in the Palaeocene (59.19 Ma), and the genus Musa diverged into two clades in the Eocene (50.70 Ma) and then started to diversify from the late Oligocene (29.92 Ma) to the late Miocene. Two lineages (Rhodochlamys and Australimusa) radiated recently in the Pliocene /Pleistocene periods. Conclusions The plastome sequences performed well in resolving the phylogenetic relationships of Musaceae and generated new insights into its evolution. Plastome sequences provided valuable resources for population genetics and phylogenetics at lower taxon. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08454-3.
Collapse
Affiliation(s)
- Ning Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meiyuan Ji
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397, Montpellier Cedex 5, France
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
14
|
Bai X, Ye X, Luo Y, Liu C, Wu Q. Characterization of the first complete chloroplast genome of Amaranthus hybridus (Caryophyllales: Amaranthaceae) with phylogenetic implications. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3306-3308. [PMID: 34722881 PMCID: PMC8555552 DOI: 10.1080/23802359.2021.1994890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the complete chloroplast genome of Amaranthus hybridus was sequenced and assembled. The complete chloroplast genome of Amaranthus hybridus is 150,709 in size, with the GC content of 36.56%. The chloroplast genome of Amaranthus hybridus contained 86 protein-coding genes (PCGs), eight ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. Phylogenetic analysis based on combined chloroplast gene dataset indicated that the Amaranthus hybridus exhibited a close relationship with A. hypochondriacus and A. caudatus.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changyin Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods. REMOTE SENSING 2021. [DOI: 10.3390/rs13204149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The feasibility of rapid and non-destructive classification of six different Amaranthus species was investigated using visible-near-infrared (Vis-NIR) spectra coupled with chemometric approaches. The focus of this research would be to use a handheld spectrometer in the field to classify six Amaranthus sp. in different geographical regions of South Korea. Spectra were obtained from the adaxial side of the leaves at 1.5 nm intervals in the Vis-NIR spectral range between 400 and 1075 nm. The obtained spectra were assessed with four different preprocessing methods in order to detect the optimum preprocessing method with high classification accuracy. Preprocessed spectra of six Amaranthus sp. were used as input for the machine learning-based chemometric analysis. All the classification results were validated using cross-validation to produce robust estimates of classification accuracies. The different combinations of preprocessing and modeling were shown to have a classification accuracy of between 71% and 99.7% after the cross-validation. The combination of Savitzky-Golay preprocessing and Support vector machine showed a maximum mean classification accuracy of 99.7% for the discrimination of Amaranthus sp. Considering the high number of spectra involved in this study, the growth stage of the plants, varying measurement locations, and the scanning position of leaves on the plant are all important. We conclude that Vis-NIR spectroscopy, in combination with appropriate preprocessing and machine learning methods, may be used in the field to effectively classify Amaranthus sp. for the effective management of the weedy species and/or for monitoring their food applications.
Collapse
|
16
|
Tiwari KK, Thakkar NJ, Dharajiya DT, Bhilocha HL, Barvaliya PP, Galvadiya BP, Prajapati NN, Patel MP, Solanki SD. Genome-wide microsatellites in amaranth: development, characterization, and cross-species transferability. 3 Biotech 2021; 11:395. [PMID: 34422536 DOI: 10.1007/s13205-021-02930-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Amaranth (Amaranthus spp.) belonging to Amaranthaceae, is known as "the crop of the future" because of its incredible nutritional quality. Amaranthus spp. (> 70) have a huge diversity in terms of their plant morphology, production and nutritional quality; however, these species are not well characterized at molecular level due to unavailability of robust and reproducible molecular markers, which is essential for crop improvement programs. In the present study, 13,051 genome-wide microsatellite motifs were identified and subsequently utilized for marker development using A. hypochondriacus (L.) genome (JPXE01.1). Out of those, 1538 motifs were found with flanking sequences suitable for primer designing. Among designed primers, 225 were utilized for validation of which 119 (52.89%) primers were amplified. Cross-species transferability and evolutionary relatedness among ten species of Amaranthus (A. hypochondriacus, A. caudatus, A. retroflexus, A. cruentus, A. tricolor, A. lividus, A. hybridus, A. viridis, A. edulis, and A. dubius) were also studied using 45 microsatellite motifs. The maximum (86.67%) and minimum (28.89%) cross-species transferability were observed in A. caudatus and A. dubius, respectively, that indicated high variability present across the Amaranthus spp. Total 97 alleles were detected among 10 species of Amaranthus. The averages of major allele frequency, gene diversity, heterozygosity and PIC were 0.733, 0.347, 0.06, and 0.291, respectively. Nei's genetic dissimilarity coefficients ranged from 0.0625 (between A. tricolor and A. hybridus) to 0.7918 (between A. viridis and A. lividus). The phylogenetic tree grouped ten species into three major clusters. Genome-wide development of microsatellite markers and their transferability revealed relationships among amaranth species which ultimately can be useful for species identification, DNA fingerprinting, and QTLs/gene(s) identification. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02930-5.
Collapse
Affiliation(s)
- Kapil K Tiwari
- Bio Science Research Centre, Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar, Gujarat 385506 India
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Nevya J Thakkar
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Darshan T Dharajiya
- Bio Science Research Centre, Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar, Gujarat 385506 India
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Hetal L Bhilocha
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Parita P Barvaliya
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - Bhemji P Galvadiya
- Bio Science Research Centre, Sardarkrushinagar Dantiwada Agricultural University (SDAU), Sardarkrushinagar, Gujarat 385506 India
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - N N Prajapati
- Centre for Crop Improvement, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - M P Patel
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
- Pulses Research Station, SDAU, Sardarkrushinagar, Gujarat 385506 India
| | - S D Solanki
- Department of Plant Molecular Biology and Biotechnology/Department of Genetics and Plant Breeding, C. P. College of Agriculture, SDAU, Sardarkrushinagar, Gujarat 385506 India
| |
Collapse
|
17
|
Kamenya SN, Mikwa EO, Song B, Odeny DA. Genetics and breeding for climate change in Orphan crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1787-1815. [PMID: 33486565 PMCID: PMC8205878 DOI: 10.1007/s00122-020-03755-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/16/2020] [Indexed: 05/17/2023]
Abstract
Climate change is rapidly changing how we live, what we eat and produce, the crops we breed and the target traits. Previously underutilized orphan crops that are climate resilient are receiving much attention from the crops research community, as they are often the only crops left in the field after periods of extreme weather conditions. There are several orphan crops with incredible resilience to biotic and abiotic stresses. Some are nutritious, while others provide good sources of biofuel, medicine and other industrial raw materials. Despite these benefits, orphan crops are still lacking in important genetic and genomic resources that could be used to fast track their improvement and make their production profitable. Progress has been made in generating draft genomes of at least 28 orphan crops over the last decade, thanks to the reducing cost of sequencing. The implementation of a structured breeding program that takes advantage of additional modern crop improvement tools such as genomic selection, speed breeding, genome editing, high throughput phenotyping and breeding digitization would make rapid improvement of these orphan crops possible, but would require coordinated research investment. Other production challenges such as lack of adequate germplasm conservation, poor/non-existent seed systems and agricultural extension services, as well as poor marketing channels will also need to be improved if orphan crops were to be profitable. We review the importance of breeding orphan crops under the increasing effects of climate change, highlight existing gaps that need to be addressed and share some lessons to be learned from major crops.
Collapse
Affiliation(s)
- Sandra Ndagire Kamenya
- African Center of Excellence in Agroecology and Livelihood Systems, Uganda Martyrs University, Kampala, Uganda
| | - Erick Owuor Mikwa
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute At Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518060, People's Republic of China.
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics - Eastern and Southern Africa, Nairobi, Kenya.
| |
Collapse
|
18
|
Wang Y, Wang S, Liu Y, Yuan Q, Sun J, Guo L. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics 2021; 22:103. [PMID: 33541261 PMCID: PMC7863269 DOI: 10.1186/s12864-021-07394-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. Results The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42–47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07394-8.
Collapse
Affiliation(s)
- Yiheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingjun Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Sun
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
19
|
Yang J, Chiang YC, Hsu TW, Kim SH, Pak JH, Kim SC. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci Rep 2021; 11:1152. [PMID: 33441744 PMCID: PMC7806662 DOI: 10.1038/s41598-020-80143-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Genus Rubus represents the second largest genus of the family Rosaceae in Taiwan, with 41 currently recognized species across three subgenera (Chamaebatus, Idaoeobatus, and Malochobatus). Despite previous morphological and cytological studies, little is known regarding the overall phylogenetic relationships among the Rubus species in Taiwan, and their relationships to congeneric species in continental China. We characterized eight complete plastomes of Taiwan endemic Rubus species: subg. Idaeobatus (R. glandulosopunctatus, R. incanus, R. parviaraliifolius, R rubroangustifolius, R. taitoensis, and R. taiwanicolus) and subg. Malachobatus (R. kawakamii and R. laciniastostipulatus) to determine their phylogenetic relationships. The plastomes were highly conserved and the size of the complete plastome sequences ranged from 155,566 to 156,236 bp. The overall GC content ranged from 37.0 to 37.3%. The frequency of codon usage showed similar patterns among species, and 29 of the 73 common protein-coding genes were positively selected. The comparative phylogenomic analysis identified four highly variable intergenic regions (rps16/trnQ, petA/psbJ, rpl32/trnL-UAG, and trnT-UGU/trnL-UAA). Phylogenetic analysis of 31 representative complete plastomes within the family Rosaceae revealed three major lineages within Rubus in Taiwan. However, overall phylogenetic relationships among endemic species require broader taxon sampling to gain new insights into infrageneric relationships and their plastome evolution.
Collapse
Affiliation(s)
- JiYoung Yang
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tsai-Wen Hsu
- Taiwan Endemic Species Research Institute, 1 Mingshen East Road, Chichi Township, Nantou, 55244, Taiwan
| | - Seon-Hee Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae-Hong Pak
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
20
|
Yang J, Takayama K, Youn JS, Pak JH, Kim SC. Plastome Characterization and Phylogenomics of East Asian Beeches with a Special Emphasis on Fagus multinervis on Ulleung Island, Korea. Genes (Basel) 2020; 11:E1338. [PMID: 33198274 PMCID: PMC7697516 DOI: 10.3390/genes11111338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Beech trees of the genus Fagus (Fagaceae) are monoecious and distributed in the Northern Hemisphere. They represent an important component of mixed broad-leaved evergreen-deciduous forests and are an economically important source of timber. Despite their ecological and economical importance, however, little is known regarding the overall plastome evolution among Fagus species in East Asia. In particular, the taxonomic position and status of F. multinervis, a beech species endemic to Ulleung Island of Korea, remains unclear even today. Therefore, in this study, we characterized four newly completed plastomes of East Asian Fagus species (one accession each of F. crenata and F. multinervis and two accessions of F. japonica). Moreover, we performed phylogenomic analyses comparing these four plastomes with F. sylvatica (European beech) plastome. The four plastomes were highly conserved, and their size ranged from 158,163 to 158,348 base pair (bp). The overall GC content was 37.1%, and the sequence similarity ranged from 99.8% to 99.99%. Codon usage patterns were similar among species, and 7 of 77 common protein-coding genes were under positive selection. Furthermore, we identified five highly variable hotspot regions of the Fagus plastomes (ccsA/ndhD, ndhD/psaC, ndhF/rpl32, trnS-GCU/trnG-UCC, and ycf1). Phylogenetic analysis revealed the monophyly of Fagus as well as early divergence of the subgenus Fagus and monophyletic Engleriana. Finally, phylogenetic results supported the taxonomic distinction of F. multinervis from its close relatives F. engleriana and F. japonica. However, the sister species and geographic origin of F. multinervis on Ulleung Island could not be determined.
Collapse
Affiliation(s)
- JiYoung Yang
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Koji Takayama
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Jin-Suk Youn
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Gyeongsangbuk-do, Daegu 41566, Korea; (J.Y.); (J.-S.Y.)
| | - Seung-Chul Kim
- Department of Biological Sciences, Sungkyunkwan University, 2066 Seobu-ro, Gyeonggi-do, Suwon 16419, Korea
| |
Collapse
|
21
|
Herrando-Moraira S, Calleja JA, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-Alvarado J, López-Pujol J, Mandel JR, Massó S, Montes-Moreno N, Roquet C, Sáez L, Sennikov A, Susanna A, Vilatersana R. Nuclear and plastid DNA phylogeny of tribe Cardueae (Compositae) with Hyb-Seq data: A new subtribal classification and a temporal diversification framework. Mol Phylogenet Evol 2019; 137:313-332. [DOI: 10.1016/j.ympev.2019.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
22
|
Liu X, Zhou B, Yang H, Li Y, Yang Q, Lu Y, Gao Y. Sequencing and Analysis of Chrysanthemum carinatum Schousb and Kalimeris indica. The Complete Chloroplast Genomes Reveal Two Inversions and rbcL as Barcoding of the Vegetable. Molecules 2018; 23:E1358. [PMID: 29874832 PMCID: PMC6099409 DOI: 10.3390/molecules23061358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 01/28/2023] Open
Abstract
Chrysanthemum carinatum Schousb and Kalimeris indica are widely distributed edible vegetables and the sources of the Chinese medicine Asteraceae. The complete chloroplast (cp) genome of Asteraceae usually occurs in the inversions of two regions. Hence, the cp genome sequences and structures of Asteraceae species are crucial for the cp genome genetic diversity and evolutionary studies. Hence, in this paper, we have sequenced and analyzed for the first time the cp genome size of C. carinatum Schousb and K. indica, which are 149,752 bp and 152,885 bp, with a pair of inverted repeats (IRs) (24,523 bp and 25,003) separated by a large single copy (LSC) region (82,290 bp and 84,610) and a small single copy (SSC) region (18,416 bp and 18,269), respectively. In total, 79 protein-coding genes, 30 distinct transfer RNA (tRNA) genes, four distinct rRNA genes and two pseudogenes were found not only in C. carinatum Schousb but also in the K. indica cp genome. Fifty-two (52) and fifty-nine (59) repeats, and seventy (70) and ninety (90) simple sequence repeats (SSRs) were found in the C. carinatum Schousb and K. indica cp genomes, respectively. Codon usage analysis showed that leucine, isoleucine, and serine are the most frequent amino acids and that the UAA stop codon was the significantly favorite stop codon in both cp genomes. The two inversions, the LSC region ranging from trnC-GCA to trnG-UCC and the whole SSC region were found in both of them. The complete cp genome comparison with other Asteraceae species showed that the coding area is more conservative than the non-coding area. The phylogenetic analysis revealed that the rbcL gene is a good barcoding marker for identifying different vegetables. These results give an insight into the identification, the barcoding, and the understanding of the evolutionary model of the Asteraceae cp genome.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Boyang Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Hongyuan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Qian Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yuzhuo Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| | - Yu Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China.
| |
Collapse
|