1
|
Hancock SJ, Lo AW, Ve T, Day CJ, Tan L, Mendez AA, Phan MD, Nhu NTK, Peters KM, Richards AC, Fleming BA, Chang C, Ngu DHY, Forde BM, Haselhorst T, Goh KGK, Beatson SA, Jennings MP, Mulvey MA, Kobe B, Schembri MA. Ucl fimbriae regulation and glycan receptor specificity contribute to gut colonisation by extra-intestinal pathogenic Escherichia coli. PLoS Pathog 2022; 18:e1010582. [PMID: 35700218 PMCID: PMC9236248 DOI: 10.1371/journal.ppat.1010582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/27/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics. ExPEC infection of the urinary tract and bloodstream is frequently seeded from an intestinal reservoir, necessitating an understanding of the mechanisms that promote gut colonisation. Here we employed molecular and structural approaches to define the regulation and function of ExPEC Ucl fimbriae as a gut colonisation factor. We describe how mutations in the non-coding regulatory region of the ucl promoter cause increased Ucl fimbriae expression and promote enhanced gut colonisation via tuned induction by a global regulator that senses oxygen stress. We further define the glycan receptor targets of Ucl fimbriae and characterise the structural features of the Ucl adhesin that facilitate these interactions. These findings explain how ExPEC can adapt to survival in the gut to seed extra-intestinal infection.
Collapse
Affiliation(s)
- Steven J. Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W. Lo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Ve
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M. Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Brittany A. Fleming
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Chyden Chang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Dalton H. Y. Ngu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian M. Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Kelvin G. K. Goh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
2
|
Genomic comparison of serogroups O159 and O170 with other Vibrio cholerae serogroups. BMC Genomics 2019; 20:241. [PMID: 30909880 PMCID: PMC6434791 DOI: 10.1186/s12864-019-5603-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Of the hundreds of Vibrio cholerae serogroups, O1 and O139 are the main epidemic-causing ones. Although non-O1/non-O139 serogroups rarely cause epidemics, the possibility exists for strains within them to have pathogenic potential. Results We selected 25 representative strains within 16 V. cholerae serogroups and examined their genomic and functional characteristics. We tentatively constructed a gene pool containing 405 homologous gene clusters, which is well organized and functions in O-antigen polysaccharide (O-PS) synthesis. Our network analysis indicate that great diversity exists in O-PS among the serogroups, and several serogroup pairs share a high number of homologous genes (e.g., O115 and O37; O170 and O139; O12 and O39). The phylogenetic analysis results suggest that a close relationship exists between serogroups O170, O89 and O144, based on neighbor-joining (NJ) and gene trees, although serogroup O159 showed an inconsistent phylogenetic relationship between the NJ tree and the gene tree, indicating that it may have undergone extensive recombination and horizontal gene transfer. Different phylogenetic structures were observed between the core genes, pan genes, and O-PS genes. The virulence gene analysis indicated that the virulence genes from all the representative strains may have their sources from four particular bacteria (Pseudomonas aeruginosa, V. vulnificus, Haemophilus somnus and H. influenzae), which suggests that V. cholerae may have exchanged virulence genes with other bacterial genera or species in certain environments. The mobile genetic element analysis indicated that O159 carries nearly complete VSP-II and partial VPI-1 and VPI-2, O170 carries partial VPI-1 and VPI-2, and several non-O1/non-O139 strains contain full or partial VPI-1 and VPI-2. Several genes showing evidence of positive selection are involved in chemotaxis, Na + resistance, or cell wall synthesis, suggestive of environmental adaptation. Conclusions This study reports on the newly sequenced O159 and O170 genomes and their comparisons with other V. cholerae serogroups. The complicated O-PS network of constituent genes highlights the detailed recombination mechanisms that have acted on the serogroups’ genomes. The serogroups have different virulence-related gene profiles, and there is evidence of positive selection acting on other genes, possibly during adaptation to different environments and hosts. Electronic supplementary material The online version of this article (10.1186/s12864-019-5603-7) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Yoshizaki S, Akahori H, Umemura T, Terada T, Takashima Y, Muto Y. Genome-wide analyses reveal genes subject to positive selection in Toxoplasma gondii. Gene 2019; 699:73-79. [PMID: 30858136 DOI: 10.1016/j.gene.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Toxoplasma gondii is an important protozoan pathogen that infects many wild and domestic animals and causes infections in immunocompromised humans. However, there has been little investigation of the molecular evolutionary trajectories of this pathogenic protozoa using comparative genomics data. Here, we employed a comparative evolutionary genomics approach to identify genes that are under site- and lineage-specific positive selection in nine strains of T. gondii, including two closely related species, Neospora caninum and Hammondia hammondi. Based on the analyses of five coccidian core genomes, 4.5% of the 5788 core genome genes showed strong signals for positive selection in the site model. In addition, the branch-site model analyses in the nine T. gondii core genomes indicated that 2 to 20 genes underwent significant positive selection along each lineage leading to T. gondii strains. Many of the protein products encoded by the positively selected genes are secretory or surface proteins that have previously been implicated in host pathogenesis. The adaptive changes in these positively selected genes might be related to dynamic interactions between the host immune systems and might play a crucial role in the infection and pathogenic processes of T. gondii.
Collapse
Affiliation(s)
- Sumio Yoshizaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; Department of Nursing, Heisei College of Health Sciences, 180 Kurono, Gifu 501-1131, Japan
| | - Hiromichi Akahori
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Toshiaki Umemura
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Takashima
- Department of Veterinary Parasitology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshinori Muto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan; Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
4
|
Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE, Souza V. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes? Pathog Dis 2017; 75:3861975. [DOI: 10.1093/femspd/ftx059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
|
5
|
Genetic Stability and Evolution of the sigB Allele, Used for Listeria Sensu Stricto Subtyping and Phylogenetic Inference. Appl Environ Microbiol 2017; 83:AEM.00306-17. [PMID: 28389543 DOI: 10.1128/aem.00306-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022] Open
Abstract
Sequencing of single genes remains an important tool that allows the rapid classification of bacteria. Sequencing of a portion of sigB, which encodes a stress-responsive alternative sigma factor, has emerged as a commonly used molecular tool for the initial characterization of diverse Listeria isolates. In this study, evolutionary approaches were used to assess the validity of sigB allelic typing for Listeria For a data set of 4,280 isolates, sigB allelic typing showed a Simpson's index of diversity of 0.96. Analyses of 164 sigB allelic types (ATs) found among the 6 Listeriasensu stricto species, representing these 4,280 isolates, indicate that neither frequent homologous recombination nor positive selection significantly contributed to the evolution of sigB, confirming its genetic stability. The molecular clock test provided evidence for unequal evolution rates across clades; Listeria welshimeri displayed the lowest sigB diversity and was the only species in which sigB evolved in a clocklike manner, implying a unique natural history. Among the four L. monocytogenes lineages, sigB evolution followed a molecular clock only in lineage IV. Moreover, sigB displayed a significant negative Tajima D value in lineage II, suggesting a recent population bottleneck followed by lineage expansion. The absence of positive selection along with the violation of the molecular clock suggested a nearly neutral mechanism of Listeriasensu strictosigB evolution. While comparison with a whole-genome sequence-based phylogeny revealed that the sigB phylogeny did not correctly reflect the ancestry of L. monocytogenes lineage IV, the availability of a large sigB AT database allowed accurate species classification.IMPORTANCEsigB allelic typing has been widely used for species delineation and subtyping of Listeria However, an informative evaluation of this method from an evolutionary perspective was missing. Our data indicate that the genetic stability of sigB is affected by neither frequent homologous recombination nor positive selection, which supports that sigB allelic typing provides reliable subtyping and classification of Listeria sensu stricto strains. However, multigene data are required for accurate phylogeny reconstruction of Listeria This study thus contributes to a better understanding of the evolution of sigB and confirms the robustness of the sigB subtyping system for Listeria.
Collapse
|
6
|
Genome-wide evidence of positive selection in Bacteroides fragilis. Comput Biol Chem 2014; 52:43-50. [DOI: 10.1016/j.compbiolchem.2014.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/20/2022]
|
7
|
Evolutionary analysis points to divergent physiological roles of type 1 fimbriae in Salmonella and Escherichia coli. mBio 2013; 4:mBio.00625-12. [PMID: 23462115 PMCID: PMC3604780 DOI: 10.1128/mbio.00625-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Salmonella and Escherichia coli mannose-binding type 1 fimbriae exhibit highly similar receptor specificities, morphologies, and mechanisms of assembly but are nonorthologous in nature, i.e., not closely related evolutionarily. Their operons differ in chromosomal location, gene arrangement, and regulatory components. In the current study, we performed a comparative genetic and structural analysis of the major structural subunit, FimA, from Salmonella and E. coli and found that FimA pilins undergo diverse evolutionary adaptation in the different species. Whereas the E. coli fimA locus is characterized by high allelic diversity, frequent intragenic recombination, and horizontal movement, Salmonella fimA shows structural diversity that is more than 5-fold lower without strong evidence of gene shuffling or homologous recombination. In contrast to Salmonella FimA, the amino acid substitutions in the E. coli pilin heavily target the protein regions that are predicted to be exposed on the external surface of fimbriae. Altogether, our results suggest that E. coli, but not Salmonella, type 1 fimbriae display a high level of structural diversity consistent with a strong selection for antigenic variation under immune pressure. Thus, type 1 fimbriae in these closely related bacterial species appear to function in distinctly different physiological environments. IMPORTANCE E. coli and Salmonella are enteric bacteria that are closely related from an evolutionary perspective. They are both notorious human pathogens, though with somewhat distinct ecologies and virulence mechanisms. Type 1 fimbriae are rod-shaped surface appendages found in most E. coli and Salmonella isolates. In both species, they mediate bacterial adhesion to mannose receptors on host cells and share essentially the same morphology and assembly mechanisms. Here we show that despite the strong resemblances in function and structure, they are exposed to very different natural selection environments. Sequence analysis indicates that E. coli, but not Salmonella, fimbriae are subjected to strong immune pressure, resulting in a high level of major fimbrial protein gene shuffling and interbacterial transfer. Thus, evolutionary analysis tools can provide evidence of divergent physiological roles of functionally similar traits in different bacterial species.
Collapse
|
8
|
Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli. J Bacteriol 2012; 195:231-42. [PMID: 23123908 DOI: 10.1128/jb.01524-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The contribution of homologous exchange (recombination) of core genes in the adaptive evolution of bacterial pathogens is not well understood. To investigate this, we analyzed fully assembled genomes of two Escherichia coli strains from sequence type 131 (ST131), a clonal group that is both the leading cause of extraintestinal E. coli infections and the main source of fluoroquinolone-resistant E. coli. Although the sequences of each of the seven multilocus sequence typing genes were identical in the two ST131 isolates, the strains diverged from one another by homologous recombination that affected at least 9% of core genes. This was on a par with the contribution to genomic diversity of horizontal gene transfer and point gene mutation. The genomic positions of recombinant and mobile genetic regions were partially linked, suggesting their concurrent occurrence. One of the genes affected by homologous recombination was fimH, which encodes mannose-specific type 1 fimbrial adhesin, resulting in functionally distinct copies of the gene in ST131 strains. One strain, a uropathogenic isolate, had a pathoadaptive variant of fimH that was acquired by homologous replacement into the commensal strain background. Close examination of FimH structure and function in additional ST131 isolates revealed that recombination led to acquisition of several functionally distinct variants that, upon homologous exchange, were targeted by a variety of pathoadaptive mutations under strong positive selection. Different recombinant fimH strains also showed a strong clonal association with ST131 isolates that had distinct fluoroquinolone resistance profiles. Thus, homologous recombination of core genes plays a significant role in adaptive diversification of bacterial pathogens, especially at the level of clonally related groups of isolates.
Collapse
|
9
|
Garzón-Ospina D, López C, Forero-Rodríguez J, Patarroyo MA. Genetic diversity and selection in three Plasmodium vivax merozoite surface protein 7 (Pvmsp-7) genes in a Colombian population. PLoS One 2012; 7:e45962. [PMID: 23049905 PMCID: PMC3458108 DOI: 10.1371/journal.pone.0045962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- Microbiology postgraduate program, Universidad Nacional de Colombia, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Carolina López
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- Microbiology postgraduate program, Universidad Nacional de Colombia, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia – FIDIC, Bogotá DC, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
- * E-mail:
| |
Collapse
|
10
|
González-González A, Sánchez-Reyes LL, Delgado Sapien G, Eguiarte LE, Souza V. Hierarchical clustering of genetic diversity associated to different levels of mutation and recombination in Escherichia coli: a study based on Mexican isolates. INFECTION GENETICS AND EVOLUTION 2012; 13:187-97. [PMID: 22995280 DOI: 10.1016/j.meegid.2012.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/01/2023]
Abstract
Escherichia coli occur as either free-living microorganisms, or within the colons of mammals and birds as pathogenic or commensal bacteria. Although the Mexican population of intestinal E. coli maintains high levels of genetic diversity, the exact mechanisms by which this occurs remain unknown. We therefore investigated the role of homologous recombination and point mutation in the genetic diversification and population structure of Mexican strains of E. coli. This was explored using a multi locus sequence typing (MLST) approach in a non-outbreak related, host-wide sample of 128 isolates. Overall, genetic diversification in this sample appears to be driven primarily by homologous recombination, and to a lesser extent, by point mutation. Since genetic diversity is hierarchically organized according to the MLST genealogy, we observed that there is not a homogeneous recombination rate, but that different rates emerge at different clustering levels such as phylogenetic group, lineage and clonal complex (CC). Moreover, we detected clear signature of substructure among the A+B1 phylogenetic group, where the majority of isolates were differentiated into four discrete lineages. Substructure pattern is revealed by the presence of several CCs associated to a particular life style and host as well as to different genetic diversification mechanisms. We propose these findings as an alternative explanation for the maintenance of the clear phylogenetic signal of this species despite the prevalence of homologous recombination. Finally, we corroborate using both phylogenetic and genetic population approaches as an effective mean to establish epidemiological surveillance tailored to the ecological specificities of each geographic region.
Collapse
Affiliation(s)
- Andrea González-González
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | | | |
Collapse
|
11
|
Joseph SJ, Didelot X, Gandhi K, Dean D, Read TD. Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol Direct 2011; 6:28. [PMID: 21615910 PMCID: PMC3126793 DOI: 10.1186/1745-6150-6-28] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/26/2011] [Indexed: 02/02/2023] Open
Abstract
Background Chlamydia trachomatis is an obligate intracellular bacterial parasite, which causes several severe and debilitating diseases in humans. This study uses comparative genomic analyses of 12 complete published C. trachomatis genomes to assess the contribution of recombination and selection in this pathogen and to understand the major evolutionary forces acting on the genome of this bacterium. Results The conserved core genes of C. trachomatis are a large proportion of the pan-genome: we identified 836 core genes in C. trachomatis out of a range of 874-927 total genes in each genome. The ratio of recombination events compared to mutation (ρ/θ) was 0.07 based on ancestral reconstructions using the ClonalFrame tool, but recombination had a significant effect on genetic diversification (r/m = 0.71). The distance-dependent decay of linkage disequilibrium also indicated that C. trachomatis populations behaved intermediately between sexual and clonal extremes. Fifty-five genes were identified as having a history of recombination and 92 were under positive selection based on statistical tests. Twenty-three genes showed evidence of being under both positive selection and recombination, which included genes with a known role in virulence and pathogencity (e.g., ompA, pmps, tarp). Analysis of inter-clade recombination flux indicated non-uniform currents of recombination between clades, which suggests the possibility of spatial population structure in C. trachomatis infections. Conclusions C. trachomatis is the archetype of a bacterial species where recombination is relatively frequent yet gene gains by horizontal gene transfer (HGT) and losses (by deletion) are rare. Gene conversion occurs at sites across the whole C. trachomatis genome but may be more often fixed in genes that are under diversifying selection. Furthermore, genome sequencing will reveal patterns of serotype specific gene exchange and selection that will generate important research questions for understanding C. trachomatis pathogenesis. Reviewers This article was reviewed by Dr. Jeremy Selengut, Dr. Lee S. Katz (nominated by Dr. I. King Jordan) and Dr. Arcady Mushegian.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Department of Medicine, Division of Infectious, Diseases Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
12
|
Schmid K, Yang Z. The trouble with sliding windows and the selective pressure in BRCA1. PLoS One 2008; 3:e3746. [PMID: 19015730 PMCID: PMC2581807 DOI: 10.1371/journal.pone.0003746] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022] Open
Abstract
Sliding-window analysis has widely been used to uncover synonymous (silent, dS) and nonsynonymous (replacement, dN) rate variation along the protein sequence and to detect regions of a protein under selective constraint (indicated by dN<dS) or positive selection (indicated by dN>dS). The approach compares two or more protein-coding genes and plots estimates dˆS and dˆN from each sliding window along the sequence. Here we demonstrate that the approach produces artifactual trends of synonymous and nonsynonymous rate variation, with greater variation in dˆS than in dˆN. Such trends are generated even if the true dS and dN are constant along the whole protein and different codons are evolving independently. Many published tests of negative and positive selection using sliding windows that we have examined appear to be invalid because they fail to correct for multiple testing. Instead, likelihood ratio tests provide a more rigorous framework for detecting signals of natural selection affecting protein evolution. We demonstrate that a previous finding that a particular region of the BRCA1 gene experienced a synonymous rate reduction driven by purifying selection is likely an artifact of the sliding window analysis. We evaluate various sliding-window analyses in molecular evolution, population genetics, and comparative genomics, and argue that the approach is not generally valid if it is not known a priori that a trend exists and if no correction for multiple testing is applied.
Collapse
Affiliation(s)
- Karl Schmid
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | | |
Collapse
|
13
|
Orsi RH, Sun Q, Wiedmann M. Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of Listeria monocytogenes. BMC Evol Biol 2008; 8:233. [PMID: 18700032 PMCID: PMC2532693 DOI: 10.1186/1471-2148-8-233] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 08/12/2008] [Indexed: 12/30/2022] Open
Abstract
Background The genus Listeria includes two closely related pathogenic and non-pathogenic species, L. monocytogenes and L. innocua. L. monocytogenes is an opportunistic human foodborne and animal pathogen that includes two common lineages. While lineage I is more commonly found among human listeriosis cases, lineage II appears to be overrepresented among isolates from foods and environmental sources. This study used the genome sequences for one L. innocua strain and four L. monocytogenes strains representing lineages I and II, to characterize the contributions of positive selection and recombination to the evolution of the L. innocua/L. monocytogenes core genome. Results Among the 2267 genes in the L. monocytogenes/L. innocua core genome, 1097 genes showed evidence for recombination and 36 genes showed evidence for positive selection. Positive selection was strongly associated with recombination. Specifically, 29 of the 36 genes under positive selection also showed evidence for recombination. Recombination was more common among isolates in lineage II than lineage I; this trend was confirmed by sequencing five genes in a larger isolate set. Positive selection was more abundant in the ancestral branch of lineage II (20 genes) as compared to the ancestral branch of lineage I (9 genes). Additional genes under positive selection were identified in the branch separating the two species; for this branch, genes in the role category "Cell wall and membrane biogenesis" were significantly more likely to have evidence for positive selection. Positive selection of three genes was confirmed in a larger isolate set, which also revealed occurrence of multiple premature stop codons in one positively selected gene involved in flagellar motility (flaR). Conclusion While recombination and positive selection both contribute to evolution of L. monocytogenes, the relative contributions of these evolutionary forces seem to differ by L. monocytogenes lineages and appear to be more important in the evolution of lineage II, which seems to be found in a broader range of environments, as compared to the apparently more host adapted lineage I. Diversification of cell wall and membrane biogenesis and motility-related genes may play a particularly important role in the evolution of L. monocytogenes.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
14
|
Orsi RH, Ripoll DR, Yeung M, Nightingale KK, Wiedmann M. Recombination and positive selection contribute to evolution of Listeria monocytogenes inlA. MICROBIOLOGY-SGM 2007; 153:2666-2678. [PMID: 17660431 DOI: 10.1099/mic.0.2007/007310-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The surface molecule InlA interacts with E-cadherin to promote invasion of Listeria monocytogenes into selected host cells. DNA sequencing of inlA for 40 L. monocytogenes isolates revealed 107 synonymous and 45 nonsynonymous substitutions. A frameshift mutation in a homopolymeric tract encoding part of the InlA signal peptide was identified in three lineage II isolates, which also showed reduced ability to invade human intestinal epithelial cells. Phylogenies showed clear separation of inlA sequences into lineages I and II. Thirteen inlA recombination events, predominantly involving lineage II strains as recipients (12 events), were detected and a number of amino acid residues were shown to be under positive selection. Four of the 45 non-synonymous changes were found to be under positive selection with posterior probabilities >95 %. Mapping of polymorphic and positively selected amino acid sites on the partial crystal structure for InlA showed that the internalin surface of the leucine-rich repeat (LRR) region that faces the InlA receptor E-cadherin does not include any polymorphic sites; all polymorphic and positively selected amino acids mapped to the outer face of the LRR region or to other InlA regions. The data show that (i) inlA is highly polymorphic and evolution of inlA involved a considerable number of recombination events in lineage II isolates; (ii) positive selection at specific amino acid sites appears to contribute to evolution of inlA, including fixation of recombinant events; and (iii) single-nucleotide deletions in a lineage II-specific 3' homopolymeric tract in inlA lead to complete loss of InlA or to production of truncated InlA, which conveys reduced invasiveness. In conclusion, inlA has a complex evolutionary history, which is consistent with L. monocytogenes' natural history as an environmental pathogen with broad host-range, including its adaptation to environments and hosts where different inlA alleles may provide a selective advantage or where inlA may not be required.
Collapse
Affiliation(s)
- R H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - D R Ripoll
- Computational Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca, NY, USA
| | - M Yeung
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - K K Nightingale
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Korotkova N, Chattopadhyay S, Tabata TA, Beskhlebnaya V, Vigdorovich V, Kaiser BK, Strong RK, Dykhuizen DE, Sokurenko EV, Moseley SL. Selection for functional diversity drives accumulation of point mutations in Dr adhesins of Escherichia coli. Mol Microbiol 2007; 64:180-94. [PMID: 17376081 DOI: 10.1111/j.1365-2958.2007.05648.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Immune escape is considered to be the driving force behind structural variability of major antigens on the surface of bacterial pathogens, such as fimbriae. In the Dr family of Escherichia coli adhesins, structural and adhesive functions are carried out by the same subunit. Dr adhesins have been shown to bind decay-accelerating factor (DAF), collagen IV, and carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). We show that genes encoding Dr adhesins from 100 E. coli strains form eight structural groups with a high level of amino acid sequence diversity between them. However, genes comprising each group differ from each other by only a small number of point mutations. Out of 66 polymorphisms identified within the groups, only three were synonymous mutations, indicating strong positive selection for amino acid replacements. Functional analysis of intragroup variants comprising the Dr haemagglutinin (DraE) group revealed that the point mutations result in distinctly different binding phenotypes, with a tendency of increased affinity to DAF, decreased sensitivity of DAF binding to inhibition by chloramphenicol, and loss of binding capability to collagen, CEACAM3 and CEACAM6. Thus, variability by point mutation of major antigenic proteins on the bacterial surface can be a signature of selection for functional modification.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Weissman SJ, Chattopadhyay S, Aprikian P, Obata-Yasuoka M, Yarova-Yarovaya Y, Stapleton A, Ba-Thein W, Dykhuizen D, Johnson JR, Sokurenko EV. Clonal analysis reveals high rate of structural mutations in fimbrial adhesins of extraintestinal pathogenic Escherichia coli. Mol Microbiol 2006; 59:975-88. [PMID: 16420365 PMCID: PMC1380272 DOI: 10.1111/j.1365-2958.2005.04985.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements.
Collapse
Affiliation(s)
- Scott J. Weissman
- Division of Infectious Disease, Immunology and Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Pavel Aprikian
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Mana Obata-Yasuoka
- Department of Obstetrics/Gynecology, University of Tsukuba, Tsukuba, Japan
| | - Yuliya Yarova-Yarovaya
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ann Stapleton
- Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, WA, USA
| | - William Ba-Thein
- Department of Microbiology/Immunology, Thammasit University, Pathum-Thani, Thailand
| | - Daniel Dykhuizen
- Department of Evolutionary Biology, State University of New York, Stony Brook, NY, USA
| | - James R. Johnson
- Mucosal and Vaccine Research Center, Minneapolis VA Medical Center, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Evgeni V. Sokurenko
- Department of Microbiology, University of Washington, Seattle, WA, USA
- *For correspondence. E-mail ; Tel. (+1) 206 685 2162; Fax (+1) 206 543 8297
| |
Collapse
|
17
|
Wilson DJ, McVean G. Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 2006; 172:1411-25. [PMID: 16387887 PMCID: PMC1456295 DOI: 10.1534/genetics.105.044917] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 12/26/2005] [Indexed: 11/18/2022] Open
Abstract
Models of molecular evolution that incorporate the ratio of nonsynonymous to synonymous polymorphism (dN/dS ratio) as a parameter can be used to identify sites that are under diversifying selection or functional constraint in a sample of gene sequences. However, when there has been recombination in the evolutionary history of the sequences, reconstructing a single phylogenetic tree is not appropriate, and inference based on a single tree can give misleading results. In the presence of high levels of recombination, the identification of sites experiencing diversifying selection can suffer from a false-positive rate as high as 90%. We present a model that uses a population genetics approximation to the coalescent with recombination and use reversible-jump MCMC to perform Bayesian inference on both the dN/dS ratio and the recombination rate, allowing each to vary along the sequence. We demonstrate that the method has the power to detect variation in the dN/dS ratio and the recombination rate and does not suffer from a high false-positive rate. We use the method to analyze the porB gene of Neisseria meningitidis and verify the inferences using prior sensitivity analysis and model criticism techniques.
Collapse
Affiliation(s)
- Daniel J Wilson
- Department of Statistics, University of Oxford, Oxford OX1 3TG, United Kingdom.
| | | |
Collapse
|
18
|
Pérez-Losada M, Browne EB, Madsen A, Wirth T, Viscidi RP, Crandall KA. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2006; 6:97-112. [PMID: 16503511 PMCID: PMC1983445 DOI: 10.1016/j.meegid.2005.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 11/18/2004] [Accepted: 02/14/2005] [Indexed: 11/25/2022]
Abstract
The inference of population recombination (rho), population mutation (Theta), and adaptive selection is of great interest in microbial population genetics. These parameters can be efficiently estimated using explicit statistical frameworks (evolutionary models) that describe their effect on gene sequences. Within this framework, we estimated rho and Theta using a coalescent approach, and adaptive (or destabilizing) selection under heterogeneous codon-based and amino acid property models in microbial sequences from MLST databases. We analyzed a total of 91 different housekeeping gene regions (loci) corresponding to one fungal and sixteen bacterial pathogens. Our results show that these three population parameters vary extensively across species and loci, but they do not seem to be correlated. For the most part, estimated recombination rates among species agree well with previous studies. Over all taxa, the rho/Theta ratio suggests that each factor contributes similarly to the emergence of variant alleles. Comparisons of Theta estimated under finite- and infinite-site models indicate that recurrent mutation (i.e., multiple mutations at some sites) can increase Theta by up to 39%. Significant evidence of molecular adaptation was detected in 28 loci from 13 pathogens. Three of these loci showed concordant patterns of adaptive selection in two to four different species.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Department of Integrative Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Blanc G, Ngwamidiba M, Ogata H, Fournier PE, Claverie JM, Raoult D. Molecular evolution of rickettsia surface antigens: evidence of positive selection. Mol Biol Evol 2005; 22:2073-83. [PMID: 15972845 DOI: 10.1093/molbev/msi199] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Rickettsia genus is a group of obligate intracellular parasitic alpha-proteobacteria that includes human pathogens responsible for the typhus disease and various types of spotted fevers. rOmpA and rOmpB are two members of the "surface cell antigen" (Sca) autotransporter (AT) protein family that may play key roles in the adhesion of the Rickettsia cells to the host tissue. These molecules are likely determinants for the pathogenicity of the Rickettsia and represent good candidates for vaccine development. We identified the 17 members of this family of outer-membrane proteins in nine fully sequenced Rickettsia genomes. The typical architecture of the Sca proteins is composed of an N-terminal signal peptide and a C-terminal AT domain that promote the export of the central passenger domain to the outside of the bacteria. A characteristic of this family is the frequent degradation of the genes, which results in different subsets of the sca genes being expressed among Rickettsia species. Here, we present a detailed analysis of their phylogenetic relationships and evolution. We provide strong evidence that rOmpA and rOmpB as well as three other members of the Sca protein family--Sca1, Sca2, and Sca4--have evolved under positive selection. The exclusive distribution of the predicted positively selected sites within the passenger domains of these proteins argues that these regions are involved in the interaction with the host and may be locked in "arms race" coevolutionary conflicts.
Collapse
Affiliation(s)
- Guillaume Blanc
- Information Génomique et Structurale, UPR 2589, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
20
|
Pérez-Losada M, Viscidi RP, Demma JC, Zenilman J, Crandall KA. Population genetics of Neisseria gonorrhoeae in a high-prevalence community using a hypervariable outer membrane porB and 13 slowly evolving housekeeping genes. Mol Biol Evol 2005; 22:1887-902. [PMID: 15944444 DOI: 10.1093/molbev/msi184] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Baltimore, Md., is an urban community with a high prevalence of Neisseria gonorrhoeae. Due to partially protective immune responses, introduction of new strains from other host populations, and exposure of N. gonorrhoeae to antibiotics, the phenotypic and genotypic characteristics of the circulating strains can fluctuate over time. Understanding the overall genetic diversity and population structure of N. gonorrhoeae is essential for informing public health interventions to eliminate this pathogen. We studied gonococci population genetics in Baltimore by analyzing a hypervariable and strongly selected outer membrane porB gene and 13 slowly evolving and presumably neutral housekeeping genes (abcZ, adk, aroE, fumC, gdh, glnA, gnd, pdhC, pgm, pilA, ppk, pyrD, and serC) in 204 isolates collected in 1991, 1996, and 2001 from male and female patients of two public sexually transmitted diseases clinics. Genetic diversity (), recombination (C), growth (g), population structure, and adaptive selection under codon-substitution and amino acid property models were estimated and compared between these two gene classes. Estimates of the F(ST) fixation index and the chi(2) test of sequence absolute frequencies revealed significant temporal substructuring for both gene types. Baltimore's N. gonorrhoeae populations have increased since 1991 as indicated by consistent positive values of g. Female patients showed similar or lower levels of and C than male patients. Within the MLST housekeeping genes, levels of and C ranged from 0.001-0.013 and 0.000-0.018, respectively. Overall recombination seems to be the dominant force driving evolution in these populations. All loci showed amino acid sites and physicochemical properties under adaptive (or positive-destabilizing) selection, rejecting the generally assumed hypothesis of stabilizing selection for these MLST genes. Within the porB gene, protein I B showed higher and C values than protein I A. Directional positive selection possibly mediated by the immune system operates to a significant extent in the protein I sequences, as indicated by the distribution of the positively selected sites in the surface-exposed loops. Thirteen amino acid physicochemical properties seem to drive protein evolution of the PI porins in N. gonorrhoeae.
Collapse
|
21
|
Emes RD, Riley MC, Laukaitis CM, Goodstadt L, Karn RC, Ponting CP. Comparative evolutionary genomics of androgen-binding protein genes. Genome Res 2004; 14:1516-29. [PMID: 15256509 PMCID: PMC509260 DOI: 10.1101/gr.2540304] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Allelic variation within the mouse androgen-binding protein (ABP) alpha subunit gene (Abpa) has been suggested to promote assortative mating and thus prezygotic isolation. This is consistent with the elevated evolutionary rates observed for the Abpa gene, and the Abpb and Abpg genes whose products (ABPbeta and ABPgamma) form heterodimers with ABPalpha. We have investigated the mouse sequence that contains the three Abpa/b/g genes, and orthologous regions in rat, human, and chimpanzee genomes. Our studies reveal extensive "remodeling" of this region: Duplication rates of Abpa-like and Abpbg-like genes in mouse are >2 orders of magnitude higher than the average rate for all mouse genes; synonymous nucleotide substitution rates are twofold higher; and the Abpabg genomic region has expanded nearly threefold since divergence of the rodents. During this time, one in six amino acid sites in ABPbetagamma-like proteins appear to have been subject to positive selection; these may constitute a site of interaction with receptors or ligands. Greater adaptive variation among Abpbg-like sequences than among Abpa-like sequences suggests that assortative mating preferences are more influenced by variation in Abpbg-like genes. We propose a role for ABPalpha/beta/gamma proteins as pheromones, or in modulating odorant detection. This would account for the extraordinary adaptive evolution of these genes, and surrounding genomic regions, in murid rodents.
Collapse
Affiliation(s)
- Richard D Emes
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Emes RD, Beatson SA, Ponting CP, Goodstadt L. Evolution and comparative genomics of odorant- and pheromone-associated genes in rodents. Genome Res 2004; 14:591-602. [PMID: 15060000 PMCID: PMC383303 DOI: 10.1101/gr.1940604] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemical cues influence a range of behavioral responses in rodents. The involvement of protein odorants and odorant receptors in mediating reproductive behavior, foraging, and predator avoidance suggests that their genes may have been subject to adaptive evolution. We have estimated the consequences of selection on rodent pheromones, their receptors, and olfactory receptors. These families were chosen on the basis of multiple gene duplications since the common ancestor of rat and mouse. For each family, codons were identified that are likely to have been subject to adaptive evolution. The majority of such sites are situated on the solvent-accessible surfaces of putative pheromones and the lumenal portions of their likely receptors. We predict that these contribute to physicochemical and functional diversity within pheromone-receptor interaction sites.
Collapse
Affiliation(s)
- Richard D Emes
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | | | | |
Collapse
|
23
|
Yang W, Bielawski JP, Yang Z. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J Mol Evol 2004; 57:212-21. [PMID: 14562964 DOI: 10.1007/s00239-003-2467-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated variable selective pressures among amino acid sites in HIV-1 genes. Selective pressure at the amino acid level was measured by using the nonsynonymous/synonymous substitution rate ratio (omega = dN/dS). To identify amino acid sites under positive selection with omega > 1, we applied maximum likelihood models that allow variable omega ratios among sites to analyze genomic sequences of 26 HIV-1 lineages including subtypes A, B, and C. Likelihood ratio tests detected sites under positive selection in each of the major genes in the genome: env, gag, pol, vif, and vpr. Positive selection was also detected in nef, tat, and vpu, although those genes are very small. The majority of positive selection sites is located in gp160. Positive selection was not detected if omega was estimated as an average across all sites, indicating the lack of power of the averaging approach. Candidate positive selection sites were mapped onto the available protein tertiary structures and immunogenic epitopes. We measured the physiochemical properties of amino acids and found that those at positive selection sites were more diverse than those at variable sites. Furthermore, amino acid residues at exposed positive selection sites were more physiochemically diverse than at buried positive selection sites. Our results demonstrate genomewide diversifying selection acting on the HIV-1.
Collapse
Affiliation(s)
- Wa Yang
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
24
|
Aras RA, Fischer W, Perez-Perez GI, Crosatti M, Ando T, Haas R, Blaser MJ. Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J Exp Med 2003; 198:1349-60. [PMID: 14581606 PMCID: PMC2194252 DOI: 10.1084/jem.20030381] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Revised: 07/23/2003] [Accepted: 09/22/2003] [Indexed: 12/13/2022] Open
Abstract
DNA rearrangement permits bacteria to regulate gene content and expression. In Helicobacter pylori, cagY, which contains an extraordinary number of direct DNA repeats, encodes a surface-exposed subunit of a (type IV) bacterial secretory system. Examining potential DNA rearrangements involving the cagY repeats indicated that recombination events invariably yield in-frame open reading frames, producing alternatively expressed genes. In individual hosts, H. pylori cell populations include strains that produce CagY proteins that differ in size, due to the predicted in-frame deletions or duplications, and elicit minimal or no host antibody recognition. Using repetitive DNA, H. pylori rearrangements in a host-exposed subunit of a conserved bacterial secretion system may permit a novel form of antigenic evasion.
Collapse
Affiliation(s)
- Rahul A Aras
- Department of Medicine, New York University School of Medicine, and VA Medical Center, NY 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Anisimova M, Nielsen R, Yang Z. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 2003; 164:1229-36. [PMID: 12871927 PMCID: PMC1462615 DOI: 10.1093/genetics/164.3.1229] [Citation(s) in RCA: 428] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maximum-likelihood methods based on models of codon substitution accounting for heterogeneous selective pressures across sites have proved to be powerful in detecting positive selection in protein-coding DNA sequences. Those methods are phylogeny based and do not account for the effects of recombination. When recombination occurs, such as in population data, no unique tree topology can describe the evolutionary history of the whole sequence. This violation of assumptions raises serious concerns about the likelihood method for detecting positive selection. Here we use computer simulation to evaluate the reliability of the likelihood-ratio test (LRT) for positive selection in the presence of recombination. We examine three tests based on different models of variable selective pressures among sites. Sequences are simulated using a coalescent model with recombination and analyzed using codon-based likelihood models ignoring recombination. We find that the LRT is robust to low levels of recombination (with fewer than three recombination events in the history of a sample of 10 sequences). However, at higher levels of recombination, the type I error rate can be as high as 90%, especially when the null model in the LRT is unrealistic, and the test often mistakes recombination as evidence for positive selection. The test that compares the more realistic models M7 (beta) against M8 (beta and omega) is more robust to recombination, where the null model M7 allows the positive selection pressure to vary between 0 and 1 (and so does not account for positive selection), and the alternative model M8 allows an additional discrete class with omega = d(N)/d(S) that could be estimated to be >1 (and thus accounts for positive selection). Identification of sites under positive selection by the empirical Bayes method appears to be less affected than the LRT by recombination.
Collapse
Affiliation(s)
- Maria Anisimova
- Department of Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
26
|
Riedel K, Arevalo-Ferro C, Reil G, Görg A, Lottspeich F, Eberl L. Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics. Electrophoresis 2003; 24:740-50. [PMID: 12601746 DOI: 10.1002/elps.200390089] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Burkholderia cepacia H111, an important pathogen for persons suffering from cystic fibrosis, employs a quorum-sensing (QS) system, cep, to control expression of virulence factors as well as the formation of biofilms. The QS system is thought to ensure that pathogenic traits are only expressed when the bacterial population density is high enough to overwhelm the host before it is able to mount an efficient response. In this study, we compared the protein pattern of the intracellular, extracellular, and surface protein fractions of an AHL-deficient cepI mutant with the one of the parent strain H111 by means of two-dimensional gel electrophoresis (2-DE). Our analysis showed that 55 proteins out of 985 detected spots were differentially expressed; these are expected to represent QS-controlled gene products. Addition of the respective signal molecules to the growth medium of the cep mutant fully restored the wild-type protein expression profile. In total about 5% of the B. cepacia proteome was downregulated and 1% upregulated in the cepI mutant, indicating that quorum sensing represents a global regulatory system. Nineteen proteins were identified with high confidence by N-terminal sequence analysis.
Collapse
Affiliation(s)
- Kathrin Riedel
- Department of Microbiology, Technical Univerisity of Munich, Am Hochanger 4, D-85350 Freising, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Mondragón-Palomino M, Meyers BC, Michelmore RW, Gaut BS. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 2002; 12:1305-15. [PMID: 12213767 PMCID: PMC186657 DOI: 10.1101/gr.159402] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plant disease resistance genes have been shown to be subject to positive selection, particularly in the leucine rich repeat (LRR) region that may determine resistance specificity. We performed a genome-wide analysis of positive selection in members of the nucleotide binding site (NBS)-LRR gene family of Arabidopsis thaliana. Analyses were possible for 103 of 163 NBS-LRR nucleotide sequences in the genome, and the analyses uncovered substantial evidence of positive selection. Sites under positive selection were detected and identified for 10 sequence groups representing 53 NBS-LRR sequences. Functionally characterized Arabidopsis resistance genes were in these 10 groups, but several groups with extensive evidence of positive selection contained no previously characterized resistance genes. Amino acid residues under positive selection were identified, and these residues were mapped onto protein secondary structure. Positively selected positions were disproportionately located in the LRR domain (P < 0.001), particularly a nine-amino acid beta-strand submotif that is likely to be solvent exposed. However, a substantial proportion (30%) of positively selected sites were located outside LRRs, suggesting that regions other than the LRR may function in determining resistance specificity. Because of the unusual sequence variability in the LRRs of this class of proteins, secondary-structure analysis identifies LRRs that are not identified by similarity analyses alone. LRRs also contain substantial indel variation, suggesting elasticity in LRR length could also influence resistance specificity.
Collapse
Affiliation(s)
- Mariana Mondragón-Palomino
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92612, USA
| | | | | | | |
Collapse
|
28
|
Anisimova M, Bielawski JP, Yang Z. Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol Biol Evol 2002; 19:950-8. [PMID: 12032251 DOI: 10.1093/oxfordjournals.molbev.a004152] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bayes prediction quantifies uncertainty by assigning posterior probabilities. It was used to identify amino acids in a protein under recurrent diversifying selection indicated by higher nonsynonymous (d(N)) than synonymous (d(S)) substitution rates or by omega = d(N)/d(S) > 1. Parameters were estimated by maximum likelihood under a codon substitution model that assumed several classes of sites with different omega ratios. The Bayes theorem was used to calculate the posterior probabilities of each site falling into these site classes. Here, we evaluate the performance of Bayes prediction of amino acids under positive selection by computer simulation. We measured the accuracy by the proportion of predicted sites that were truly under selection and the power by the proportion of true positively selected sites that were predicted by the method. The accuracy was slightly better for longer sequences, whereas the power was largely unaffected by the increase in sequence length. Both accuracy and power were higher for medium or highly diverged sequences than for similar sequences. We found that accuracy and power were unacceptably low when data contained only a few highly similar sequences. However, sampling a large number of lineages improved the performance substantially. Even for very similar sequences, accuracy and power can be high if over 100 taxa are used in the analysis. We make the following recommendations: (1) prediction of positive selection sites is not feasible for a few closely related sequences; (2) using a large number of lineages is the best way to improve the accuracy and power of the prediction; and (3) multiple models of heterogeneous selective pressures among sites should be applied in real data analysis.
Collapse
Affiliation(s)
- Maria Anisimova
- Department of Biology, Galton Laboratory, University College London, United Kingdom
| | | | | |
Collapse
|
29
|
Yang Z, Swanson WJ. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 2002; 19:49-57. [PMID: 11752189 DOI: 10.1093/oxfordjournals.molbev.a003981] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nonsynonymous to synonymous substitution rate ratio (omega = d(N)/d(S)) provides a sensitive measure of selective pressure at the protein level, with omega values <1, =1, and >1 indicating purifying selection, neutral evolution, and diversifying selection, respectively. Maximum likelihood models of codon substitution developed recently account for variable selective pressures among amino acid sites by employing a statistical distribution for the omega ratio among sites. Those models, called random-sites models, are suitable when we do not know a priori which sites are under what kind of selective pressure. Sometimes prior information (such as the tertiary structure of the protein) might be available to partition sites in the protein into different classes, which are expected to be under different selective pressures. It is then sensible to use such information in the model. In this paper, we implement maximum likelihood models for prepartitioned data sets, which account for the heterogeneity among site partitions by using different omega parameters for the partitions. The models, referred to as fixed-sites models, are also useful for combined analysis of multiple genes from the same set of species. We apply the models to data sets of the major histocompatibility complex (MHC) class I alleles from human populations and of the abalone sperm lysin genes. Structural information is used to partition sites in MHC into two classes: those in the antigen recognition site (ARS) and those outside. Positive selection is detected in the ARS by the fixed-sites models. Similarly, sites in lysin are classified into the buried and solvent-exposed classes according to the tertiary structure, and positive selection was detected at the solvent-exposed sites. The random-sites models identified a number of sites under positive selection in each data set, confirming and elaborating the results of the fixed-sites models. The analysis demonstrates the utility of the fixed-sites models, as well as the power of previous random-sites models, which do not use the prior information to partition sites.
Collapse
Affiliation(s)
- Ziheng Yang
- Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK.
| | | |
Collapse
|
30
|
Sandner L, Eguiarte LE, Navarro A, Cravioto A, Souza V. The elements of the locus of enterocyte effacement in human and wild mammal isolates of Escherichia coli: evolution by assemblage or disruption? MICROBIOLOGY (READING, ENGLAND) 2001; 147:3149-58. [PMID: 11700366 DOI: 10.1099/00221287-147-11-3149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli is an excellent model for studying the evolution of pathogenicity since within one species various genes can be found in pathogenic islands and plasmids causing a wide spectrum of virulence. A collection of 122 strains from different human and wild mammal hosts were analysed by PCR and Southern hybridization for the presence of a subset of the genes included in the LEE (locus of enterocyte effacement). In the PCR analysis, two markers (cesT/eae and espB genes) were found together in more strains (25.4%) than either were found alone. The cesT/eae gene was less frequently found alone (8.2%) than was the espB gene (15.6%). Four regions of the LEE were analysed in a subsample of 25 strains using Southern hybridization. The four regions were all present (44%), all absent (12%) or present in different combinations (44%) in a given strain. The flanking regions of the LEE showed the highest rate of hybridization (in 72% of the strains). The results indicate that the LEE is a dynamic genetic entity, both the complete gene cluster and the individual genes. The genes that comprise this locus seem to be horizontally acquired (or lost) in an independent way and may control other functions in non-pathogenic E. coli lineages. In this way, horizontal transfer may allow the gradual stepwise construction of gene cassettes facilitating coordinate regulation and expression of novel functions.
Collapse
Affiliation(s)
- L Sandner
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, México D. F. 04510, Mexico
| | | | | | | | | |
Collapse
|