1
|
Ren C, Fang Q, Long H, Liu F, Lan W, Gao G. Pollution characteristics, sources and ecological risks of steroid hormones in Fangchenggang Bay, South China Sea: Significant impacts of rivers and domestic sewage entering the sea. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137556. [PMID: 39965333 DOI: 10.1016/j.jhazmat.2025.137556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
The characteristics, sources and ecological risk of steroid hormone pollution were investigated at 14 stations in Fangchenggang Bay. The results revealed that the detection rate of the steroid hormones in both seawater and sediment was 100 %. Twenty-four types of steroid hormones were detected in seawater, and the concentrations ranged from 0.05 (P) to 7.40 ng/L (HCT). Seventeen types of steroid hormones were detected in marine sediments, and the concentrations ranged from 0.02 (SZL) to 0.82 ng/g (E3). The monthly contributions of rivers flowing into the sea and domestic sewage treatment plants were 2178.2 kg and 46.03 kg, respectively. Based on the ecological risk assessment results, MT and EE2 in seawater were considered to be at high risk level, and E2α was at medium risk, whereas the others were considered to be low or no risk levels; in marine sediments, MT, E2αand EE2 were at a high risk level; AED, E1, E2 α, and E3 were at a medium risk level; and the others were at low or no risk levels. The steroid hormones in the monitoring area were mainly affected by land-based pollution. This issue warrants immediate attention from the relevant management departments, and effective preventive measures need to be performed.
Collapse
Affiliation(s)
- Chaoxing Ren
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Qin Fang
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China; Shanghai Second Polytechnic University, Shanghai 201209, China
| | - Huiqin Long
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Fangfang Liu
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China.
| | - Guilan Gao
- Shanghai Second Polytechnic University, Shanghai 201209, China
| |
Collapse
|
2
|
Hao M, Zuo Q, Zhao X, Shi S, Wu J, Gao H, Lu Y. Multimedia contamination characteristics, risk assessment, and source quantification of phthalates in the Shaying River Basin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:202. [PMID: 40343535 DOI: 10.1007/s10653-025-02518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Phthalates (PAEs), a class of typical endocrine-disrupting chemicals, have been widely detected in the environment due to their prevalent use as plasticizers in plastic products. This study investigates the multimedia contamination characteristics and potential ecological risks of PAEs in water, soil, and sediments of the Shaying River (SYR) Basin. A Geodetector model (GDM) was employed to identify the key drivers influencing the spatial distribution of PAEs, while factor analysis and the Positive Matrix Factorization (PMF) model were utilized to quantitatively apportion the potential sources of PAEs. Results revealed that the concentrations and spatial variation of PAEs were significantly higher in soil and sediments than in water, with distinct compositional profiles. Water samples exhibited a higher proportion of low-molecular-weight PAEs compared to soil and sediment, where high-molecular-weight PAEs prevailed to a lesser extent. Notably, among the 6 target PAEs, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) were uniformly the primary PAEs in water, soil, and sediment of the SYR Basin, posing higher ecological risks to algae, crustaceans, amphibians, and fish compared to the other 4 PAEs. The spatial distribution of PAEs in the SYR Basin was comprehensively influenced by land use, precipitation, human activities, and soil types. Key factors vary across media, but the interaction between popdensity and other variables significantly enhanced the interpretation degree, jointly shaping the PAEs distribution patterns. Primary sources of PAEs in the basin were sewage and wastewater discharges (37.0%), nonpoint industrial sources (36.4%), and domestic sources (25.6%).
Collapse
Affiliation(s)
- Minghui Hao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Qiting Zuo
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, China.
| | - Xinna Zhao
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Shujuan Shi
- Henan Ecological Environmental Monitoring Center, Zhengzhou, 450003, China
| | - Junfeng Wu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongbin Gao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yizhen Lu
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
3
|
Razak MR, Wee SY, Yusoff FM, Yusof ZNB, Aris AZ. Zooplankton-based adverse outcome pathways: A tool for assessing endocrine disrupting compounds in aquatic environments. ENVIRONMENTAL RESEARCH 2024; 252:119045. [PMID: 38704014 DOI: 10.1016/j.envres.2024.119045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
4
|
Crépin A, Thiroux A, Alafaci A, Boukerb AM, Dufour I, Chrysanthou E, Bertaux J, Tahrioui A, Bazire A, Rodrigues S, Taupin L, Feuilloley M, Dufour A, Caillon J, Lesouhaitier O, Chevalier S, Berjeaud JM, Verdon J. Sensitivity of Legionella pneumophila to phthalates and their substitutes. Sci Rep 2023; 13:22145. [PMID: 38092873 PMCID: PMC10719263 DOI: 10.1038/s41598-023-49426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.
Collapse
Affiliation(s)
- Alexandre Crépin
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Audrey Thiroux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Aurélien Alafaci
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Amine M Boukerb
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Izelenn Dufour
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Eirini Chrysanthou
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Joanne Bertaux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Marc Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Jocelyne Caillon
- Faculté de Médecine, EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Université de Nantes, Nantes, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
5
|
Sources, Pollution Characteristics, and Ecological Risk Assessment of Steroids in Beihai Bay, Guangxi. WATER 2022. [DOI: 10.3390/w14091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroids are environmental endocrine disruptors that are discharged from vertebrates and are also byproducts of aquaculture. They have strong endocrine disrupting effects and are extremely harmful to the environment. The pollution of steroids in Beihai Bay was assessed through analyzing sources from rivers entering the bay. Six different types of steroids were detected in seagoing rivers, seagoing discharge outlets, and marine aquaculture farms, ranging from 0.12 (methyltestosterone) to 2.88 ng/L (estrone), from 0.11 (cortisol) to 5.41 ng/L (6a-methylprednisone (Dragon)), and from 0.13 (estradiol) to 2.51 ng/L (nandrolone), respectively. Moreover, 5 steroids were detected in 13 of the 19 seawater monitoring stations, accounting for 68.4% of the samples, and their concentrations ranged from 0.18 (methyltestosterone) to 4.04 ng/L (estrone). Furthermore, 7 steroids were detected in 15 of the 19 sediment monitoring stations, accounting for 78.9% of the samples, with concentrations ranging from 26 (estrone) to 776 ng/kg(androsterone). Thus, the main source of marine steroids were the discharging rivers and pollution sources entering the sea. An ecological risk assessment indicated that estrone and methyltestosterone were at high risk in this region; 17β estradiol (E2β) was medium risk, and other steroids were of low or no risk. This study provides a scientific basis for ecological risk assessment and control.
Collapse
|
6
|
Klaic M, Jirsa F. 17α-Ethinylestradiol (EE2): concentrations in the environment and methods for wastewater treatment – an update. RSC Adv 2022; 12:12794-12805. [PMID: 35496331 PMCID: PMC9044539 DOI: 10.1039/d2ra00915c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
17α-Ethinylestradiol (EE2) is a frequently used drug and an endocrine disruptive substance. Adverse effects on biota have been reported when they are exposed to this substance in the environment. The last review on EE2 in the environment was published in 2014. Since then, well above 70 studies on EE2 and related substances have been published. The aim of this review was therefore to bring together recent data with earlier ones. The topics emphasized were observable trends of environmental levels of EE2 and methods to reduce EE2 levels in wastewater, before it can enter the environment. This should give an overview of the recent knowledge and developments regarding these environmental aspects of EE2. In the studies discussed, EE2 levels in surface waters were well detectable in many countries, both above and below the predicted no effect concentration (PNEC) of 0.035 ng L−1, although analytical methods used for the quantification often are unsatisfactory regarding their limit of detection. To support the degradation of EE2 prior to entry into the environment, appropriate treatment methods could help to control the emissions of EE2. Several methods for the reduction of EE2 levels of up to 100% removal efficiency were reported recently and are of chemical, biological, adsorptive or ion-exchange nature. Depending on the required properties like initial EE2 concentration or treatment duration, several promising methods are available. 17α-Ethinylestradiol (EE2) is a frequently used drug and an endocrine disruptive substance.![]()
Collapse
Affiliation(s)
- Marko Klaic
- Department of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Franz Jirsa
- Department of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
- Department of Zoology, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| |
Collapse
|
7
|
Xiang Y, Wu H, Li L, Ren M, Qie H, Lin A. A review of distribution and risk of pharmaceuticals and personal care products in the aquatic environment in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112044. [PMID: 33601171 DOI: 10.1016/j.ecoenv.2021.112044] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Due to the extensive use and pseudo-persistence of pharmaceuticals and personal care products (PPCPs), they are frequently detected in the aqueous environment, which has attracted global attention. In this paper, accumulation data of 81 PPCPs in surface water or sediment in China were reported. In addition, 20 kinds of PPCPs with high frequency were selected and their ecological risk assessment was conducted by risk quotient (RQs). The results indicated that the concentration detected in surface water and sediment ranged from ng/L (ng/kg) to μg/L (μg/kg) in China, which was similar to concentrations reported globally. However, contamination by certain PPCPs, such as caffeine, oxytetracycline, and erythromycin, was relatively high with a maximum concentration of more than 2000 ng/L in surface water. RQs revealed that 14 kinds of PPCPs pose no significant risk or low risk to aquatic organisms, while 6 kinds of PPCPs pose a high risk. Additionally, the pollution characteristics of PPCPs in each watershed are different. The Haihe River watershed and the central and lower Yangtze River were the regions of high concern for erythromycin. Triclosan has potential risks in the Pearl River watershed. This study determined the occurrence and risk of PPCPs in China in the past decade, providing a scientific basis for PPCPs pollution control and risk prevention.
Collapse
Affiliation(s)
- Ying Xiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
8
|
Hao PP. Determination of bisphenol A in barreled drinking water by a SPE-LC-MS method. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:697-703. [PMID: 32107962 DOI: 10.1080/10934529.2020.1732764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/01/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
A quantitative method was established to determine the well-known endocrine disruptor bisphenol A (BPA) in barreled drinking water. Samples were pretreated by solid phase extraction (SPE), and then analyzed by liquid chromatography-mass spectrometry (LC-MS). Working standard solutions were obtained by pretreatment of a series of aqueous standard solutions over the concentration range of 122.9-1190.7 ng L-1. The linear calibration curve was Y = 69.4X + 2206.2 with the correlation coefficient (R2) of 0.9929. The average recoveries from spiked samples were more than 91.6%. The relative standard deviations (n = 6) were less than 9.6%. The method allowed the detection of 7.0 ng L-1 BPA in barreled drinking water. Typical barreled drinking water products in the market were detected. As results, thirty-five of fifty-two commercial samples were found to contain BPA with a maximum concentration of 898.7 ng L-1. The occurrence of BPA in barreled drinking water may be due to the pollution of raw water, the inefficiency of purification processes and the migration of BPA from barrels. The daily exposure of adults to BPA through drinking barreled drinking water is far below the current human tolerable daily intake (TDI) set by European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Peng-Peng Hao
- School of Management and Engineering, Capital University of Economics and Business, Beijing, China
| |
Collapse
|
9
|
Ismail NAH, Wee SY, Haron DEM, Kamarulzaman NH, Aris AZ. Occurrence of endocrine disrupting compounds in mariculture sediment of Pulau Kukup, Johor, Malaysia. MARINE POLLUTION BULLETIN 2020; 150:110735. [PMID: 31784268 DOI: 10.1016/j.marpolbul.2019.110735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Endocrine-disrupting compounds (EDCs) such as hormones, pesticides, phenolic compounds, and pharmaceuticals compounds can cause adverse effects on humans, animals, and other living organisms. One of the largest mariculture areas situated in Pulau Kukup, Johor, Malaysia, is actively involved in exporting marine fish to other countries worldwide. This paper aims to provide baseline data on the level of EDC pollutants found in mariculture sediments in Malaysia since no reports have investigated this issue. Calculated samples recovered are between 50.39 and 129.10% at 100 ng/g spiking level. The highest concentration in the sediment samples was bisphenol A (0.072-0.389 ng/g dry weight) followed by diethylstilbestrol (<0.208-0.331 ng/g dry weight) and propranolol (<0.250-0.275 ng/g dry weight). Even though the concentrations of the targeted compounds obtained were low, their effects could become more evident longer term, which raises not only environmental health concerns but the potential risk to humans.
Collapse
Affiliation(s)
- Nur Afifah Hanun Ismail
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Didi Erwandi Mohamad Haron
- Shimadzu-UM Centre of Xenobiotic Studies, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nitty Hirawaty Kamarulzaman
- Department of Agribusiness and Bioresource Economics, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
López-Pacheco IY, Salinas-Salazar C, Silva-Núñez A, Rodas-Zuluaga LI, Donoso-Quezada J, Ayala-Mar S, Barceló D, Iqbal HMN, Parra-Saldívar R. Removal and biotransformation of 4-nonylphenol by Arthrospira maxima and Chlorella vulgaris consortium. ENVIRONMENTAL RESEARCH 2019; 179:108848. [PMID: 31678727 DOI: 10.1016/j.envres.2019.108848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
4-Nonylphenol (4-NP) is an anthropogenic contaminant found in different environmental matrices that has an effect over the biotic and abiotic factors within the environment. Bioremediation by microorganisms can be used as a potential treatment to remove this pollutant. In this work, a consortium of two microorganisms, Arthrospira maxima and Chlorella vulgaris, was employed to remove 4-NP from water. The parameters analyzed included cell growth, removal of 4-NP, and 4-NP remnant in the biomass. In addition, the metabolites produced in the process by this consortium were identified. It was found that C. vulgaris is more resistant to 4-NP than A. maxima (cell growth inhibition by 4-NP of 99%). The consortium used in this study had an IC50 greater than any strain of microalgae or cyanobacteria reported for 4-NP removal (9.29 mg/L) and reduced up to 96% of 4-NP in water in the first 48 h of culture. It was also observed that there is a bio-transformation of 4-NP, comparable with the process carried out by another bacterium, in which three similar metabolites were found (4-(1-methyl-octyl)-4-hydroxy-cyclohex-2-enone, 4-nonyl-4-hydroxy-ciclohexa-2,5-dienone and 4-nonyl-4-hydroxy- ciclohex-2-enone) and one that is similar to plant metabolism (4-nonyl-(1-methyl,6,8-metoxy)-hydroxybenzene). These results indicate that microalgae and cyanobacteria consortium can be used to remove 4-NP from water.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Laura Isabel Rodas-Zuluaga
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Javier Donoso-Quezada
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Sergio Ayala-Mar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona, 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico.
| |
Collapse
|
11
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
12
|
Pang L, Yang H, Lv L, Liu S, Gu W, Zhou Y, Wang Y, Yang P, Zhao H, Guo L, Dong J. Occurrence and Estrogenic Potency of Bisphenol Analogs in Sewage Sludge from Wastewater Treatment Plants in Central China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:461-470. [PMID: 31422434 DOI: 10.1007/s00244-019-00663-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Land application is suggested to be the most economical sludge disposal method but is also a potential source of bisphenol analogs (BPs) to the environment. In this study, BP concentrations in sewage sludge from Henan province ranged from 15.1 to 2237 ng g-1 dw. BPA was dominant with mean concentration of 140 ng g-1 dw, followed by BPS (mean 43.4 ng g-1 dw), BPF (mean 7.98 ng g-1 dw), BPAF (mean 1.04 ng g-1 dw), BPAP (mean 0.88 ng g-1 dw), BPB (mean 0.38 ng g-1 dw), and BPZ (mean 0.33 ng g-1 dw). Apart from BPB, no significant correlations were found between BPs and wastewater treatment plants characteristics, probably because adsorption does not play a major role in the removal of BPs. The estimated total emission flux of BPs from sludge-amended soils are approximately 62.7 kg year-1. BPA is the largest contributor with emission flux of 45.3 kg year-1. Hazard quotient values for BPs in sludge-amended soils are 3-6 orders of magnitude lower than 1 with total 17β-estradiol equivalents ranging from 0.33 to 26.8 pg g-1 E2EQ dw. Overall, although being partially replaced by other analogs, BPA is still widely used in Henan province.
Collapse
Affiliation(s)
- Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China.
| | - Huiqiang Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China
| | - Lina Lv
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China
| | - Sijia Liu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China
| | - Wentao Gu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China
| | - Yifan Zhou
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China
| | - Yue Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China
| | - Peijie Yang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, Henan, China
| | - Hui Zhao
- Henan Province Environmental Monitoring Center, Zhengzhou, 450001, Henan, China
| | - Li Guo
- Henan Province Environmental Monitoring Center, Zhengzhou, 450001, Henan, China
| | - Jianguo Dong
- Jiaozuo Municipal Environmental Protection Bureau, Jiaozuo, 454150, Henan, China
| |
Collapse
|
13
|
Malem F, Soonthondecha P, Khawmodjod P, Chunhakorn V, Whitlow HJ, Chienthavorn O. Occurrence of phthalate esters in the eastern coast of Thailand. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:627. [PMID: 31501942 DOI: 10.1007/s10661-019-7785-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
In this work, we investigated possible contamination of phthalates in seawater and sediment around the eastern coast of Thailand in the area of Chonburi, Rayong, and Chanthaburi. The main focus was on Pradu Bay east of Map Ta Phut, a well-known industrial and economic hub in Thailand. Among six selected phthalates of interest, diethyl phthalate (DEP), and benzyl butyl phthalate (BBP) were not found in any sample, while the concentrations of dimethyl phthalate (DMP) and dioctyl phthalate (DnOP) were very low or undetectable in most samples. In December 2014, the concentration of dibutyl phthalate (DBP) and diethylhexyl phthalate (DEHP) in Pradu Bay were 0.23-0.77 and 0.31-0.91 μg L-1 in seawater, respectively and non-detected (ND)-0.80 and ND-1.65 μg g-1 for 11 out of 20 sediment samples. DBP and DEHP were considered as the predominant congeners. A surface mapping system provided us an overview concentration distribution of DBP and DEHP congeners in seawater and sediment in Pradu Bay, showing a correlation between water and sediment and allowing a prediction of a possible point source. A comparison with the EU standard concentration limit in surface water confirmed that the phthalate concentration in this area was acceptable. However, continuous monitoring of phthalate congeners in the matrices should be done to detect a possible increase in their concentrations. To the best of our knowledge, this is the first study to determine concentrations of phthalates in seawater and sediment along the east coast of Thailand.
Collapse
Affiliation(s)
- Fairda Malem
- Environmental Research and Training Center, Department of Environmental Quality Promotion, Ministry of Natural Resources and Environment, Technopolis, Klong Luang, Pathumthani, Thailand
| | - Peerapong Soonthondecha
- Environmental Research and Training Center, Department of Environmental Quality Promotion, Ministry of Natural Resources and Environment, Technopolis, Klong Luang, Pathumthani, Thailand
| | - Patchara Khawmodjod
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Visakha Chunhakorn
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Department of Chemistry, Faculty of Medicine, Bangkokthonburi University, Thawi Watthana, Bangkok, 10170, Thailand
| | - Harry J Whitlow
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Louisiana Accelerator Center and Department of Physics, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Orapin Chienthavorn
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
14
|
Distribution and ecological risk assessment of PEDCs in the water, sediment and Carex cinerascens of Poyang Lake wetland, China. Sci Rep 2019; 9:11302. [PMID: 31383923 PMCID: PMC6683139 DOI: 10.1038/s41598-019-47864-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
Phenolic endocrine disrupting chemicals (PEDCs), such as 4-nonylphenol (NP), 4-t-octylphenol (OP), bisphenol A (BPA), and nonylphenol-di-ethoxylate (NP2EO), can cause feminization and carcinogenesis. This study assessed the distributions of NP, OP, BPA, and NP2EO in the water, sediment, and Carex cinerascens of Poyang Lake wetland. The four PEDCs were ubiquitous. The concentrations of NP and OP in the water and sediment of the wetland were significantly lower than those in other regions of China. Average BPA concentrations in the water, sediment, and Carex cinerascens samples were 40.49 ± 18.42 ng/L, 9.840 ± 3.149 ng/g, and 3.25 ± 1.40 ng/g, respectively; the BPA concentration in the water was similar to that of other rivers in China. Average NP2EO concentrations in the wetland were 3125.9 ± 478.1 ng/L, 650.0 ± 209.9 ng/g, and 275.8 ± 59.0 ng/g in the water, sediment, and Carex cinerascens samples, respectively. The predicted no-effect concentrations in sediment for NP, OP, BPA, and NP2EO were estimated to be 75.41, 45.25, 8.22, and 237.5 ng/g, respectively. The risk quotient (RQ) method was used to characterise the ecological risk from these PEDCs. A high ecological risk (RQ ≥ 1) from BPA was observed for 0%, 57.69%, and 5.00% of water, sediment, and C. cinerascens samples, respectively, while a high risk from NP2EO was observed for 71.43%, 96.15%, and 55.00% of samples. Ecological risk varied spatially. The high ecological risk from NP2EO in Poyang Lake wetland may be a result of non-point pollution from rural areas and sewage from Poyang Lake basin.
Collapse
|