1
|
Bijnens K, Thijs S, Alfano R, McAmmond B, Van Hamme J, Artois T, Plusquin M, Vangronsveld J, Smeets K. Impact of host physiology and external stressors on the bacterial community of Schmidtea mediterranea. Sci Rep 2025; 15:4398. [PMID: 39910204 PMCID: PMC11799148 DOI: 10.1038/s41598-025-86920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
To fully comprehend host-microorganism interactions, it is crucial to understand the composition and diversity of the microbiome, as well as the factors that shape these characteristics. We investigated microbiome variation using the freshwater planarian Schmidtea mediterranea, an invertebrate model in regeneration biology and (eco-)toxicology, by exposing the organisms to various controlled conditions. The microbiome composition exhibited high variability, with most of the bacteria belonging to the Betaproteobacteria. Among the diverse microbial communities, a few genera, such as Curvibacter, were consistently present, but exhibited significant alterations in response to changing conditions. The relative abundance of Curvibacter fluctuated during the regeneration process, initially increasing before returning to a composition similar to the beginning situation. After applying external stress, the relative abundance of Curvibacter and other genera decreased. Variation over time, between different origin laboratories and between individuals, showed that additional, yet to-be-identified, factors of variation are present. Taking all results together, our study provides a solid basis for future research focusing on bacterial functionality in planarians and other invertebrates.
Collapse
Affiliation(s)
- Karolien Bijnens
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Epidemiology, Hasselt University, Diepenbeek, Belgium
| | - Breanne McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Tom Artois
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Epidemiology, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biology and Biotechnology, Maria Skłodowska-Curie University, Lublin, Poland
| | - Karen Smeets
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
2
|
Klaassen H, Tissot S, Meliani J, Boutry J, Miltiadous A, Biro PA, Mitchell DJ, Ujvari B, Schultz A, Thomas F, Dujon AM. Behavioural ecology meets oncology: quantifying the recovery of animal behaviour to a transient exposure to a cancer risk factor. Proc Biol Sci 2024; 291:20232666. [PMID: 38351808 PMCID: PMC10865010 DOI: 10.1098/rspb.2023.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Wildlife is increasingly exposed to sublethal transient cancer risk factors, including mutagenic substances, which activates their anti-cancer defences, promotes tumourigenesis, and may negatively impact populations. Little is known about how exposure to cancer risk factors impacts the behaviour of wildlife. Here, we investigated the effects of a sublethal, short-term exposure to a carcinogen at environmentally relevant concentrations on the activity patterns of wild Girardia tigrina planaria during a two-phase experiment, consisting of a 7-day exposure to cadmium period followed by a 7-day recovery period. To comprehensively explore the effects of the exposure on activity patterns, we employed the double hierarchical generalized linear model framework which explicitly models residual intraindividual variability in addition to the mean and variance of the population. We found that exposed planaria were less active compared to unexposed individuals and were able to recover to pre-exposure activity levels albeit with a reduced variance in activity at the start of the recovery phase. Planaria showing high activity levels were less predictable with larger daily activity variations and higher residual variance. Thus, the shift in behavioural variability induced by an exposure to a cancer risk factor can be quantified using advanced tools from the field of behavioural ecology. This is required to understand how tumourous processes affect the ecology of species.
Collapse
Affiliation(s)
- Hiske Klaassen
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Anna Miltiadous
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Peter A. Biro
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | | | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Aaron Schultz
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
3
|
Zhao WJ, Yang XQ, Shi CY, Zhang HC, Chen GW, Liu DZ. Neurotoxicity of Glyphosate to Planarian Dugesia japonica. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:66. [PMID: 37904018 DOI: 10.1007/s00128-023-03826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As one of the most widely used herbicides in agricultural industry, the residues of glyphosate (GLY) are frequent environmental pollutants. Freshwater planarian Dugesia japonica has been developed as a model for neurotoxicology. In this study, the effects of GLY on locomotion and feeding behavior, as well as neuroenzyme activities and mRNA expressions of D. japonica were determined. Additionally, histochemical localization was executed to explore the damage to the central nervous system (CNS) of planarians stressed by GLY. The results showed that the locomotor velocity, ingestion rate and the neuroenzyme activity were inhibited and the gene expressions were altered. Also, histo-architecture injury to CNS of planarians upon GLY exposure in a time-dependent manner was observed. Collectively, our results indicate that GLY can cause neurotoxicity to freshwater planarians representing as reduction in locomotor velocity and feeding rate by disturbing the neurotransmission systems and damaging the structure of CNS.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - Xiao-Qing Yang
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - He-Cai Zhang
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China.
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| |
Collapse
|
4
|
Zhang HC, Shi CY, Zhao WJ, Chen GW, Liu DZ. Toxicity of herbicide glyphosate to planarian Dugesia japonica and its potential molecular mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106425. [PMID: 36805197 DOI: 10.1016/j.aquatox.2023.106425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate (GLY) is one of the most widely used agrochemicals in the world, and its exposure has become a public health concern. The freshwater planarian is an ideal test organism for detecting the toxicity of pollutants and has been an emerging animal model in toxicological studies. Nevertheless, the underlying toxicity mechanism of GLY to planarians has not been thoroughly explored. To elucidate the toxicity effects and molecular mechanism involved in GLY exposure of planarians, we studied the acute toxicity, histological change, and transcriptional response of Dugesia japonica subjected to GLY. Significant morphological malformations and histopathological changes were observed in planarians after GLY exposure for different times. Also, a number of differentially expressed genes (DEGs) were obtained at 1, 3 and 5 d after exposure; Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these DEGs were performed, and a global and dynamic view was obtained in planarians upon GLY exposure at the transcriptomic level. Furthermore, real-time quantitative PCR (qRT-PCR) was conducted on nine DEGs associated with detoxification, apoptosis, stress response, DNA repair, etc. The expression patterns were well consistent with the RNA sequencing (RNA-seq) results at different time points, which confirmed the reliability and accuracy of the transcriptome data. Collectively, our results established that GLY could pose adverse effects on the morphology and histo-architecture of D. japonica, and the planarians are capable of responding to the disadvantageous stress by dysregulating the related genes and pathways concerning immune response, detoxification, energy metabolism, DNA damage repair, etc. To the best of our knowledge, this is the first report of transcriptomic analyses of freshwater planarians exposed to environmental pollutants, and it provided detailed sequencing data deriving from transcriptome profiling to deepen our understanding the molecular toxicity mechanism of GLY to planarians.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Wen-Jing Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Majid S, Van Belleghem F, Ploem JP, Wouters A, Blust R, Smeets K. Interactive toxicity of copper and cadmium in regenerating and adult planarians. CHEMOSPHERE 2022; 297:133819. [PMID: 35114265 DOI: 10.1016/j.chemosphere.2022.133819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In a polluted environment, metals are present as complex mixtures. As a result, organisms are exposed to different metals at the same time, which affects both metal-specific as well as overall toxicity. Detailed information about the molecular mechanisms underlying the adverse effects of combined exposures remains limited in terms of different life stages. In this study, the freshwater planarian Schmidtea mediterranea was used to investigate developmental and physiological responses associated with a combined exposure to Cu and Cd. In addition, the cellular and molecular mechanisms underlying the provoked adverse effects were studied in different exposure scenarios. Mixed exposure resulted in a decline in survival, diverse non-lethal morphological changes, neuroregenerative impairments, altered behaviour and a limited repair capacity. Underlying to these effects, the cellular redox state was altered in all exposure conditions. In adult animals, this led to DNA damage and corresponding transcriptional changes in cell cycle and DNA repair genes. In regenerating animals, changes in hydrogen peroxide and glutathione contents led to regenerative defects. Overall, our results demonstrate that (1) developing organisms are more susceptible to metal exposures, and (2) the toxicity of an individual metal increases significantly in a mixed exposure scenario. These aspects have to be included in current risk assessment strategies.
Collapse
Affiliation(s)
- Sanah Majid
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Frank Van Belleghem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Department of Environmental Sciences, Faculty of Science, Open University of the Netherlands, Heerlen, 6419, AT, the Netherlands
| | - Jan-Pieter Ploem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Annelies Wouters
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Ronny Blust
- Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Karen Smeets
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
6
|
Simão FCP, Gravato C, Machado AL, Soares AMVM, Pestana JLT. Effects of pyrene and benzo[a]pyrene on the reproduction and newborn morphology and behavior of the freshwater planarian Girardia tigrina. CHEMOSPHERE 2021; 264:128448. [PMID: 33032223 DOI: 10.1016/j.chemosphere.2020.128448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants of aquatic ecosystems. Because they are persistent, there is great potential for chronic toxicity to aquatic species, and the evaluation of reproductive effects is fundamental. In this context, planarians are interesting experimental animals, since they can be sensitive to environmental pollutants, and a wide range of reproductive-related endpoints can be assessed. In this work we evaluated fecundity (number of cocoons), fertility (number of newborns), newborn anomalies, adult weight, regenerative abilities and PAH-residues in tissues of the freshwater planarian Girardia tigrina, exposed to either pyrene or benzo[a]pyrene (B[a]P). Pyrene reduced planarian fecundity and fertility at 18.75 μg L-1 and 75.00 μg L-1, while B[a]P reduced planarian fecundity at the 37.50 μg L-1 treatment, which was accompanied by a 33.7% reduction in fertility. Cocoons were kept in clean media and newborns were evaluated for behavioral and morphological anomalies. Many of the newborns resulting from the B[a]P experiment revealed behavioral anomalies, such as spasms and uncoordinated movements. These behavioral anomalies were observed in 12.9% and 38.2% of newborns resulting from the exposure of adult planarians to 9.38 μg L-1 and 37.50 μg L-1 of B[a]P, respectively. This study is the first report on the effects of PAHs in freshwater planarians' sexual reproduction and a decreased reproductive output was evidenced. Moreover, the exposure of adults to B[a]P lead to defects in newborns, raising concern on the possible long-term consequences of these compounds for natural planarian populations.
Collapse
Affiliation(s)
- Fátima C P Simão
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Ana Luísa Machado
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João L T Pestana
- CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Poirier L, Ghigo É, Daudé D, Chabrière É. [Planarian, an emerging animal model for toxicology studies]. Med Sci (Paris) 2019; 35:544-548. [PMID: 31274084 DOI: 10.1051/medsci/2019110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since a few decades, a new invertebrate animal model has emerged in toxicology studies: the planarian. This non-parasitic flatworm, from phylum Platyhelminthes, has an amazing regenerative capacity and has been described as "immortal under the edge of the knife" in 1814 by Dalyell. This formidable capacity is due to the abundance of stem cells called neoblasts, allowing for a tiny fragment equivalent to 1/279th of the size of the planarian to generate a whole animal. The planarian has also a human-like nervous system with several neurotransmitters and has been used to evaluate developmental perturbations and neurotoxicity. This review summarizes the main planarian toxicology studies and highlights the potential of this original animal model for research.
Collapse
Affiliation(s)
- Laetitia Poirier
- Aix-Marseille Université, IRD, APHM, MEPHI (Microbes, Évolution, Phylogénie et Infection), IHU-Méditerranée Infection, Marseille, France
| | - Éric Ghigo
- IHU-Méditerranée Infection, Marseille, France
| | - David Daudé
- Gene&GreenTK, 19-21, boulevard Jean Moulin, 13005 Marseille, France
| | - Éric Chabrière
- Aix-Marseille Université, IRD, APHM, MEPHI (Microbes, Évolution, Phylogénie et Infection), IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
8
|
Wu JP, Li MH. The use of freshwater planarians in environmental toxicology studies: Advantages and potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:45-56. [PMID: 29859407 DOI: 10.1016/j.ecoenv.2018.05.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Regarding the humane use of animals in scientific research, invertebrates are often recommended in toxicological studies. "Freshwater planarians" refers to numerous free-living freshwater members of the Class "Turbellaria" of the phylum Platyhelminthes. This group of invertebrates has received extensive attention from biologists for many years because of their unique biological characteristics, such as the primitive form of the central nervous system and notable capability to regenerate tissues. Using freshwater planarians as test animals in chemical toxicity studies has grown in popularity since the 1960s. Results from various toxicological experiments have collectively suggested that freshwater planarians can serve as not only alternative models for chemical toxicity screenings in laboratories but also as potential bioindicators for the quality of freshwater environments. However, thus far, no standardized battery of tests for conducting toxicological studies that includes freshwater planarians has been proposed. This paper comprehensively reviews the toxicological information obtained from chemically exposed planarians and proposes practical factors for consideration in toxicity experiments with freshwater planarians as test organisms.
Collapse
Affiliation(s)
- Jui-Pin Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Mei-Hui Li
- Environmental Toxicology Lab, Department of Geography, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Yuan Z, Shao X, Miao Z, Zhao B, Zheng Z, Zhang J. Perfluorooctane sulfonate induced neurotoxicity responses associated with neural genes expression, neurotransmitter levels and acetylcholinesterase activity in planarians Dugesia japonica. CHEMOSPHERE 2018; 206:150-156. [PMID: 29738904 DOI: 10.1016/j.chemosphere.2018.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
As a persistent and widespread toxic organic pollutant in the environment, perfluorooctane sulfonate (PFOS) has the potential to cause great harm to wildlife. In our study, the effects of PFOS on neurodevelopment gene expression, neurotransmitter content, neuronal morphology, acetylcholinesterase (AChE) activity were examined, and the potential neurotoxicity mechanisms of PFOS were also investigated in planarians, Dugesia japonica. Using quantitative real-time PCR analysis, five neurodevelopmental related genes were measured, among which, DjotxA, DjotxB, DjFoxD, and DjFoxG were found to be down-regulated, while Djnlg was found to be up-regulated, following exposure to PFOS for 10 days compared with control groups. In addition, the neurotransmitters including dopamine, serotonin, and γ-aminobutyricacid as well as the acitivity of AChE were altered by PFOS exposure. Furthermore, PFOS exposure altered brain morphology as well as smaller cephalic ganglia which displayed reduced nerve fiber density decreased brain branches compared to controls. Our results demonstrate that neurotransmission was disturbed after exposure to PFOS and that exposure to this pollutant can cause neurotoxic defects. Results from this study provide valuable information regarding the neuro- and ecological toxicity of PFOS in aquatic animals and aquatic environments.
Collapse
Affiliation(s)
- Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255000, China
| | - Xinxin Shao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255000, China
| | - Zili Miao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255000, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255000, China
| | - Ziyang Zheng
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255000, China
| | - Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255000, China.
| |
Collapse
|
10
|
Yu Y, Ma R, Yu L, Cai Z, Li H, Zuo Y, Wang Z, Li H. Combined effects of cadmium and tetrabromobisphenol a (TBBPA) on development, antioxidant enzymes activity and thyroid hormones in female rats. Chem Biol Interact 2018; 289:23-31. [DOI: 10.1016/j.cbi.2018.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
|
11
|
Yuan Z, Miao Z, Gong X, Zhao B, Zhang Y, Ma H, Zhang J, Zhao B. Changes on lipid peroxidation,enzymatic activities and gene expression in planarian (Dugesia japonica) following exposure to perfluorooctanoic acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:564-568. [PMID: 28800531 DOI: 10.1016/j.ecoenv.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
We investigated perfluorooctanoic acid (PFOA)-induced stress response in planarians. We administered different concentrations of PFOA to planarians for up to 10 d. PFOA exposure resulted in significant concentration-dependent elevations in lipid peroxidation, glutathione S-transferase and caspase-3 protease activities, and a significant decline in glutathione peroxidase activities compared with control groups. Exposure to PFOA significantly up-regulated the heat shock proteins hsp70 and hsp90, and p53, and down-regulated hsp40 compared with controls. PFOA exposure also increased HSP70 protein levels, as demonstrated by western blot analysis. These alterations indicated that PFOA exposure induced a stress response and affected the regulation of oxidative stress, enzymatic activities and gene expression. These results suggest that these sensitive parameters, together with other biomarkers, could be used for evaluating toxicity, for ecological risk assessment of PFOA in freshwaters.
Collapse
Affiliation(s)
- Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Zili Miao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Xiaoning Gong
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Baoying Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuanyuan Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Hongdou Ma
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China.
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255049, China.
| |
Collapse
|
12
|
Perić-Mataruga V, Petković B, Ilijin L, Mrdaković M, Dronjak Čučaković S, Todorović D, Vlahović M. Cadmium and high temperature effects on brain and behaviour of Lymantria dispar L. caterpillars originating from polluted and less-polluted forests. CHEMOSPHERE 2017; 185:628-636. [PMID: 28728120 DOI: 10.1016/j.chemosphere.2017.07.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Insects brain as a part of nervous system is the first-line of fast stress response that integrate stress signals to regulate all aspects of insect physiology and behaviour. The cadmium (Cd) bioaccumulation factor (BF), activity of the neurotoxicity biomarker acetylcholinesterase (AChE), dopamine content, expression and amount of Hsp70 in the brain and locomotor activity were evaluated in the 4th instar of Lymantria dispar L. caterpillars fed a Cd supplemented diet and reared in an optimal temperature regime (23 °C) and/or exposed to high temperature (28 °C). The insects originated from two forests, one close to "Nikola Tesla" thermoelectric power plant, Obrenovac (polluted population), and the other Kosmaj mountain (less-polluted population, far from any industrial region). The Cd BF was higher in the less-polluted than in the polluted population especially at the high ambient temperature. AChE activity and dopamine content were changed in the brains of L. dispar from both populations in the same manner. Hsp70 concentration in caterpillar brains showed opposite trends, a decrease in the less-polluted and an increase in the polluted population. Locomotor activity was modified in both Lymantria dispar populations, but the pattern of changes depended on the stressors and their combined effect. ACh activity and dopamine content are sensitive parameters to Cd exposure, regardless of pollutant experience, and might be promising biomarkers in monitoring forest ecosystems.
Collapse
Affiliation(s)
- Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060, Belgrade, Serbia.
| | - Branka Petković
- Department of Neurophysiology, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| | - Slađana Dronjak Čučaković
- Institute of Nuclear Sciences "Vinca", Laboratory of Molecular Biology and Endocrinology, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research "Siniša Stanković", Despot Stefan Blvd. 142, 11060, Belgrade, Serbia
| |
Collapse
|
13
|
Voura EB, Montalvo MJ, Dela Roca KT, Fisher JM, Defamie V, Narala SR, Khokha R, Mulligan ME, Evans CA. Planarians as models of cadmium-induced neoplasia provide measurable benchmarks for mechanistic studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:544-554. [PMID: 28482323 DOI: 10.1016/j.ecoenv.2017.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Bioassays of planarian neoplasia highlight the potential of these organisms as useful standards to assess whether environmental toxins such as cadmium promote tumorigenesis. These studies complement other investigations into the exceptional healing and regeneration of planarians - processes that are driven by a population of active stem cells, or neoblasts, which are likely transformed during planarian tumor growth. Our goal was to determine if planarian tumorigenesis assays are amenable to mechanistic studies of cadmium carcinogenesis. To that end we demonstrate, by examining both counts of cell populations by size, and instances of mitosis, that the activity of the stem cell population can be monitored. We also provide evidence that specific biomodulators can affect the potential of planarian neoplastic growth, in that an inhibitor of metalloproteinases effectively blocked the development of the lesions. From these results, we infer that neoblast activity does respond to cadmium-induced tumor growth, and that metalloproteinases are required for the progression of cancer in the planarian.
Collapse
Affiliation(s)
- Evelyn B Voura
- School of Science, Technology and Health Studies, Morrisville State College, 80 Eaton Street, Morrisville, New York 13408, USA.
| | - Melissa J Montalvo
- Department of Math and Science, Dominican College, 470 Western Highway South, Orangeburg, New York 10962, USA
| | - Kevin T Dela Roca
- Department of Math and Science, Dominican College, 470 Western Highway South, Orangeburg, New York 10962, USA
| | - Julia M Fisher
- Colgate University, 13 Oak Drive, Hamilton, New York 13346, USA
| | - Virginie Defamie
- Ontario Cancer Institute, University Health Network, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Swami R Narala
- Ontario Cancer Institute, University Health Network, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Rama Khokha
- Ontario Cancer Institute, University Health Network, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Margaret E Mulligan
- Department of Math and Science, Dominican College, 470 Western Highway South, Orangeburg, New York 10962, USA
| | - Colleen A Evans
- Department of Math and Science, Dominican College, 470 Western Highway South, Orangeburg, New York 10962, USA
| |
Collapse
|
14
|
Yuan Z, Zhang J, Tu C, Wang Z, Xin W. The protective effect of blueberry anthocyanins against perfluorooctanoic acid-induced disturbance in planarian (Dugesia japonica). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:170-174. [PMID: 26836138 DOI: 10.1016/j.ecoenv.2016.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The influence of blueberry anthocyanins on perfluorooctanoic acid (PFOA)-induced stress response in planarian mitochondria was investigated. PFOA at 15mg/L and anthocyanins at 10 or 20mg/L were individually and simultaneously administered to planarians for up to 10d. The results showed PFOA treatment induced an increase in mitochondrial permeability transition pore opening and a decrease antioxidant capacity and enzyme activities. In anthocyanin treated animals, the activity of succinate dehydrogenase, cytochrome oxidase and monoamine oxidase increased, but mitochondrial permeability transition pore opening decreased and total antioxidant capacity increased. An improvement in above-mentioned physiological and biochemical parameters was found in the combined PFOA and anthocyanin treated animals, in a dose-dependent manner. Anthocyanins attenuated the PFOA induced toxicity; antioxidant capacity and enzyme activities are involved in the protective mechanism of anthocyanins.
Collapse
Affiliation(s)
- Zuoqing Yuan
- School of Life Sciences, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo, Shandong 255049, China
| | - Jianyong Zhang
- School of Life Sciences, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo, Shandong 255049, China.
| | - Changchao Tu
- School of Life Sciences, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo, Shandong 255049, China
| | - Zhijing Wang
- School of Life Sciences, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo, Shandong 255049, China
| | - Wenpeng Xin
- School of Life Sciences, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo, Shandong 255049, China
| |
Collapse
|
15
|
Rodrigues ACM, Henriques JF, Domingues I, Golovko O, Žlábek V, Barata C, Soares AMVM, Pestana JLT. Behavioural responses of freshwater planarians after short-term exposure to the insecticide chlorantraniliprole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:371-376. [PMID: 26561438 DOI: 10.1016/j.aquatox.2015.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Recent advances in video tracking technologies provide the tools for a sensitive and reproducible analysis of invertebrate activity under stressful conditions nurturing the field of behavioural ecotoxicology. This study aimed to evaluate behavioural responses of the freshwater planarian Dugesia subtentaculata exposed to a model compound, chlorantraniliprole (CAP). This compound is an anthranilic diamide insecticide and due to its neurotoxic action can, at low concentrations, impair behaviour of exposed organisms. Behavioural endpoints measured included feeding and locomotor activities. Feeding responses were based on planarian predatory behaviour using Chironomus riparius larvae as prey. Locomotion was measured by the traditional planarian locomotor velocity (pLMV) assay and additionally using an automated video tracking system using a Zebrabox(®) (Viewpoint, France) device. While feeding and pLMV were significantly impaired at 131.7μg/L CAP, the video tracking system showed that total distance covered by planarians was significantly reduced at concentrations as low as 26.2μg/L CAP. Our results show that more advanced automated video recording systems can be used in the development of sensitive bioassays allowing a reliable, time- and cost-effective quantification of behaviour in aquatic invertebrates. Due to their ecological relevance, behavioural responses should not be disregarded in risk assessment strategies and we advocate the suitability of planarians as suitable organisms for behavioural ecotoxicological studies.
Collapse
Affiliation(s)
- Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Jorge F Henriques
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Wu JP, Li MH. Inhibitory effects of pain relief drugs on neurological enzymes: implications on their potential neurotoxicity to aquatic animals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:898-905. [PMID: 25801321 DOI: 10.1016/j.etap.2015.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
Pain relief medications commonly occur in the aquatic environment at measurable levels. While the neurotoxicity of pain relievers to higher vertebrates is currently known, little is known about their effects on aquatic animals. This study investigated the neurotoxicity of pain relievers to aquatic animals. We used three neurological enzymes, cholinesterase (ChE), adenosine triphosphatase (ATPase), and monoamine oxidase (MAO), from a freshwater planarian (Dugesia japonica) and green neon shrimp (Neocaridina denticulata) as biomarkers to examine the effects of pain relievers on in vitro activity. The activity of MAO and ChE, but not ATPase, was significantly inhibited by acetaminophen, but not by other pain relievers examined. It was likely that the inhibitory effects of acetaminophen on shrimp neurological enzymes were more severe than on the planarian. These findings suggest that acetaminophen is potentially neurotoxic to aquatic animals, at least in terms of neurotransmission disturbance.
Collapse
Affiliation(s)
- Jui-Pin Wu
- Environmental Toxicology Laboratory, Department of Geography, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Mei-Hui Li
- Environmental Toxicology Laboratory, Department of Geography, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.
| |
Collapse
|
17
|
Wu JP, Li MH, Chen JS, Chung SY, Lee HL. Disturbances to neurotransmitter levels and their metabolic enzyme activity in a freshwater planarian exposed to cadmium. Neurotoxicology 2015; 47:72-81. [DOI: 10.1016/j.neuro.2015.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/30/2022]
|