1
|
Herrero-Villar M, Taggart MA, Mateo R. Pharmaceuticals in avian scavengers and other birds of prey: A toxicological perspective to improve risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174425. [PMID: 38969127 DOI: 10.1016/j.scitotenv.2024.174425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Pharmaceuticals are emerging contaminants given their increasing use worldwide due to intensive food production and population growth. These compounds reach the environment through different pathways with potential negative consequences for wildlife. One dramatic example occurred in Asia, where three native vulture populations collapsed almost to extinction due to acute intoxication with diclofenac, a veterinary use non-steroidal anti-inflammatory drug (NSAID). As seen with diclofenac, avian scavengers are useful sentinels to monitor for the presence of pharmaceuticals in the environment given their position at the top of the trophic chain, and in the case of obligate avian scavengers (vultures), their intimate link to domestic animal carcasses. Unfortunately, little is known about the wider exposure and potential health and population risks of pharmaceuticals to birds of prey. Here we compile literature data regarding relevant toxicological aspects of the most important pharmaceutical groups for birds of prey in terms of toxicity: NSAIDs, antibiotics, external antiparasitics and barbiturates. This work also includes critical information for future risk assessments, including concentrations of drug residues that can remain in animal tissues after treatment, or specific pharmaceutical features that might influence their toxicity in avian scavengers and other birds of prey. We also consider future research needs in this field and provide management recommendations to prevent potential intoxication events with pharmaceuticals in these species. This review highlights the need to consider specific risk assessments regarding exposure to pharmaceuticals, especially those used in veterinary medicine, for birds of prey.
Collapse
Affiliation(s)
- Marta Herrero-Villar
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain.
| | - Mark A Taggart
- Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness, Scotland KW14 7JD, UK
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos-IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain; Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Dreyer S, Marcu D, Keyser S, Bennett M, Maree L, Koeppel K, Abernethy D, Petrik L. Factors in the decline of the African penguin: Are contaminants of emerging concern (CECs) a potential new age stressor? MARINE POLLUTION BULLETIN 2024; 206:116688. [PMID: 39029148 DOI: 10.1016/j.marpolbul.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
The African penguin is currently experiencing a significant decline, with just over 10,000 breeding pairs left. A substantial body of research reflects the impacts of contaminants of emerging concern (CECs) on the marine environment, with wastewater treatment plants reported as one of the main sources of CEC release. In South Africa, CECs were identified contaminating the marine environment and bioaccumulating in several marine species. Approximately 70 % of all African penguin colonies breed in close proximity to cities and/or harbors in South Africa. Currently, the impact of CECs as a stressor upon the viability of African penguin populations is unknown. Based on the search results there was a clear lack of information on CECs' bioaccumulation and impact on the African penguin. This narrative review will thus focus on the prevalent sources and types of CECs and examine the reported consequences of constant exposure in seabirds, particularly African penguins.
Collapse
Affiliation(s)
- Stephanie Dreyer
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| | - Daniel Marcu
- School of Biological Sciences, University of East Anglia, NR4 7TJ, United Kingdom
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Monique Bennett
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Katja Koeppel
- Animal Production Studies, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Darrell Abernethy
- Aberystwyth School of Veterinary Science, Aberystwyth University, Ceredigion SY23 3FL, United Kingdom
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
3
|
Ilbeigi K, Barata C, Barbosa J, Bertram MG, Caljon G, Costi MP, Kroll A, Margiotta-Casaluci L, Thoré ES, Bundschuh M. Assessing Environmental Risks during the Drug Development Process for Parasitic Vector-Borne Diseases: A Critical Reflection. ACS Infect Dis 2024; 10:1026-1033. [PMID: 38533709 PMCID: PMC11019539 DOI: 10.1021/acsinfecdis.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlos Barata
- Institute
of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - João Barbosa
- Blue
Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School of
Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41125 Modena, Italy
| | - Alexandra Kroll
- Swiss
Centre for Applied Ecotoxicology, CH-8600 Dübendorf, Switzerland
| | - Luigi Margiotta-Casaluci
- Institute
of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, WC2R 2LS London, United Kingdom
| | - Eli S.J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- TRANSfarm - Science, Engineering,
& Technology Group, KU
Leuven, 3360 Lovenjoel, Belgium
| | - Mirco Bundschuh
- iES
Landau, Institute for Environmental Sciences,
RPTU Kaiserslautern-Landau, Fortstrasse 7, 76829 Landau, Germany
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007 Uppsala, Sweden
| |
Collapse
|
4
|
Nambirajan K, Muralidharan S, Ashimkumar AR, Jadhav S. Assessment of chlorinated pesticide exposure to white-rumped vulture Gyps bengalensis in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12422-12430. [PMID: 38231334 DOI: 10.1007/s11356-024-31997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Populations of the critically endangered white-rumped vulture (WRV) Gyps bengalensis have declined drastically due to the use of diclofenac for veterinary purposes in Indian subcontinent. Thirty-two dead WRVs collected from three states, namely Gujarat, Assam and Tamil Nadu in India between 2011 and 2014 were investigated to understand the role of diclofenac in the death, and the results were published. Furthermore, since organochlorine pesticides have been linked to long-term impact on populations in many species of birds across the globe, available tissues of 21 WRVs were tested also for six organochlorine pesticides (DDT, HCH, endosulfan, heptachlor, dieldrin and dicofol) and chlorpyrifos. All vultures were found to have had one or more detectable levels of pesticides in their tissues except one. Similarly, all the pesticides included in the study were detected in at least one of the vultures analysed. DDT (95.2%) was the most frequently detected pesticide followed by HCH (90.5%), and DDT (73.6%) contributed the most to the total pesticide load. Total pesticide load ranged between below detection limit (BDL) and 8753.4 ng/g. High levels of total pesticide load recorded in gut contents showed recent exposure to these legacy pesticides even long after their ban. However, it is perceived that studied pesticides' exposure to birds and their presence in the environment is in decreasing trend in India. Although, varying levels of pesticides were detected, all of which were below the levels reported to be toxic, and also reported earlier in the same species in India. Recorded levels may not create a problem to vultures unlike diclofenac; nevertheless, as continued exposure to the pesticides studied may lead to sub lethal effects in birds, it is prudent to monitor these pesticides along with new generation pesticides and NSAIDs in the critically endangered white-rumped vulture in India, towards its conservation.
Collapse
Affiliation(s)
- Kanthan Nambirajan
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History (South India Centre of Wildlife Institute of India, Dehradun), Coimbatore, 641108, India.
| | - Subramanian Muralidharan
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History (South India Centre of Wildlife Institute of India, Dehradun), Coimbatore, 641108, India
| | - Aditya Roy Ashimkumar
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History (South India Centre of Wildlife Institute of India, Dehradun), Coimbatore, 641108, India
| | | |
Collapse
|
5
|
Sun Z, Li M, Qian S, Gu Y, Huang J, Li J. Development of a detection method for 10 non-steroidal anti-inflammatory drugs residues in four swine tissues by ultra-performance liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123722. [PMID: 37099884 DOI: 10.1016/j.jchromb.2023.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
The ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) detection method was developed for the residues of 10 NSAIDs (salicylic acid, acetylsalicylic acid, acetaminophen, diclofenac, tolfenamic acid, antipyrine, flunixin meglumine, aminophenazone, meloxicam, metamizole sodium) in swine muscle, liver, kidney, and fat. Swine tissue samples were extracted by phosphorylated acetonitrile with the addition of an appropriate amount of internal standard working solution, defatted with acetonitrile-saturated n-hexane, and purified by Hydrophile-Lipophile Balance (HLB) solid-phase extraction column, then separated by UPLC BEH shield RP18 column with 0.1% formic acid in water/0.1% formic acid in acetonitrile with gradient elution, which was detected in the multiple reaction monitoring (MRM) modes. The correlation coefficient of the standard curve equation is greater than 0.99, and the coefficient of variation within and between batches is less than 14.4%. We evaluated the analytical method using two green assessment tools. The method established in this study met the requirements of NSAID residue analysis and provides analytical tools for determining and confirming NSAIDs in swine tissue samples. This is the first report on the simultaneous determination of 10 NSAIDs in four swine tissues by the UPLC-MS/MS method and accurate quantification using deuterated internal standards.
Collapse
Affiliation(s)
- Zhixuan Sun
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Miao Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sixuan Qian
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yani Gu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jingjie Huang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiancheng Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Latif S, Liaqat A, Imran M, Javaid A, Hussain N, Jesionowski T, Bilal M. Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. ENVIRONMENTAL RESEARCH 2023; 216:114500. [PMID: 36257452 DOI: 10.1016/j.envres.2022.114500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac sodium is an anti-inflammatory drug commonly used to cure pain in various treatments. The remarkable potential of this pain-killer leads to its excessive use and, therefore, a persistent water contaminant. Its presence in aqueous bodies is hazardous for both humans and the environment because it causes the growth of harmful drug-resistant bacteria in water. Herein, we present a comparative study of the ZnO and ZnFe2O4 as photocatalysts for the degradation of diclofenac sodium, along with their structural and morphological studies. A simple co-precipitation method was used for the synthesis of ZnO and ZnFe2O4 and characterized by various analytical techniques. For instance, the UV-Vis study revealed the absorption maxima of ZnO at 320 nm, which was shifted to a longer wavelength region at 365 nm for zinc ferrite. The optical band gaps obtained from the Tauc plot indicated that the incorporation of iron has led to a decreased band gap of zinc ferrite (2.89 eV) than pure ZnO (3.14 eV). The metal-oxygen linkages shown by FTIR indicated the formation of desired ZnO and ZnFe2O4, which was further confirmed by XRD. It elucidated the typical hexagonal structure for ZnO and spinel cubic structure for ZnFe2O4 with an average crystallite of 31 nm and 44 nm for ZnO and ZnFe2O4, respectively. The micrographs obtained by SEM showed rough spherical particles of ZnO, whereas for ZnFe2O4 flower-like clustered particles were observed. The photocatalytic investigation against diclofenac sodium revealed the higher degradation efficiency of ZnFe2O4 (61.4%) in only 120 min, whereas ZnO degraded only 48.9% of the drug. Moreover, zinc ferrite has shown good recyclability and was stable up to five runs of photodegradation with a small loss (3.9%) of photocatalytic activity. The comparison of two catalysts has suggested the promising role of zinc ferrite in wastewater remediation to eliminate hazardous pharmaceuticals.
Collapse
Affiliation(s)
- Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Amna Liaqat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland.
| |
Collapse
|
7
|
Clifford Astbury C, Lee KM, Aguiar R, Atique A, Balolong M, Clarke J, Labonte R, Ruckert A, Togño KC, Viens AM, Wiktorowicz M, Yau A, Penney TL. Policies to prevent zoonotic spillover: protocol for a systematic scoping review of evaluative evidence. BMJ Open 2022; 12:e058437. [PMID: 36379648 PMCID: PMC9668000 DOI: 10.1136/bmjopen-2021-058437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The increasing incidence of pathogen transmission from animals to humans (zoonotic spillover events) has been attributed to behavioural practices and ecological and socioeconomic change. As these events sometimes involve pathogens with epidemic or pandemic potential, they pose a serious threat to population health. Public policies may play a key role in preventing these events. The aim of this review is to identify evaluations of public policies that target the determinants of zoonotic spillover, examining approaches taken to evaluation, choice of outcomes measures and evidence of effectiveness. Our approach to identifying and analysing this literature will be informed by a One Health lens, acknowledging the interconnectedness of human, animal and environmental health. METHODS AND ANALYSIS A systematic scoping review methodology will be used. To identify articles, we will search Medline, SCOPUS, Web of Science and Global Health in May 2021 using search terms combining animal health and the animal-human interface, public policy, prevention and zoonoses. We will screen titles and abstracts and extract data according to published guidelines for scoping reviews. All evaluations of public policies aiming to prevent zoonotic spillover events will be eligible for inclusion. We will summarise key data from each study, mapping policies along the spillover pathway and outlining the range of policies, approaches to evaluation and outcome measures. Review findings will provide a useful reference for researchers and practitioners, outlining the state of the evaluative evidence around policies to prevent zoonotic spillover. ETHICS AND DISSEMINATION Formal ethical approval is not required, because the study does not involve primary data collection. The findings of this study will be disseminated through a peer-reviewed publication, presentations and summaries for key stakeholders.
Collapse
Affiliation(s)
- Chloe Clifford Astbury
- School of Global Health, York University, Toronto, Ontario, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, Ontario, Canada
| | - Kirsten M Lee
- School of Global Health, York University, Toronto, Ontario, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, Ontario, Canada
| | - Raphael Aguiar
- Dahdaleh Institute for Global Health Research, York University, Toronto, Ontario, Canada
| | - Asma Atique
- School of Global Health, York University, Toronto, Ontario, Canada
| | | | - Janielle Clarke
- School of Global Health, York University, Toronto, Ontario, Canada
| | | | | | | | - A M Viens
- School of Global Health, York University, Toronto, Ontario, Canada
| | - M Wiktorowicz
- School of Global Health, York University, Toronto, Ontario, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, Ontario, Canada
| | - Amy Yau
- London School of Hygiene & Tropical Medicine, London, UK
| | - Tarra L Penney
- School of Global Health, York University, Toronto, Ontario, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Yasmeen R, Asif L. Heavy metal exposure and behavioral assessment of vultures in a captive environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68096-68102. [PMID: 35532822 DOI: 10.1007/s11356-022-20656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals are a heterogeneous group of metals that can cause detrimental biological disruptions in vultures. Heavy metals play a threatening role and affect vulture populations around the globe. However, various conservation organizations are working for the captive breeding of these endangered animals so that they can reintroduce these captive-bred animals back to their natural environment. This research study was conducted at Changa Manga Vulture Conservatory, Punjab, with the help of Punjab Wildlife Department. A non-invasive technique was used to collect vulture feathers and fecal samples to study the exposure of heavy metals. The behavior of vultures in captivity was also recorded. Samples were chemically digested in aqua regia and analyzed for the detection of five heavy metal concentrations such as chromium (Cr), cadmium (Cd), lead (Pb), zinc (Zn), and magnesium (Mg) using flame atomic absorption spectroscopy (FAAS). Among the selected heavy metals, non-essential metals such as Pb, Cr, and Cd were recorded in the least concentration, whereas essential metals Zn and Mg were recorded in the highest concentration. Behavioral studies showed that vultures in captivity become excessively hostile and afraid of any human interaction; they flew to the top of the trees if they felt any danger. It was concluded in the study that the higher levels of both essential and non-essential metals recorded in feathers and fecal samples might be due to the type of feed, even though a controlled food is provided to vultures in captivity. However, regular monitoring of the environment can bring improvements to the health of vultures in captivity and help to find accurate sources of contamination.
Collapse
Affiliation(s)
- Roheela Yasmeen
- Department of Biology, Lahore Garrison University, Phase VI, Sector C, DHA, Lahore, Pakistan.
| | - Laiba Asif
- Department of Biology, Lahore Garrison University, Phase VI, Sector C, DHA, Lahore, Pakistan
| |
Collapse
|
9
|
Plaza PI, Wiemeyer GM, Lambertucci SA. Veterinary pharmaceuticals as a threat to endangered taxa: Mitigation action for vulture conservation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152884. [PMID: 35016927 DOI: 10.1016/j.scitotenv.2021.152884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Overuse and misapplication of veterinary pharmaceuticals affect the ecosystem, even at low concentrations. Vultures are mainly exposed to these compounds when feeding on improperly disposed carcasses from animals treated before death. This produces diverse negative impacts on vulture health and populations, even leading to death. Using the available bibliography we determined which veterinary pharmaceuticals vultures are exposed to worldwide and assessed the potential consequences for these species. Based on the responsibilities of the different stakeholders, we also propose action to mitigate this problem. Of 104 articles addressing vulture exposure to veterinary pharmaceuticals, most came from Asia, Europe and Africa; almost no information was available on the Americas. Vultures were reported as being exposed to non-steroidal anti-inflammatory drugs (NSAIDs), antibiotics, anti-parasitic and euthanizing agents. Most available information is related to the catastrophic effect of the NSAID diclofenac in South Asia. Vultures are particularly exposed to veterinary drugs when ingesting carcasses from intensive livestock production, but other potential pathways (e.g., discards from salmon farms or fisheries) have not yet been properly evaluated. It is essential to improve scientific information on this topic - increasing the range of drugs and geographical areas studied - in order to implement sustainable conservation action for these birds. A combination of strategies could prove effective in reducing the impact of pharmaceuticals on the environment and non-target species. To mitigate this conservation problem, a set of multilateral actions should therefore be implemented, involving diverse stakeholders such as government representatives, pharmaceutical companies, veterinary practitioners, scientists and conservation agents, and local communities.
Collapse
Affiliation(s)
- Pablo I Plaza
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina.
| | - Guillermo M Wiemeyer
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina
| | - Sergio A Lambertucci
- Grupo de Investigaciones en Biología de la Conservación, INIBIOMA- CONICET, Universidad Nacional del Comahue, Quintral 1250 (R8400FRF), San Carlos de Bariloche, Argentina
| |
Collapse
|
10
|
Cunha WA, Freitas ÍN, Gomes LAS, Gonçalves SDO, Montalvão MF, Ahmed MAI, Gomes AR, Luz TMD, Araújo APDC, Malafaia G. From carrion-eaters to plastic material plunderers: Toxicological impacts of plastic ingestion on black vultures, Coragyps atratus (Cathartiformes: Cathartidae). JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127753. [PMID: 34839977 DOI: 10.1016/j.jhazmat.2021.127753] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Despite plastic ingestion has already been reported in several bird species, its physiological impacts have been little inspected, especially in representatives of the Cathartidae family. Thus, in this study, we aimed to identify, characterize, and evaluate the effects arising from the ingestion of plastic materials by Coragyps atratus adults, that captured in landfill areas. Herein, a total of 51 individuals were captured, the frequency of plastic intake being higher than 40%. The plastic materials consisted mainly of low-density polyethylene and film-type polystyrene, as well as presenting irregular shapes and diameters between 10 and 30 mm. Biochemically, we observed in animals that contained plastics in the stomach ("plastic" group) high production of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and malondialdehyde (MDA) - especially in the intestine, muscle and brain - whose activity of catalase (CAT) and superoxide dismutase (SOD) was not sufficient to counteract the oxidative stress. Moreover, in the liver of these same animals, we observed high production of nitrite and nitrate, suggesting a hepatic nitrosative stress. Plus, we observed a cholinesterase effect in animals from the "plastic" group, marked by increased activity of butyrylcholinesterase (BChE) (in the brain) and muscle and cerebral acetylcholinesterase (AChE). On the other hand, the biochemical changes perceived were not significantly correlated with the identified plastic material concentrations (2.808 ± 0.598 items/g of stomach content and 0.276 ± 0.070 items/g of stomach - fresh weight), body condition of the animals, size, and shape of the identified plastic materials. Hence, our study sheds the light on the toxicity of plastics deposited in landfills and their ingestion by C. atratus, which reinforces the hypothesis that these materials are harming the health of these birds and, consequently, the dynamics of their populations.
Collapse
Affiliation(s)
- Wallace Alves Cunha
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, Goiás, Brasil
| | | | - Lux Attiê Santos Gomes
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Goiás, Brasil
| | | | - Mateus Flores Montalvão
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Minas Gerais, Brasil
| | | | - Alex Rodrigues Gomes
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Goiás, Brasil; Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal Goiano - Campus Rio Verde, Goiás, Brasil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Goiás, Brasil
| | - Amanda Pereira da Costa Araújo
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Goiás, Brasil; Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goiás, Goiás, Brasil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí, Goiás, Brasil; Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Goiás, Brasil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Minas Gerais, Brasil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Instituto Federal Goiano and Universidade Federal de Goiás, Goiás, Brasil.
| |
Collapse
|
11
|
Nambirajan K, Muralidharan S, Ashimkumar AR, Jadhav S. Nimesulide poisoning in white-rumped vulture Gyps bengalensis in Gujarat, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57818-57824. [PMID: 34097213 DOI: 10.1007/s11356-021-14702-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Population of white-rumped vulture has not recovered in India to a desired level even after diclofenac was banned in 2006. During 2019, there were two known separate incidents of white-rumped vulture mortality involving four white-rumped vultures in Gujarat. After post-mortem examinations, tissues of all four vultures were received for toxicological investigation at the National Centre for Avian Ecotoxicology, SACON. Tissues were screened for a set of toxic pesticides, and none of them was at detectable level. Subsequently, the tissues were analysed for thirteen NSAIDs and paracetamol. Of all the drugs tested, only nimesulide was detected in all the tissues (17-1395 ng/g) indicative of exposure. Visceral gout was also observed in all the four vultures during post-mortem. Residues of nimesulide in tissues with symptoms of gout indicated that the vultures died due to nimesulide poisoning. Although, other than diclofenac, many NSAIDs are suspected to be toxic to white-rumped vultures, only nimesulide is reported in the recent past with clear symptom of gout in wild dead white-rumped vultures similar to diclofenac. Since, nimesulide appears to act similar to diclofenac in exerting toxic effects, if veterinary use of nimesulide continues, white-rumped vulture are bound to suffer. Hence, it is recommended that nimesulide should be banned by the government to conserve white-rumped vulture in the Indian subcontinent. Further, an effective system is recommended to be put in place to collect the tissues of dead vultures for toxicological investigations and eventual conservation of the critically endangered species.
Collapse
Affiliation(s)
- Kanthan Nambirajan
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, 641108, India.
| | - Subramanian Muralidharan
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, 641108, India
| | - Aditya Roy Ashimkumar
- Division of Ecotoxicology, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, 641108, India
| | | |
Collapse
|
12
|
Gunes B, Jaquet Y, Sánchez L, Pumarino R, McGlade D, Quilty B, Morrissey A, Gholamvand Z, Nolan K, Lawler J. Activated Graphene Oxide-Calcium Alginate Beads for Adsorption of Methylene Blue and Pharmaceuticals. MATERIALS 2021; 14:ma14216343. [PMID: 34771868 PMCID: PMC8585342 DOI: 10.3390/ma14216343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The remarkable adsorption capacity of graphene-derived materials has prompted their examination in composite materials suitable for deployment in treatment of contaminated waters. In this study, crosslinked calcium alginate–graphene oxide beads were prepared and activated by exposure to pH 4 by using 0.1M HCl. The activated beads were investigated as novel adsorbents for the removal of organic pollutants (methylene blue dye and the pharmaceuticals famotidine and diclofenac) with a range of physicochemical properties. The effects of initial pollutant concentration, temperature, pH, and adsorbent dose were investigated, and kinetic models were examined for fit to the data. The maximum adsorption capacities qmax obtained were 1334, 35.50 and 36.35 mg g−1 for the uptake of methylene blue, famotidine and diclofenac, respectively. The equilibrium adsorption had an alignment with Langmuir isotherms, while the kinetics were most accurately modelled using pseudo- first-order and second order models according to the regression analysis. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated and the adsorption process was determined to be exothermic and spontaneous.
Collapse
Affiliation(s)
- Burcu Gunes
- DCU Water Institute, School of Biotechnology, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland; (B.G.); (D.M.); (B.Q.); (Z.G.)
| | - Yannick Jaquet
- Institut Technologie du vivant, University of Applied Sciences and Arts Western Switzerland, Rte de Moutier 14, 2800 Delémont, Switzerland;
| | - Laura Sánchez
- Faculty of Biology, University of Oviedo Calle Catedrático Valentín Andrés Álvarez, 33006 Oviedo, Spain; (L.S.); (R.P.)
| | - Rebecca Pumarino
- Faculty of Biology, University of Oviedo Calle Catedrático Valentín Andrés Álvarez, 33006 Oviedo, Spain; (L.S.); (R.P.)
| | - Declan McGlade
- DCU Water Institute, School of Biotechnology, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland; (B.G.); (D.M.); (B.Q.); (Z.G.)
| | - Brid Quilty
- DCU Water Institute, School of Biotechnology, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland; (B.G.); (D.M.); (B.Q.); (Z.G.)
| | - Anne Morrissey
- DCU Water Institute, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland;
| | - Zahra Gholamvand
- DCU Water Institute, School of Biotechnology, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland; (B.G.); (D.M.); (B.Q.); (Z.G.)
| | - Kieran Nolan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland;
| | - Jenny Lawler
- DCU Water Institute, School of Biotechnology, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland; (B.G.); (D.M.); (B.Q.); (Z.G.)
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha 34110, Qatar
- Correspondence: ; Tel.: +974-445-48116
| |
Collapse
|
13
|
LC-MS/MS Determination of 21 Non-Steroidal Anti-Inflammatory Drugs Residues in Animal Milk and Muscles. Molecules 2021; 26:molecules26195892. [PMID: 34641436 PMCID: PMC8512709 DOI: 10.3390/molecules26195892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
The presented procedure combines experience from two LC-MS/MS methods previously developed by our team for NSAIDs determination in meat and milk. The novelty was a modification of sample preparation and combining LC-MS/MS method for milk and muscle. The clean-up procedure was investigated, leading to a change from SPE to dSPE with C18 bulk sorbent. Unlike most of the existing methods, chromatographic separation was achieved on a C8 chromatographic column. This method was developed and validated under European Commission Decision 2002/657/EC. Recovery for milk samples values between 86.3% to 108%, with the coefficient of variation, varied from 5.51% to 16.2%. The recovery for muscle was calculated to be between 85.0% and 109%, and the coefficient of variation was—4.73% to 16.6%. The validation results prove that the method is suitable for confirmatory purposes in milk and muscle. Of 452 samples tested in 2019 and 2020, two have been identified as non-compliant.
Collapse
|
14
|
Application of ultra-sensitive GC-QqQ-MS/MS (MRM) method for the determination of diclofenac in whole blood samples without derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122860. [PMID: 34332200 DOI: 10.1016/j.jchromb.2021.122860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/13/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Diclofenac is one of the most frequently prescribed nonsteroidal anti-inflammatory drugs (NSAID) worldwide. Although it is considered a relatively safe drug, it exhibits high toxicity to some animal populations (e.g., raptors). An ultra-sensitive gas chromatography method, coupled with tandem mass spectrometry (GC-QqQ-MS/MS) with an electron impact (EI) ionization source for diclofenac determination in whole blood samples without a derivatization procedure, was developed and fully validated. Diclofenac-d4 was used as an internal standard. The determination of analytes was performed in the multiple-reaction monitoring (MRM) mode. The method was linear in the range from 0.1 to 200 ng/mL, with a coefficient of determination of 0.999 (R2). The lower limit of quantification was 0.1 ng/mL, and the detection limit was 0.05 ng/mL. The blood samples (200 µL) were prepared by liquid-liquid extraction (pH3) with ethyl acetate. The intra- and interday accuracies and precisions did not exceed 15%. Recovery and matrix effect values were in the range of 92.2-105.9% and -7.8 to 5.9%, respectively. The developed method was applied in authentic blood samples. A simple and precise GC-QqQ-MS/MS method can be potentially applied for routine clinical, toxicological and environmental analysis.
Collapse
|
15
|
Nowak-Sliwinska P, Scapozza L, Ruiz i Altaba A. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim Biophys Acta Rev Cancer 2019; 1871:434-454. [PMID: 31034926 PMCID: PMC6528778 DOI: 10.1016/j.bbcan.2019.04.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The strategy of using existing drugs originally developed for one disease to treat other indications has found success across medical fields. Such drug repurposing promises faster access of drugs to patients while reducing costs in the long and difficult process of drug development. However, the number of existing drugs and diseases, together with the heterogeneity of patients and diseases, notably including cancers, can make repurposing time consuming and inefficient. The key question we address is how to efficiently repurpose an existing drug to treat a given indication. As drug efficacy remains the main bottleneck for overall success, we discuss the need for machine-learning computational methods in combination with specific phenotypic studies along with mechanistic studies, chemical genetics and omics assays to successfully predict disease-drug pairs. Such a pipeline could be particularly important to cancer patients who face heterogeneous, recurrent and metastatic disease and need fast and personalized treatments. Here we focus on drug repurposing for colorectal cancer and describe selected therapeutics already repositioned for its prevention and/or treatment as well as potential candidates. We consider this review as a selective compilation of approaches and methodologies, and argue how, taken together, they could bring drug repurposing to the next level.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland; Translational Research Center in Oncohaematology, University of Geneva, Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|