1
|
Romoli C, Trijau M, Muller EB, Zakharova L, Kuhl R, Coors A, Sherborne N, Goussen B, Ashauer R. Environmental Risk Assessment of Time-Variable Toxicant Exposure with Toxicokinetic-Toxicodynamic Modeling of Sublethal Endpoints and Moving Time Windows: A Case Study with Ceriodaphnia dubia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2409-2421. [PMID: 39221922 DOI: 10.1002/etc.5975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Toxicokinetic-toxicodynamic (TKTD) modeling has received increasing attention in terms of the regulatory environmental risk assessment of chemicals. This type of mechanistic model can integrate all available data from individual-level bioassays into a single framework and enable refined risk assessments by extrapolating from laboratory results to time-variable exposure scenarios, based, for instance, on surface water exposure modeling (e.g., FOCUS). Dynamic energy budget (DEB) models coupled with TKTD modules (DEB-TKTD) constitute the leading approach to assess and predict sublethal effects of chemicals on individual organisms. However, thorough case studies are rare. We provide a state-of-the-art example with the standard aquatic test species Ceriodaphnia dubia and the fungicide azoxystrobin, including all steps, from bespoke laboratory toxicity tests to model calibration and validation, through to environmental risk assessment. Following the framework proposed in the European Food Safety Authority Scientific Opinion from 2018, we designed bespoke good laboratory practice-compliant laboratory toxicity studies based on test guideline 211 of the Organisation for Economic Co-operation and Development and then identified robust parameter values from those data for all relevant model parameters through model calibration. The DEB-TKTD model, DEBtox2019, then informed the design of the validation experiment. Once validated, the model was used to perform predictions for a time-variable exposure scenario generated by FOCUS. A moving time-window approach was used to perform the environmental risk assessment. This assessment method reduces uncertainty in the risk assessment while maintaining consistency with the traditional measures of risk. Environ Toxicol Chem 2024;43:2409-2421. © 2024 Syngenta Crop Protection AG. ibacon GmbH and The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Erik B Muller
- ibacon, Roßdorf, Germany
- Marine Science Institute, University of California, Santa Barbara, California, USA
| | | | | | | | - Neil Sherborne
- Syngenta, Jealott's Hill International Research Centre, Berkshire, United Kingdom
| | | | - Roman Ashauer
- Syngenta Crop Protection, Basel, Switzerland
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
2
|
Rybak J, Ziembik Z, Wróbel M, Bihałowicz JS, Rogula-Kozłowska W, Mudiyanselage ND, Majewski G. Seasonal toxicity of urban road dust in runoff process-studies in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38485-38499. [PMID: 38806980 PMCID: PMC11189338 DOI: 10.1007/s11356-024-33716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Urban road dust (URD) is one of the most important non-point sources of pollution in agglomerations. The aim of this study was to assess the seasonal toxic effects of URD runoff in two regions of Poland. The concentrations of elements in URD and leachate were studied. The impact of pollutants in URD runoff on water organisms was evaluated using Daphtoxkit F and Rotoxkit F (LC50). The acute toxicity tests for crustaceans and rotifers were selected as the response of these taxa reflects the impact on zooplankton, a key component of aquatic ecosystem and the basis of most food webs. The concentrations of elements were found to vary depending on the site, although URD samples collected in Katowice agglomeration (Upper Silesia) had higher values of elements (Mn, Cu, Zn, As) compared to Wrocław (Lower Silesia). The concentrations of Mn, Zn, As, Cr, and Mg in water-soluble fraction of URD were higher in summer and winter in the Upper Silesia region due to rainwater runoff resulting from traffic, industries, post-industrial waste, and the presence of old heating systems. When comparing the content of elements in the water-soluble fraction between seasons, Zn, As, Cr, and Al concentrations were slightly higher in winter. The highest mortality of Daphnia magna and Brachiouns calyciflorus was observed in URD from both agglomerations in winter. However, the mortality is likely due to the concentration of elements or/and the coexistence of an unknown compound or a synergistic effect of the studied elements. This study highlights the alarming seasonal sources of elements in URD runoff, which will directly enter the food chain and affect the entire ecosystem, and human health.
Collapse
Affiliation(s)
- Justyna Rybak
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Zbigniew Ziembik
- Institute of Environmental Engineering and Biotechnology, University of Opole, 6a Kominka Str, 45-032, Opole, Poland
| | - Magdalena Wróbel
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Jan Stefan Bihałowicz
- Fire University (former The Main School of Fire Service), 52/54 Słowackiego Str, 01-629, Warsaw, Poland
| | - Wioletta Rogula-Kozłowska
- Fire University (former The Main School of Fire Service), 52/54 Słowackiego Str, 01-629, Warsaw, Poland
| | | | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-787, Warsaw, Poland
| |
Collapse
|
3
|
Kefford BJ, Hyne RV, Brooks AJ, Shenton MD, Hills K, Nichols SJ, Bray JP. Do magnesium and chloride ameliorate high sodium bicarbonate concentrations? A comparison between laboratory and mesocosm toxicity experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169003. [PMID: 38043815 DOI: 10.1016/j.scitotenv.2023.169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Increasing salinity is a concern for biodiversity in many freshwater ecosystems globally. Single species laboratory toxicity tests show major differences in freshwater organism survival depending on the specific ions that comprise salinity types and/or their ion ratios. Toxicity has been shown to be reduced by altering ionic composition, despite increasing (total) salinity. For insistence, single species tests show the toxicity of sodium bicarbonate (NaHCO3, which commonly is a large proportion of the salts from coalbeds) to freshwater invertebrates is reduced by adding magnesium (Mg2+) or chloride (Cl-). However, it is uncertain whether reductions in mortality observed in single-species laboratory tests predict effects within populations, communities and to ecosystem processes in more complex multi-species systems both natural and semi-natural. Here we report the results of an outdoor multi-species mesocosm experiment to determine if the effects of NaHCO3 are reduced by increasing the concentrations of Mg2+ or Cl- on: a) stream macroinvertebrate populations and communities; b) benthic chlorophyll-a and; c) the ecosystem process of leaf litter decomposition. We found a large effect of a high NaHCO3 concentration (≈4.45 mS/cm) with reduced abundances of multiple taxa, reduced emergence of adult insects and reduced species richness, altered community structure and increased leaf litter breakdown rates but no effect on benthic chlorophyll-a. However, despite predictions based on laboratory findings, we found no evidence that the addition of either Mg2+ or Cl- altered the effect of NaHCO3. In semi-natural environments such as mesocosms, and natural environments, organisms are subject to varying temperature and habitat factors, while also interacting with other species and trophic levels (e.g. predation, competition, facilitation), which are absent in single species laboratory tests. Thus, it should not be assumed single-species tests are good predictors of the effects of changing ionic compositions on stream biota in more natural environments.
Collapse
Affiliation(s)
- Ben J Kefford
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia.
| | - Ross V Hyne
- Department of Planning, Industry and Environment, Environment Protection Science, Lidcombe Laboratories, NSW 2141, Australia
| | - Andrew J Brooks
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia; Department of Planning and Environment - Water, 53, Wollongong, NSW 2500, Australia
| | - Mark D Shenton
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Kasey Hills
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia; New South Wales Environmental Protection Authority, Locked Bag 5022, Parramatta, NSW 2124, Australia
| | - Susan J Nichols
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Jonathan P Bray
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia; Department of Pest Management and Conservation, Lincoln University, 85084, Christchurch, Canterbury, New Zealand
| |
Collapse
|
4
|
Kefford BJ, Nichols SJ, Duncan RP. The cumulative impacts of anthropogenic stressors vary markedly along environmental gradients. GLOBAL CHANGE BIOLOGY 2023; 29:590-602. [PMID: 36114730 PMCID: PMC10087255 DOI: 10.1111/gcb.16435] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Understanding the cumulative effects of multiple stressors on biodiversity is key to managing their impacts. Stressor interactions are often studied using an additive/antagonistic/synergistic typology, aimed at identifying situations where individual stressor effects are reduced or amplified when they act in combination. Here, we analysed variation in the family richness of stream macroinvertebrates in the groups Ephemeroptera, Plecoptera and Trichoptera (EPT) at 4658 sites spanning a 32° latitudinal range in eastern Australia in relation to two largely human-induced stressors, salinity and turbidity, and two environmental gradients, temperature and slope. The cumulative and interactive effect of salinity and turbidity on EPT family richness varied across the landscape and by habitat (edge or riffle) such that we observed additive, antagonistic and synergistic outcomes depending on the environmental context. Our findings highlight the importance of understanding the consistency of multiple stressor impacts, which will involve higher-order interactions between multiple stressors and environmental factors.
Collapse
Affiliation(s)
- Ben J. Kefford
- Centre for Applied Water ScienceInstitute for Applied Ecology, University of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Susan J. Nichols
- Centre for Applied Water ScienceInstitute for Applied Ecology, University of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Richard P. Duncan
- Centre for Conservation Ecology and GenomicsInstitute for Applied Ecology, University of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|