1
|
Al-Othman R, Al-Jarallah A, Babiker F. High-density lipoprotein protects normotensive and hypertensive rats against ischemia-reperfusion injury through differential regulation of mTORC1 and mTORC2 signaling. Front Pharmacol 2024; 15:1398630. [PMID: 39611167 PMCID: PMC11603114 DOI: 10.3389/fphar.2024.1398630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Background High-density lipoprotein (HDL) protects against myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin complexes 1 and 2 (mTORC1 and mTORC2) play opposing roles in protecting against I/R injury, whereby mTORC1 appears to be detrimental while mTORC2 is protective. However, the role of HDL and mTORC signaling in protecting against I/R in hypertensive rodents is not clearly understood. In this study, we investigated the involvement of mTORC1 and mTORC2 in HDL-mediated protection against myocardial I/R injury in normotensive Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Methods Hearts from WKY and SHR were subjected to I/R injury using a modified Langendorff system. Hemodynamics data were collected, and infarct size was measured. Rapamycin and JR-AB2-011 were used to test the role of mTORC1 and mTORC2, respectively. MK-2206 was used to test the role of Akt in HDL-mediated cardiac protection. The expression levels and the activation states of mediators of mTORC1 and mTORC2 signaling and myocardial apoptosis were measured by immunoblotting and/or enzyme-linked immunosorbent assay (ELISA). Results HDL protected hearts from WKY and SHR against I/R injury as indicated by significant improvements in cardiac hemodynamics and reduction in infarct size. HDL induced greater protection in WKY compared to SHR. HDL treatment attenuated mTORC1 signaling in WKY by reducing the phosphorylation of P70S6K (mTORC1 substrate). In SHR however, HDL attenuated mTORC1 signaling by reducing the levels of phospho-mTORC1, Rag C (mTORC1 activator), and phospho-PRAS40 (mTORC1 inhibitor). HDL increased the phosphorylation of mTORC2 substrate Akt, specifically the Akt2 isoform in SHR and to a greater extent in WKY. HDL-induced protection was abolished in the presence of Akt antagonist and involved attenuation of GSK, caspases 7 and 8 activation, and cytochrome C release. Conclusion HDL mediates cardiac protection via attenuation of mTORC1, activation of mTORC2-Akt2, and inhibition of myocardial apoptosis. HDL regulates mTORC1 and mTORC2 signaling via distinct mechanisms in normotensive and hypertensive rats. HDL attenuation of mTORC1 and activation of mTORC2-Akt2 signaling could be a mechanism by which HDL protects against myocardial I/R injury in hypertension.
Collapse
Affiliation(s)
- Reham Al-Othman
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fawzi Babiker
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
2
|
Chen J, Zhang L, Zhu Y, Zhao D, Zhang J, Zhu Y, Pang J, Xiao Y, Wu Q, Wang Y, Zhan Q. AKT2 S128/CCTα S315/319/323-positive cancer-associated fibroblasts (CAFs) mediate focal adhesion kinase (FAK) inhibitors resistance via secreting phosphatidylcholines (PCs). Signal Transduct Target Ther 2024; 9:21. [PMID: 38280862 PMCID: PMC10821909 DOI: 10.1038/s41392-023-01728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/26/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
| | - Lingyuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuheng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Di Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanmeng Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyuan Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yuanfan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- Peking University International Cancer Institute, Peking University, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Ahmadloo S, Ling KH, Fazli A, Larijani G, Ghodsian N, Mohammadi S, Amini N, Hosseinpour Sarmadi V, Ismail P. Signature pattern of gene expression and signaling pathway in premature diabetic patients uncover their correlation to early age coronary heart disease. Diabetol Metab Syndr 2022; 14:107. [PMID: 35906673 PMCID: PMC9336005 DOI: 10.1186/s13098-022-00878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary Heart Disease (CHD) is the leading cause of death in industrialized countries. There is currently no direct relation between CHD and type 2 diabetes mellitus (T2D), one of the major modifiable risk factors for CHD. This study was carried out for genes expression profiling of T2D associated genes to identify related biological processes/es and modulated signaling pathway/s of male subjects with CHD. METHOD the subjects were divided into four groups based on their disease, including control, type 2 diabetes mellitus (T2D), CHD, and CHD + T2D groups. The RNA was extracted from their blood, and RT2 Profiler™ PCR Array was utilized to determine gene profiling between groups. Finally, the PCR Array results were validated by using Q-RT-PCR in a more extensive and independent population. RESULT PCR Array results revealed that the T2D and T2D + CHD groups shared 11 genes significantly up-regulated in both groups. Further analysis showed that the mRNA levels of AKT2, IL12B, IL6, IRS1, IRS2, MAPK14, and NFKB1 increased. Consequently, the mRNA levels of AQP2, FOXP3, G6PD, and PIK3R1 declined in the T2D + CHD group compared to the T2D group. Furthermore, in silico analysis indicated 36 Gene Ontology terms and 59 signaling pathways were significantly enriched in both groups, which may be a culprit in susceptibility of diabetic patients to CHD development. CONCLUSION Finally, the results revealed six genes as a hub gene in altering various biological processes and signaling pathways. The expression trend of these identified genes might be used as potential markers and diagnostic tools for the early identification of the vulnerability of T2D patients to develop premature CHD.
Collapse
Affiliation(s)
- Salma Ahmadloo
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Vaccination Department, Pasteur Institute of Iran, Tehran, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Center, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ahmad Fazli
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nooshin Ghodsian
- Department of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Sanaz Mohammadi
- Faculty of Biological Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle. Clin Sci (Lond) 2021; 134:2381-2398. [PMID: 32880392 DOI: 10.1042/cs20191320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.
Collapse
|
5
|
Wang S, Zheng B, Zhao H, Li Y, Zhang X, Wen J. Downregulation of lncRNA MIR181A2HG by high glucose impairs vascular endothelial cell proliferation and migration through the dysregulation of the miRNAs/AKT2 axis. Int J Mol Med 2021; 47:35. [PMID: 33537821 PMCID: PMC7891834 DOI: 10.3892/ijmm.2021.4868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/04/2021] [Indexed: 01/06/2023] Open
Abstract
Endothelial dysfunction and diabetic vascular disease induced by chronic hyperglycemia involve complex interactions among high glucose, long non-coding RNAs (lncRNAs), microRNAs (miRNAs or miRs) and the Ser/Thr kinase AKT. However, the molecular mechanisms under-lying the regulatory crosstalk between these have not yet been completely elucidated. Thus, the present study aimed to explore the molecular mechanisms whereby high glucose (HG)-induced lncRNA MIR181A2HG modulates human umbilical vein endothelial cell (HUVEC) proliferation and migration by regulating AKT2 expression. The persistent exposure of HUVECs to HG resulted in MIR181A2HG down-regulation and thus reduced its ability to sponge miR-6832-5p, miR-6842-5p and miR-8056, subsequently leading to an increase in miR-6832-5p, miR-6842-5p and miR-8056 levels. Mechanistically, miR-6832-5p, miR-6842-5p and miR-8056 were found to target the 3′UTR of AKT2 mRNA in HUVECs, and the increase in their levels led to a decreased expression of AKT2. Thus, this also led to the suppression of HUVEC proliferation and migration, and the formation of capillary-like structures. Moreover, the suppression of HUVEC proliferation and migration induced by MIR181A2HG downregulation was accompanied by changes in glucose metabolism. On the whole, the present study demonstrates that the downregulation of lncRNA MIR181A2HG by HG impairs HUVEC proliferation and migration by dysregulating the miRNA/AKT2 axis. The MIR181A2HG/miRNA/AKT2 regulatory axis may thus be a potential therapeutic target for HG-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Hongye Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yongjun Li
- Department of Clinical Laboratorial Examination, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. Chin
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jinkun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
6
|
Sun T, Huang GY, Wang ZH, Teng SH, Cao YH, Sun JL, Hanif Q, Chen NB, Lei CZ, Liao YY. Selection signatures of Fuzhong Buffalo based on whole-genome sequences. BMC Genomics 2020; 21:674. [PMID: 32993537 PMCID: PMC7526191 DOI: 10.1186/s12864-020-07095-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fuzhong buffalo, a native breed of Guangxi Zhuang Autonomous Region, is traditionally used as a draft animal to provide farm power in the rice cultivation. In addition, the Fuzhong buffalo also prepared for the bullfighting festival organized by the locals. The detection of the selective signatures in its genome can help in elucidating the selection mechanisms in its stamina and muscle development of a draft animal. RESULTS In this study, we analyzed 27 whole genomes of buffalo (including 15 Fuzhong buffalo genomes and 12 published buffalo genomes from Upper Yangtze region). The ZHp, ZFst, π-Ratio, and XP-EHH statistics were used to identify the candidate signatures of positive selection in Fuzhong buffalo. Our results detected a set of candidate genes involving in the pathways and GO terms associated with the response to exercise (e.g., ALDOA, STAT3, AKT2, EIF4E2, CACNA2D2, TCF4, CDH2), immunity (e.g., PTPN22, NKX2-3, PIK3R1, ITK, TMEM173), nervous system (e.g., PTPN21, ROBO1, HOMER1, MAGI2, SLC1A3, NRG3, SNAP47, CTNNA2, ADGRL3). In addition, we also identified several genes related to production and growth traits (e.g., PHLPP1, PRKN, MACF1, UCN3, RALGAPA1, PHKB, PKD1L). Our results depicted several pathways, GO terms, and candidate genes to be associated with response to exercise, immunity, nervous system, and growth traits. CONCLUSIONS The selective sweep analysis of the Fuzhong buffalo demonstrated positive selection pressure on potential target genes involved in behavior, immunity, and growth traits, etc. Our findings provided a valuable resource for future research on buffalo breeding and an insight into the mechanisms of artificial selection.
Collapse
Affiliation(s)
- Ting Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guang-Yun Huang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Zi-Hao Wang
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Shao-Hua Teng
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Yan-Hong Cao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Jun-Li Sun
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Ning-Bo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yu-Ying Liao
- Animal Husbandry Institute of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, 530001, China.
| |
Collapse
|
7
|
Overexpression of miR-150-5p Alleviates Apoptosis in Sepsis-Induced Myocardial Depression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3023186. [PMID: 32908879 PMCID: PMC7477614 DOI: 10.1155/2020/3023186] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Sepsis-induced myocardial depression has high mortality and is very common in intensive care units. Previous studies have found that microRNAs play an important role in regulating sepsis-induced myocardial depression. miR-150-5p is involved in many biological processes; however, the mechanism underlying its role in sepsis-induced myocardial depression is still unclear. In this study, we generated rat models of septic shock induced by lipopolysaccharide. Whole genomic RNA sequencing was performed on 12 left ventricles collected after LPS treatment to identify miRNAs. Most of the target genes of the differently expressed microRNAs were involved in apoptosis, according to Gene Ontology. We also observed apoptosis in the heart tissue and in H9C2 cardiomyocytes stimulated with lipopolysaccharide, indicating that cell apoptosis may be an important mechanism in sepsis-induced myocardial depression. Furthermore, the expression of miR-150-5p was reduced, and overexpression of miR-150-5p with mimics resulted in a decrease in apoptosis, decreased expression of cleaved caspase3 and Bax, and increased expression of Bcl-2. Additionally, after H9C2 cells were transfected with miR-150-5p mimics or an inhibitor, the expression of Akt2 decreased or increased, respectively. These findings suggest that miR-150-5p can alleviate apoptosis and may be a novel therapeutic target for sepsis-induced myocardial depression.
Collapse
|
8
|
Leffler KE, Abdel-Rahman AA. Estrogen-Dependent Disruption of Adiponectin-Connexin43 Signaling Underlies Exacerbated Myocardial Dysfunction in Diabetic Female Rats. J Pharmacol Exp Ther 2019; 368:208-217. [PMID: 30523063 PMCID: PMC6337006 DOI: 10.1124/jpet.118.254029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
The reasons for the higher severity of type 2 diabetes (T2DM)-associated cardiomyopathy in women, despite their inherent estrogen (E2)-dependent cardioprotection, remain unknown. We hypothesized that the reliance of the healthy females' hearts on augmented adiponectin (APN)-connexin 43 (Cx43) signaling becomes paradoxically detrimental when disrupted by T2DM in an E2-dependent manner. We tested this hypothesis in high-fat, low- dose streptozotocin diabetic rats and their controls with the following designations: 1) sham-operated (SO), 2) ovariectomized (OVX), 3) ovariectomized with E2 supplementation (OVX + E2), and 4) male. E2-replete (SO or OVX + E2) diabetic rats exhibited higher mortality and greater increases in left ventricular (LV) mass and reduced LV developed pressure, LV contractility, and fractional shortening but preserved ejection fraction. Further, compared with respective nondiabetic counterparts, the hearts of these E2-replete diabetic rats exhibited greater upregulation of cardiac estrogen receptor α and reductions in Cx43 expression and in the phosphorylation levels of the survival molecules extracellular regulating kinases 1/2 and phosphorylated AKT (pAKT). Whereas serum APN was reduced, independent of sex and ovarian hormone status in all DM rats, cardiac APN was most drastically reduced in DM SO rats. The present translational findings are the first to implicate ovarian hormones/E2 in the exacerbated myocardial dysfunction in female diabetic subjects and to suggest a pivotal role for malfunctioning cardiac APN-Cx43 signaling in this sex/E2-specific clinical problem.
Collapse
Affiliation(s)
- Korin E Leffler
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, North Carolina
| |
Collapse
|
9
|
Ferreira R, Nogueira-Ferreira R, Trindade F, Vitorino R, Powers SK, Moreira-Gonçalves D. Sugar or fat: The metabolic choice of the trained heart. Metabolism 2018; 87:98-104. [PMID: 30077622 DOI: 10.1016/j.metabol.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
Abstract
Mammals respond to muscular exercise by increasing cardiac output to meet the increased demand for oxygen in the working muscles and it is well-established that regular bouts of exercise results in myocardial remodeling. Depending on exercise type, intensity and duration, these cardiac adaptations lead to changes in the energetic substrates required to sustain cardiac contractility. In contrast to the failing heart, fatty acids are the preferred substrate in the trained heart, though glucose metabolism is also enhanced to support oxidative phosphorylation. The participation of AMPK/eNOS and PPARα/PGC-1α pathways in the regulation of cardiac metabolism is well known but other players also contribute including sirtuins and integrins-mediated outside-in activation of FAK and other kinases. These regulatory players act by up-regulating fatty acid uptake, transport to mitochondria and oxidation, and glucose uptake via GLUT4. This exercise-induced increase in mitochondria metabolic flexibility is important to sustain the energetic demand associated with cardiomyocyte hypertrophy and hyperplasia promoted by IGF-1 and neuregulin-1-induced PI3K/Akt signaling. So, the timeless advice of Hippocrates "walking is the best medicine" seems to be justified by the promotion of mitochondrial health and, consequently, the beneficial metabolic remodeling of the heart.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Rita Nogueira-Ferreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Fábio Trindade
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, United States
| | - Daniel Moreira-Gonçalves
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal; CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
11
|
Gu J, Yan X, Dai X, Wang Y, Lin Q, Xiao J, Zhou S, Zhang J, Wang K, Zeng J, Xin Y, Barati MT, Zhang C, Bai Y, Li Y, Epstein PN, Wintergerst KA, Li X, Tan Y, Cai L. Metallothionein Preserves Akt2 Activity and Cardiac Function via Inhibiting TRB3 in Diabetic Hearts. Diabetes 2018; 67:507-517. [PMID: 29079702 PMCID: PMC5828458 DOI: 10.2337/db17-0219] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
Cardiac insulin resistance is a key pathogenic factor for diabetic cardiomyopathy (DCM), but the mechanism remains largely unclear. We found that diabetic hearts exhibited decreased phosphorylation of total Akt and isoform Akt2 but not Akt1 in wild-type (WT) male FVB mice, which was accompanied by attenuation of Akt downstream glucose metabolic signal. All of these signal changes were not observed in metallothionein cardiac-specific transgenic (MT-TG) hearts. Furthermore, insulin-induced glucose metabolic signals were attenuated only in WT diabetic hearts. In addition, diabetic hearts exhibited increased Akt-negative regulator tribbles pseudokinase 3 (TRB3) expression only in WT mice, suggesting that MT may preserve Akt2 function via inhibiting TRB3. Moreover, MT prevented tert-butyl hydroperoxide (tBHP)-reduced insulin-stimulated Akt2 phosphorylation in MT-TG cardiomyocytes, which was abolished by specific silencing of Akt2. Specific silencing of TRB3 blocked tBHP inhibition of insulin-stimulated Akt2 phosphorylation in WT cardiomyocytes, whereas overexpression of TRB3 in MT-TG cardiomyocytes and hearts abolished MT preservation of insulin-stimulated Akt2 signals and MT prevention of DCM. Most importantly, supplementation of Zn to induce MT preserved cardiac Akt2 signals and prevented DCM. These results suggest that diabetes-inhibited cardiac Akt2 function via TRB3 upregulation leads to aberrant cardiac glucose metabolism. MT preservation of cardiac Akt2 function by inhibition of TRB3 prevents DCM.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Heart/drug effects
- Heart/physiopathology
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/pharmacology
- Insulin/therapeutic use
- Insulin Resistance
- Lipopolysaccharides/toxicity
- Male
- Metallothionein/genetics
- Metallothionein/metabolism
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Myocardium/enzymology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organ Specificity
- Oxidants/toxicity
- Oxidative Stress/drug effects
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
Collapse
Affiliation(s)
- Junlian Gu
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Xiaozhen Dai
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuehui Wang
- Departments of Geriatrics, Cardiovascular Disorders and Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Qian Lin
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Jian Xiao
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
| | - Shanshan Zhou
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Departments of Geriatrics, Cardiovascular Disorders and Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Departments of Geriatrics, Cardiovascular Disorders and Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Kai Wang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Jun Zeng
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Ying Xin
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | | | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
| | - Yang Bai
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Departments of Geriatrics, Cardiovascular Disorders and Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Department of Surgery, University of Louisville, Louisville, KY
| | - Paul N Epstein
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
- Wendy L. Novak Diabetes Care Center, Louisville, KY
| | - Kupper A Wintergerst
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Wendy L. Novak Diabetes Care Center, Louisville, KY
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Louisville, KY
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
- Wendy L. Novak Diabetes Care Center, Louisville, KY
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and the First Affiliated Hospital at the Wenzhou Medical University, Wenzhou, China
- Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
- Wendy L. Novak Diabetes Care Center, Louisville, KY
| |
Collapse
|
12
|
Vaidya T, Kamta J, Chaar M, Ande A, Ait-Oudhia S. Systems pharmacological analysis of mitochondrial cardiotoxicity induced by selected tyrosine kinase inhibitors. J Pharmacokinet Pharmacodyn 2018; 45:401-418. [PMID: 29446053 DOI: 10.1007/s10928-018-9578-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/05/2018] [Indexed: 01/13/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) are targeted therapies rapidly becoming favored over conventional cytotoxic chemotherapeutics. Our study investigates two FDA approved TKIs, DASATINIB; indicated for IMATINIB-refractory chronic myeloid leukemia, and SORAFENIB; indicated for hepatocellular carcinoma and advanced renal cell carcinoma. Limited but crucial evidence suggests that these agents can have cardiotoxic side effects ranging from hypertension to heart failure. A greater understanding of the underlying mechanisms of this cardiotoxicity are needed as concerns grow and the capacity to anticipate them is lacking. The objective of this study was to explore the mitochondrial-mediated cardiotoxic mechanisms of the two selected TKIs. This was achieved experimentally using immortalized human cardiomyocytes, AC16 cells, to investigate dose- and time-dependent cell killing, along with measurements of temporal changes in key signaling proteins involved in the intrinsic apoptotic and autophagy pathways upon exposure to these agents. Quantitative systems pharmacology (QSP) models were developed to capture the toxicological response in AC16 cells using protein dynamic data. The developed QSP models captured well all the various trends in protein signaling and cellular responses with good precision on the parameter estimates, and were successfully qualified using external data sets. An interplay between the apoptotic and autophagic pathways was identified to play a major role in determining toxicity associated with the investigated TKIs. The established modeling platform showed utility in elucidating the mechanisms of cardiotoxicity of SORAFENIB and DASATINIB. It may be useful for other small molecule targeted therapies demonstrating cardiac toxicities, and may aid in informing alternate dosing strategies to alleviate cardiotoxicity associated with these therapies.
Collapse
Affiliation(s)
- Tanaya Vaidya
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, 6550 Sanger Road, Office: 469, Orlando, FL, 32827, USA
| | - Jeff Kamta
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, 6550 Sanger Road, Office: 469, Orlando, FL, 32827, USA
| | - Maher Chaar
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, 6550 Sanger Road, Office: 469, Orlando, FL, 32827, USA
| | - Anusha Ande
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, 6550 Sanger Road, Office: 469, Orlando, FL, 32827, USA
| | - Sihem Ait-Oudhia
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, 6550 Sanger Road, Office: 469, Orlando, FL, 32827, USA.
| |
Collapse
|
13
|
Gao YX, He WT, Pan LF, Feng H, Sun JL, Zhang B, Yu L, Li LJ. Downregulation of Akt2 attenuates ER stress-induced cytotoxicity through JNK-Wnt pathway in cardiomyocytes. Bioorg Med Chem Lett 2018; 28:394-399. [PMID: 29275936 DOI: 10.1016/j.bmcl.2017.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023]
Abstract
Akt, also known as protein kinase B (PKB), is a serine/threonine kinase that promotes survival and growth in response to extracellular signals. Akt1 has been demonstrated to play vital roles in cardiovascular diseases, but the role of Akt2 in cardiomyocytes is not fully understood. This study investigated the effect of Akt2 knockdown on tunicamycin (TM)-induced cytotoxicity in cardiomyocytes and the underlying mechanisms with a focus on the JNK-Wnt pathway. TM treatment significantly increased the expression of Akt2 at both mRNA and protein levels, which was shown to be mediated by the induction of reactive oxygen species (ROS). Knockdown of Akt2 expression via siRNA transfection markedly increased cell viability, decreased lactate dehydrogenase (LDH) release and reduced cell apoptosis after TM exposure. The results of western blot showed that downregulation of Akt2 also attenuated the TM-induced activation of the unfolded protein response (UPR) factors and ER stress associated pro-apoptotic proteins. In addition, Si-Akt2 transfection partially prevented the TM-induced decrease in nuclear localization of β-catenin. By using the selective inhibitor SP-600,125 to inhibit JNK phosphorylation, we found that knockdown of Akt2-induced protection and inhibition of ER stress was mediated by reversing TM-induced decrease of Wnt through the JNK pathway. In summary, these data suggested that Akt2 play a pivotal role in regulating cardiomyocyte survival during ER stress by modulating the JNK-Wnt pathway.
Collapse
Affiliation(s)
- Yan-Xia Gao
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Wen-Ting He
- Department of Medicine, The Fourth Hospital of Xi'an, Xi'an, Shannxi 710004, China
| | - Long-Fei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jiang-Li Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Bin Zhang
- Department of Neurology, The First Hospital of Yulin, Yulin, Shannxi 718000, China
| | - Lei Yu
- Department of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Li-Jun Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
14
|
Chen D, Chen F, Xu Y, Zhang Y, Li Z, Zhang H, Pan T, Su Y, Wan M, Wang X, Ye J. AKT2 deficiency induces retardation of myocyte development through EndoG-MEF2A signaling in mouse heart. Biochem Biophys Res Commun 2017; 493:1410-1417. [PMID: 28965945 DOI: 10.1016/j.bbrc.2017.09.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Protein kinase B2 (AKT2) is implicated in diverse process of cardiomyocyte signaling including survival and metabolism. However, the role of AKT2 in myocardium development and the signaling pathway is rarely understood. Therefore, we sought to determine the effect of AKT2 deletion on heart development and its downstream targets. By using experimental animal models and neonatal rat cardiomyocytes (NRCMs), we observed that AKT2 deficiency induces retardation of heart development and increased systemic blood pressure (BP) without affecting cardiac function. Further investigation suggested that deficiency of AKT2 in myocardium results in diminished MEF2A abundance, which induced decreased size of cardiomyocytes. We additionally confirmed that EndoG, which is also regulated by AKT2, is a suppressor of MEF2A in myocardium. Finally, our results proved that AKT2 deficiency impairs the response to β-adrenergic stimuli that normally causes hypertrophy in cardiomyocytes by downregulating MEF2A expression. Our data are the first to show the important role of AKT2 in determining the size of myocardium, its deficiency causes retardation of cardiomyocyte development. We also proved a novel pathway of heart development involving EndoG and MEF2A regulated by AKT2.
Collapse
Affiliation(s)
- Dandan Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Fan Chen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Yitao Xu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China; Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Zhe Li
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Han Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Tianshu Pan
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Yuheng Su
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Miyang Wan
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Xiaochuan Wang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China
| | - Junmei Ye
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
15
|
Roy R, Krenz M. Heterozygous deletion of AKT1 rescues cardiac contractility, but not hypertrophy, in a mouse model of Noonan Syndrome with Multiple Lentigines. J Mol Cell Cardiol 2017; 112:83-90. [PMID: 28911943 DOI: 10.1016/j.yjmcc.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Noonan Syndrome with Multiple Lentigines (NSML) is associated with congenital heart disease in form of pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). Genetically, NSML is primarily caused by mutations in the non-receptor protein tyrosine phosphatase SHP2. Importantly, certain SHP2 mutations such as Q510E can cause a particularly severe form of HCM with heart failure in infancy. Due to lack of insight into the underlying pathomechanisms, an effective custom-tailored therapy to prevent heart failure in these patients has not yet been found. SHP2 regulates numerous signaling cascades governing cell growth, differentiation, and survival. Experimental models have shown that NSML mutations in SHP2 cause dysregulation of downstream signaling, in particular involving the protein kinase AKT. AKT, and especially the isoform AKT1, has been shown to be a major regulator of cardiac hypertrophy. We therefore hypothesized that hyperactivation of AKT1 is required for the development of Q510E-SHP2-induced HCM. We previously generated a transgenic mouse model of NSML-associated HCM induced by Q510E-SHP2 expression in cardiomyocytes starting before birth. Mice display neonatal-onset HCM with initially preserved contractile function followed by functional decline around 2months of age. As a proof-of-principle study, our current goal was to establish to which extent a genetic reduction in AKT1 rescues the Q510E-SHP2-induced cardiac phenotype in vivo. AKT1 deletion mice were crossed with Q510E-SHP2 transgenic mice and the resulting compound mutant offspring analyzed. Homozygous deletion of AKT1 greatly reduced viability in our NSML mouse model, whereas heterozygous deletion of AKT1 in combination with Q510E-SHP2 expression was well tolerated. Despite normalization of pro-hypertrophic signaling downstream of AKT, heterozygous deletion of AKT1 did not ameliorate cardiac hypertrophy induced by Q510E-SHP2. However, the functional decline caused by Q510E-SHP2 expression was effectively prevented by reducing AKT1 protein. This demonstrates that AKT1 plays an important role in the underlying pathomechanism. Furthermore, the functional rescue was associated with an increase in the capillary-to-cardiomyocyte ratio and normalization of capillary density per tissue area in the compound mutant offspring. We therefore speculate that limited oxygen supply to the hypertrophied cardiomyocytes may contribute to the functional decline observed in our mouse model of NSML-associated HCM.
Collapse
Affiliation(s)
- Rajika Roy
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, 134 Research Park Dr, Columbia, MO 65211, United States
| | - Maike Krenz
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, 134 Research Park Dr, Columbia, MO 65211, United States.
| |
Collapse
|
16
|
Huang K, Gao L, Yang M, Wang J, Wang Z, Wang L, Wang G, Li H. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy. Int J Biochem Cell Biol 2017; 89:6-15. [PMID: 28522343 DOI: 10.1016/j.biocel.2017.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/29/2022]
Abstract
Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022 China.
| |
Collapse
|
17
|
AKT2 Blocks Nucleus Translocation of Apoptosis-Inducing Factor (AIF) and Endonuclease G (EndoG) While Promoting Caspase Activation during Cardiac Ischemia. Int J Mol Sci 2017; 18:ijms18030565. [PMID: 28272306 PMCID: PMC5372581 DOI: 10.3390/ijms18030565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 02/04/2023] Open
Abstract
The AKT (protein kinase B, PKB) family has been shown to participate in diverse cellular processes, including apoptosis. Previous studies demonstrated that protein kinase B2 (AKT2−/−) mice heart was sensitized to apoptosis in response to ischemic injury. However, little is known about the mechanism and apoptotic signaling pathway. Here, we show that AKT2 inhibition does not affect the development of cardiomyocytes but increases cell death during cardiomyocyte ischemia. Caspase-dependent apoptosis of both the extrinsic and intrinsic pathway was inactivated in cardiomyocytes with AKT2 inhibition during ischemia, while significant mitochondrial disruption was observed as well as intracytosolic translocation of cytochrome C (Cyto C) together with apoptosis-inducing factor (AIF) and endonuclease G (EndoG), both of which are proven to conduct DNA degradation in a range of cell death stimuli. Therefore, mitochondria-dependent cell death was investigated and the results suggested that AIF and EndoG nucleus translocation causes cardiomyocyte DNA degradation during ischemia when AKT2 is blocked. These data are the first to show a previous unrecognized function and mechanism of AKT2 in regulating cardiomyocyte survival during ischemia by inducing a unique mitochondrial-dependent DNA degradation pathway when it is inhibited.
Collapse
|
18
|
Cheng WP, Lo HM, Wang BW, Chua SK, Lu MJ, Shyu KG. Atorvastatin alleviates cardiomyocyte apoptosis by suppressing TRB3 induced by acute myocardial infarction and hypoxia. J Formos Med Assoc 2016; 116:388-397. [PMID: 27645622 DOI: 10.1016/j.jfma.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/17/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/PURPOSE TRB3 (tribbles 3), an apoptosis-regulated gene, increases during endoplasmic reticulum stress. Hypoxia can induce inflammatory mediators and apoptosis in cardiomyocytes. However, the expression of TRB3 in cardiomyocyte apoptosis under hypoxia is not thoroughly known. We investigated the regulation mechanism of TRB3 expression and apoptosis induced by hypoxia in cardiomyocytes. METHODS An in vivo model of acute myocardial infarction (AMI) was applied in adult Wistar rats to induce myocardial hypoxia. Rat neonatal cardiomyocytes were subjected to 2.5% O2 to induce hypoxia. RESULTS The expression of TRB3 was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia. Hypoxia significantly enhanced TRB3 protein and mRNA expression. Adding c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA (siRNA), tumor necrosis factor-α (TNF-α) antibody, and atorvastatin 30 minutes before hypoxia reversed the induction of TRB3 protein. A gel-shift assay showed the DNA-binding activity of growth arrest and DNA damage-inducible gene 153 (GADD153), which increased after hypoxia. Hypoxia increased, whereas the TRB3-mut plasmid, SP600125, and TNF-α antibody abolished the hypoxia-induced TRB3 promoter activity. Hypoxia increased the secretion of TNF-α from cardiomyocytes. Exogenous administration of TNF-α recombinant protein to the cardiomyocytes without hypoxia increased TRB3 protein expression, similar to that observed after hypoxia. Hypoxia-induced cardiomyocyte apoptosis is inhibited by TRB3 siRNA, the TNF-α antibody, and atorvastatin. Atorvastatin reduced the TRB3 expression and cardiomyocyte apoptosis induced by AMI. Hypoxia induces TRB3 through TNF-α, JNK, and the GADD153 pathway. CONCLUSION Treatment of atorvastatin inhibits the expression of TRB3 and cardiomyocyte apoptosis induced by AMI and hypoxia.
Collapse
Affiliation(s)
- Wen-Pin Cheng
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Huey-Ming Lo
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Bao-Wei Wang
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Su-Kiat Chua
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ming-Jen Lu
- Division of Cardiovascular Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Wang J, Chen H, Su Q, Zhou Y, Liu T, Li L. The PTEN/Akt Signaling Pathway Mediates Myocardial Apoptosis in Swine After Coronary Microembolization. J Cardiovasc Pharmacol Ther 2016; 21:471-477. [PMID: 26846271 DOI: 10.1177/1074248415624158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Phosphatase and the tensin homolog deleted on chromosome ten (PTEN) has been recognized as a promoter of apoptosis in various tissues and has been shown to be upregulated in circumstances of coronary microembolization (CME). We hypothesized that the upregulation of PTEN correlates with CME-induced myocardial apoptosis. METHODS Swine CME was induced by an intracoronary injection of inert plastic microspheres (diameter of 42 μm) into the left anterior descending coronary, with or without pretreatment of the PTEN small-interfering RNA (siRNA). Echocardiological measurements, a pathological examination, Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining, and Western blotting, were performed to assess their functional, morphological, and molecular effects in CME. RESULTS PTEN was aberrantly upregulated in cardiomyocytes following CME. Downregulation of PTEN in vivo via siRNA was associated with improved cardiac function and attenuated myocardial apoptosis; concomitantly inhibited the expression of key proapoptotic proteins, such as phosphorylated Bad (p-Bad); cleaved caspase-3; and enhanced the expression of key antiapoptotic proteins, such as phosphorylated protein kinase B (p-Akt). However, there was no difference in the Akt-regulated downstream protein IκB kinases (IKKα, IKKβ, and IKKγ) among the sham, CME, and control siRNA groups. CONCLUSION This study demonstrates, for the first time, that the PTEN/Akt signaling pathway contributes to cardiomyocyte apoptosis. The data generated from this study provide a rationale for the development of PTEN-based therapeutic strategies for CME-induced myocardial injury.
Collapse
Affiliation(s)
- Jiangyou Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Han Chen
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital in China, Wuhan, China
| | - Qiang Su
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Leoni C, Onesimo R, Giorgio V, Diamanti A, Giorgio D, Martini L, Rossodivita A, Tartaglia M, Zampino G. Understanding Growth Failure in Costello Syndrome: Increased Resting Energy Expenditure. J Pediatr 2016; 170:322-4. [PMID: 26778095 DOI: 10.1016/j.jpeds.2015.11.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Costello syndrome is a rare multisystem disorder caused by mutations in the proto-oncogene HRAS. Failure to thrive is one of its cardinal clinical features. This study documents that individuals with Costello syndrome have increased resting energy expenditure. We speculate this could be one of the potential mechanisms causing failure to thrive.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | | | - Antonella Diamanti
- Artificial Nutrition Unit, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Daniela Giorgio
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Lucilla Martini
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Aurora Rossodivita
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy.
| |
Collapse
|
21
|
Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res 2015; 101:41-55. [DOI: 10.1016/j.phrs.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 12/14/2022]
|
22
|
Cheng WP, Wang BW, Lo HM, Shyu KG. Mechanical Stretch Induces Apoptosis Regulator TRB3 in Cultured Cardiomyocytes and Volume-Overloaded Heart. PLoS One 2015; 10:e0123235. [PMID: 25898323 PMCID: PMC4405267 DOI: 10.1371/journal.pone.0123235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
The expression of TRB3 (tribbles 3), an apoptosis regulated gene, increases during endoplasmic reticulum (ER) stress. How mechanical stress affects the regulation of TRB3 in cardiomyocytes during apoptosis is not fully understood. An in vivo model of aorta-caval shunt in adult rats demonstrated the increased TRB3 protein expression in the myocardium. The tumor necrosis factor-alpha (TNF-α) antagonist etanercept reversed the TRB3 protein expression and cardiomyocyte apoptosis induced by AV shunt. An in vitro model of cyclic stretch in neonatal rats was also used to investigate TRB3 expression. We hypothesized that cardiomyocyte apoptosis induced by cyclic stretch is TRB3 dependent. Neonatal rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles/min. Cyclic stretch significantly increased TRB3 protein and mRNA expression. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, TNF-α antibody and etanercept 30 min before stretch reversed the induction of TRB3 protein induced by stretch. Cyclic stretch induced the DNA-binding activity of growth arrest and DNA damaged inducible gene-153 (GADD153) by electrophoretic mobility shift assay. SP600125, JNK siRNA, TNF-α antibody and etanercept abolished the binding activity induced by stretch. TRB3 promoter activity was enhanced by stretch and TRB3-mut plasmid, SP600125, TNF-α antibody and etanercept attenuated TRB3 promoter activity induced by stretch. Exogenous administration of TNF-α recombinant protein to the non-stretched cardiomyocytes increased TRB3 protein expression similar to that seen after stretch. Cyclic stretch induced cardiomyocyte apoptosis is inhibited by TRB3 siRNA and etanercept. The stretch-induced TRB3 is mediated by TNF-α、JNK and GADD153 pathway. These results indicate that TRB3 plays an important role in stretch-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Wen-Pin Cheng
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Bao-Wei Wang
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Huey-Ming Lo
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Tepavčević S, Vojnović Milutinović D, Macut D, Žakula Z, Nikolić M, Božić-Antić I, Romić S, Bjekić-Macut J, Matić G, Korićanac G. Dihydrotestosterone deteriorates cardiac insulin signaling and glucose transport in the rat model of polycystic ovary syndrome. J Steroid Biochem Mol Biol 2014; 141:71-6. [PMID: 24472754 DOI: 10.1016/j.jsbmb.2014.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/24/2013] [Accepted: 01/16/2014] [Indexed: 01/05/2023]
Abstract
It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats. Treatment with DHT resulted in increased body mass, absolute mass of the heart, elevated plasma insulin concentration, dyslipidemia and insulin resistance. At the molecular level, DHT treatment did not change protein expression of cardiac insulin receptor and insulin receptor substrate 1, while phosphorylation of the substrate at serine 307 was increased. Unexpectedly, although expression of downstream Akt kinase and its phosphorylation at threonine 308 were not altered, phosphorylation of Akt at serine 473 was increased in the heart of DHT-treated rats. In contrast, expression and phosphorylation of extracellular signal regulated kinases 1/2 were decreased. Plasma membrane contents of GLUT1 and GLUT4 were decreased, as well as the expression of GLUT4 in cardiac cells at the end of androgen treatment. The obtained results provide evidence for alterations in expression and especially in functional characteristics of insulin signaling molecules and glucose transporters in the heart of DHT-treated rats with PCOS, indicating impaired cardiac insulin action.
Collapse
Affiliation(s)
- Snežana Tepavčević
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia and Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Zorica Žakula
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | - Marina Nikolić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Ivana Božić-Antić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia and Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Snježana Romić
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | - Gordana Matić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Goran Korićanac
- Laboratory for Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
24
|
Troncoso R, Ibarra C, Vicencio JM, Jaimovich E, Lavandero S. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 2014; 25:128-37. [PMID: 24380833 DOI: 10.1016/j.tem.2013.12.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/16/2013] [Accepted: 12/02/2013] [Indexed: 01/15/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein. These pathways involve classic second messengers, phosphorylation cascades, lipid signaling, Ca(2+) transients, and gene expression. In addition, IGF-1R triggers signaling in different subcellular locations including the plasma membrane, perinuclear T tubules, and also in internalized vesicles. In this review, we provide a fresh and updated view of the complex IGF-1 scenario in the heart, including a critical focus on therapeutic strategies.
Collapse
Affiliation(s)
- Rodrigo Troncoso
- Facultad de Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 838049, Chile; Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 838049, Chile
| | - Cristián Ibarra
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | | | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 838049, Chile
| | - Sergio Lavandero
- Facultad de Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago 838049, Chile; Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 838049, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| |
Collapse
|
25
|
Troncoso R, Díaz-Elizondo J, Espinoza SP, Navarro-Marquez MF, Oyarzún AP, Riquelme JA, Garcia-Carvajal I, Díaz-Araya G, García L, Hill JA, Lavandero S. Regulation of cardiac autophagy by insulin-like growth factor 1. IUBMB Life 2013; 65:593-601. [PMID: 23671040 DOI: 10.1002/iub.1172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/22/2013] [Indexed: 12/25/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) signaling is a key pathway in the control of cell growth and survival. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3 )/Ca(2+) . The Akt/mTOR and Ras/Raf/ERK signaling arms govern survival in the settings of cardiac stress and hypertrophic growth. By contrast, PLC/InsP3 /Ca(2+) functions to regulate metabolic adaptability and gene transcription. Autophagy is a catabolic process involved in protein degradation, organelle turnover, and nonselective breakdown of cytoplasmic components during nutrient starvation or stress. In the heart, autophagy is observed in a variety of human pathologies, where it can be either adaptive or maladaptive, depending on the context. We proposed the hypothesis that IGF-1 protects the heart by rescuing the mitochondrial metabolism and the energetics state, reducing cell death and controls the potentially exacerbate autophagic response to nutritional stress. In light of the importance of IGF-1 and autophagy in the heart, we review here IGF-1 signaling and autophagy regulation in the context of cardiomyocyte nutritional stress.
Collapse
Affiliation(s)
- Rodrigo Troncoso
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Klement GL, Goukassian D, Hlatky L, Carrozza J, Morgan JP, Yan X. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart. Front Pharmacol 2012; 3:113. [PMID: 22754526 PMCID: PMC3384262 DOI: 10.3389/fphar.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
Abstract
The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.
Collapse
Affiliation(s)
- Giannoula L Klement
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Henning RJ, Dennis S, Sawmiller D, Hunter L, Sanberg P, Miller L. Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia. Transl Res 2012; 159:497-506. [PMID: 22633101 DOI: 10.1016/j.trsl.2012.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
Abstract
We have previously reported that human umbilical cord blood mononuclear cells (HUCBC), which contain hematopoietic, mesenchymal, and endothelial stem cells, can significantly reduce acute myocardial infarction size. To determine the mechanism whereby HUCBC increase myocyte and vascular endothelial cell survival, we treated cardiac myocytes and coronary artery endothelial cells in separate experiments with HUCBC plus culture media or culture media alone and subjected the cells to 24 h of hypoxia or normoxia. We then determined in myocytes and endothelial cells activation of the cell survival protein Akt by Western blots. We also determined in these cells apoptosis by annexin V staining and necrosis by propidium iodide staining. Thereafter, we inhibited with API, a specific and sensitive Akt inhibitor, Akt activation in myocytes and endothelial cells cultured with HUCBC during hypoxia and determined cell apoptosis and necrosis. In cells cultured without HUCBC, hypoxia only slightly activated Akt. Moreover, hypoxia increased myocyte apoptosis by ≥ 226% and necrosis by 58% in comparison with myocytes in normoxia. Hypoxic treatment of endothelial cells without HUCBC increased apoptosis by 94% and necrosis by 59%. In contrast, hypoxia did not significantly affect HUCBC. Moreover, in myocyte + HUCBC cultures in hypoxia, HUCBC induced a ≥ 135% increase in myocyte phospho-Akt. Akt activation decreased myocyte apoptosis by 76% and necrosis by 35%. In endothelial cells, HUCBC increased phospho-Akt by 116%. HUCBC also decreased endothelial cell apoptosis by 58% and necrosis by 42%. Inhibition of Akt with API in myocytes and endothelial cells cultured with HUCBC during hypoxia nearly totally prevented the HUCBC-induced decrease in apoptosis and necrosis. We conclude that HUCBC can significantly decrease hypoxia-induced myocyte and endothelial cell apoptosis and necrosis by activating Akt in these cells and in this manner HUCBC can limit myocardial ischemia and injury.
Collapse
Affiliation(s)
- Robert J Henning
- James A. Haley VA Medical Center and the University of South Florida College of Medicine, Tampa, FL, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Wani R, Bharathi NS, Field J, Tsang AW, Furdui CM. Oxidation of Akt2 kinase promotes cell migration and regulates G1-S transition in the cell cycle. Cell Cycle 2011; 10:3263-8. [PMID: 21957489 DOI: 10.4161/cc.10.19.17738] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation has long been recognized as the key mediator of protein signaling. New modes of signaling regulation are emerging with the development of specific chemical probes and application of high-throughput mass spectrometry technologies. Using biotin-tagged chemical probes for protein oxidation, mass spectrometry and functional assays, our group has recently reported isoform-specific oxidation of Akt2 in response to PDGF signaling. The studies included here investigate the functional consequence of oxidation on Akt2-mediated cell migration and cell cycle. Akt2-KO MEFs transduced with WT and Cys124Ser Akt2 were used as the model system for these studies. The implications of these findings on disease pathology are discussed.
Collapse
Affiliation(s)
- Revati Wani
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|