1
|
Ragasruthi M, Balakrishnan N, Murugan M, Swarnakumari N, Harish S, Sharmila DJS. Bacillus thuringiensis (Bt)-based biopesticide: Navigating success, challenges, and future horizons in sustainable pest control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176594. [PMID: 39353493 DOI: 10.1016/j.scitotenv.2024.176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The global demand for food production is escalating, necessitating innovative approaches to mitigate pest-related crop losses. Conventional pest management using synthetic pesticides has several drawbacks, promoting the search for eco-friendly alternatives such as biopesticides. Among these, Bacillus thuringiensis (Bt)-based biopesticides have emerged as a promising option due to their specificity, sustainability, and safety. This article reviews the success and application of Bt as a biopesticide, analysing its environmental impacts, formulation strategies, marketing trends and associated challenges. The environment impact of Bt is multifaceted, influencing soil ecosystems, plant-associated habitats, and non-target organisms. It interacts dynamically with soil invertebrates and affects both aquatic and terrestrial ecosystems, demonstrating a complex ecological footprint. The market for Bt-based biopesticide is expanding, driven by their proven efficacy and eco-friendliness with projections indicating continued growth. Despite the promising market trends, regulatory hurdles and formulation complexities remain significant obstacles. Addressing these challenges require collaborative efforts to streamline processes and enhance market acceptance. Nonetheless, the future of Bt-based biopesticide appears promising. Ongoing research is focused on advanced formulations, expanding the range of targeted pests and fostering regulatory cooperation, underscoring the pivotal role of Bt-based biopesticide in sustainable agriculture.
Collapse
Affiliation(s)
- M Ragasruthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - N Balakrishnan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | - N Swarnakumari
- Department of Plant Protection Studies, HC&RI for Women, Tamil Nadu Agricultural University, Tiruchirappalli, India
| | - S Harish
- Department of Oil Seeds, Tamil Nadu Agricultural University, Coimbatore, India
| | - D Jeya Sundara Sharmila
- Center for Agricultural Nano Technology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
2
|
Rajan V. Reply to Berry, C. Factors Related to Bacillus thuringiensis and Gut Physiology. Comment on "Rajan, V. An Alkaline Foregut Protects Herbivores from Latex in Forage, but Increases Their Susceptibility to Bt Endotoxin. Life 2023, 13, 2195". Life (Basel) 2024; 14:207. [PMID: 38398715 PMCID: PMC10890157 DOI: 10.3390/life14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The comment titled "Factors related to Bacillus thuringiensis and gut physiology" disputes some of the inferences in the paper "An Alkaline Foregut Protects Herbivores from Latex in Forage, but Increases Their Susceptibility to Bt Endotoxin" published in this journal. The key points in the dissent are the following: 1. Bt is generally safe to non-target species. 2. Transgenic Bt crops provide additional ecological benefits due to reductions in conventional pesticide use. 3. Susceptibility to Bt does not indicate alkalinity, nor vice versa. My response is summarized as follows: 1. Bt can form non-specific pores at concentrations of 100 ng/mL in culture, and so is potentially unsafe for animals with gut environments in which Bt persists at or above this level. 2. Initial reductions in insecticide applications have not been sustained and are even increasing in areas planted with transgenic Bt cotton. 3. Acidic guts degrade Bt more efficiently, but I concede that gut alkalinity does not imply susceptibility to Bt due to many factors including resistance in target species, toxin heterogeneity and variable modes of action. However, the susceptibility of foregut-fermenting herbivores with alkaline guts to Bt intoxication cannot be invalidated without further study.
Collapse
Affiliation(s)
- Vidya Rajan
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Gerstle V, Solanki P, Manfrin A, Kolbenschlag S, Brühl CA. Stress Response of European Common Frog (Rana temporaria) Tadpoles to Bti Exposure in an Outdoor Pond Mesocosm. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:70. [PMID: 36959482 PMCID: PMC10036417 DOI: 10.1007/s00128-023-03708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
The biocide Bacillus thuringiensis var. israelensis (Bti) is applied to wetlands to control nuisance by mosquitoes. Amphibians inhabiting these wetlands can be exposed to Bti multiple times, potentially inducing oxidative stress in developing tadpoles. For biochemical stress responses, ambient water temperature plays a key role. Therefore, we exposed tadpoles of the European common frog (Rana temporaria) three times to field-relevant doses of Bti in outdoor floodplain pond mesocosms (FPM) under natural environmental conditions. We sampled tadpoles after each Bti application over the course of a 51-day experiment (April to June 2021) and investigated the activity of the glutathione-S-transferase (GST) and protein carbonyl content as a measure for detoxification activity and oxidative damage. GST activity increased over the course of the experiment likely due to a general increase of water temperature. We did not observe an effect of Bti on either of the investigated biomarkers under natural ambient temperatures. However, Bti-induced effects may be concealed by the generally low water temperatures in our FPMs, particularly at the first application in April, when we expected the highest effect on the most sensitive early stage tadpoles. In light of the global climate change, temperature-related effects of pesticides and biocides on tadpoles should be carefully monitored - in particular since they are known as one of the factors driving the worldwide decline of amphibian populations.
Collapse
Affiliation(s)
- Verena Gerstle
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany.
| | - Priyanka Solanki
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Alessandro Manfrin
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Sara Kolbenschlag
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, D-76829, Landau, Germany
| |
Collapse
|
4
|
Poulin B, Lefebvre G, Hilaire S, Després L. Long-term persistence and recycling of Bacillus thuringiensis israelensis spores in wetlands sprayed for mosquito control. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114004. [PMID: 36007317 DOI: 10.1016/j.ecoenv.2022.114004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) is the main larvicide used to control mosquitoes worldwide. Although there is accumulating evidence of Bti having environmental effects on non-target fauna, relatively few field studies have documented the fate of Bti spores in the environment. Spore density was quantified over a 6-yr period (2012-2017) in Mediterranean marshes sprayed with Vectobac 12AS (32 ITU/ha) since 2006 to reduce the nuisance caused by Aedes caspius. Bti spores were naturally found in all habitat types. Spore density expressed as colony-forming units per gram of soil (CFU g-1) increased significantly at treated sites by a factor of 22 to 500 times relative to control sites, with mean values of 7730 CFU g-1 in halophilous scrubs, 38,000 in reed beds, 49,000 in bulrush beds and 50 000 in rush beds. Spore density varied little in the first months after the spraying season (April-October), but increased sharply in spring, just before the annual launch of mosquito control. Considering that Bti is an insect pathogen that cannot proliferate without a suitable insect host, this unexpected recrudescence in spring could be related to the warming of water that triggers activity and development of benthic organisms such as chironomids, which may contribute to Bti proliferation by ingesting accumulated spores at the surface of sediments. While spore density tends to decrease over time, presumably during the summer period as a result of increased UV exposure, three to four years were necessary for spore density to return to normal levels after mosquito-control interruption. This study is important because it demonstrates that environmental effects of mosquito-control using Bti can far exceed the short period of Bti efficacy against lentic mosquitoes. Considering that Bti is a microbial agent, these long-term effects should be addressed at multiple levels of ecosystem organization from a one-health perspective.
Collapse
Affiliation(s)
- Brigitte Poulin
- Tour duValat Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.
| | - Gaëtan Lefebvre
- Tour duValat Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.
| | - Samuel Hilaire
- Tour duValat Research Institute for the Conservation of Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.
| | - Laurence Després
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, Laboratoire d'Ecologie Alpine, 38000 Grenoble, France.
| |
Collapse
|
5
|
Batool K, Alam I, Liu P, Shu Z, Zhao S, Yang W, Jie X, Gu J, Chen XG. Recombinant Mosquito Densovirus with Bti Toxins Significantly Improves Pathogenicity against Aedes albopictus. Toxins (Basel) 2022; 14:147. [PMID: 35202174 PMCID: PMC8879223 DOI: 10.3390/toxins14020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop β6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant viruses were genetically stable and displayed growth phenotype and virus proliferation ability, similar to wild-type AeDNV. Our novel results offer further insights by combining two mosquitocidal pathogens to improve viral toxicity for mosquito control.
Collapse
Affiliation(s)
- Khadija Batool
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Intikhab Alam
- College of Life Sciences, South China Agricultural University, Guangzhou 510515, China;
| | - Peiwen Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Zeng Shu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Wenqiang Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Xiao Jie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China; (K.B.); (P.L.); (Z.S.); (S.Z.); (W.Y.); (X.J.); (J.G.)
| |
Collapse
|
6
|
A R, V U, V B. Molecular cloning of a new cry2A-type gene from Bacillus thuringiensis strain Nn10 and its expression studies. Microb Pathog 2022; 164:105415. [PMID: 35066071 DOI: 10.1016/j.micpath.2022.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
In the present study, eight indigenous Bacillus thuringiensis isolates of Western Ghats of India with more than 90% toxicity against Helicoverpa armigera were characterized for cry2A gene sub families. Seven of the eight isolates harboured cry2Aa, cry2Ab and cry2Ac genes alone and or in combination. Further, the indigenous cry2Aa gene(s) from Bacillus thuringiensis isolate Nn10 which showed 100% mortality against Helicoverpa armigera was cloned and expressed into recombinant Bt strains for management of resistance development in insects. The ORF of cry2Aa (∼1.9 kb) gene(s) from Nn10 isolate was ligated with T/A vector (pTZ57 R/T) and expressed in E. coli, DH5α. Automated sequence analysis of newly cloned recombinant cry2Aa revealed 99% homology to 916 bases in the 3' region of minus strand and 100% homology with 720 bases in the 5' region of holotype cry2Aa1 gene. The partial Cry2Aa amino acid sequence of Bt strain, Nn10, deduced from the nucleotide sequence generated by M13F primer showed four amino acid variation in comparison to Cry2Aa1 holotype, at 338, 345, 346 and 489th position of ORF and the sequence was submitted to the NCBI. Further the expression of ORF of cry2Aa of Nn10 into acrystalliferous Bt strain, 4Q7 using expression vector pHT3P2T under the transcriptional control of cry3Aa promoter and cry2Aa terminator. SDS PAGE analysis of recombinant protein exhibited a prominent band of about 65 kDa. Bioassay studies revealed that recombinant proteins, Cry2Aa of Nn10 was toxic to Helicoverpa armigera with LC50 value of 7.26 μg ml-1.
Collapse
Affiliation(s)
- Ramalakshmi A
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India; Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Udayasuriyan V
- Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Balasubramani V
- Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
7
|
Gutierrez-Villagomez JM, Patey G, To TA, Lefebvre-Raine M, Lara-Jacobo LR, Comte J, Klein B, Langlois VS. Frogs Respond to Commercial Formulations of the Biopesticide Bacillus thuringiensis var . israelensis, Especially Their Intestine Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12504-12516. [PMID: 34460233 DOI: 10.1021/acs.est.1c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is generally believed that Bacillus thuringiensis var. israelensis (Bti) biopesticides are harmless to non-target organisms; however, new research shows controversial results. We exposed acutely and chronicallyLithobates sylvaticusandAnaxyrus americanus tadpoles until metamorphic climax to VectoBac 200G (granules) and VectoBac 1200L (aqueous suspension) at 300-20,000 ITU/L covering field-relevant concentrations and higher. The data show that the exposure parameters tested did not affect significantly the survival, total length, total weight, hepatosomatic index, gonadosomatic index, the expression of genes of interest (i.e., related to xenobiotic exposure, oxidative stress, and metamorphosis), and the intestine tissue layer detachment ofL. sylvaticusandA. americanus in a concentration-response pattern. In contrast, VectoBac 200G significantly increased the median time to metamorphosis ofL. sylvaticus tadpoles by up to 3.5 days and decreased the median by up to 1 day inA. americanus. VectoBac 1200L significantly increased the median time to metamorphosis ofL. sylvaticusandA. americanustadpoles by up to 4.5 days. Also, the exposure to VectoBac 200G and 1200L altered the intestine bacterial community composition inA. americanus at application rates recommended by the manufacturer, which led to an increase in the relative abundance of Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. Changes in the intestine microbiota might impact the fitness of individuals, including the susceptibility to parasitic infections. Our results indicate that the effect of Bti commercial products is limited; however, we recommend that Bti-spraying activities in amphibian-rich ecosystems should be kept minimal until there is more conclusive research to assess if the changes in the time to metamorphosis and microbiota can lead to negative outcomes in amphibian populations and, eventually, the functioning of ecosystems.
Collapse
Affiliation(s)
| | - Géraldine Patey
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Tuan Anh To
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Linda Ramona Lara-Jacobo
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Bert Klein
- Service des territoires fauniques et des habitats, Ministère des Forêts, de la Faune et des Parcs (MFFP), Quebec City, Quebec G1S 4X4, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| |
Collapse
|