1
|
Salavitabar A, Zampi JD, Thomas C, Zanaboni D, Les A, Lowery R, Yu S, Whiteside W. Augmented Reality Visualization of 3D Rotational Angiography in Congenital Heart Disease: A Comparative Study to Standard Computer Visualization. Pediatr Cardiol 2024; 45:1759-1766. [PMID: 37725124 DOI: 10.1007/s00246-023-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
Augmented reality (AR) visualization of 3D rotational angiography (3DRA) provides 3D representations of cardiac structures with full visualization of the procedural environment. The purpose of this study was to evaluate the feasibility of converting 3DRAs of congenital heart disease patients to AR models, highlight the workflow for 3DRA optimization for AR visualization, and assess physicians' perceptions of their use. This single-center study prospectively evaluated 30 retrospectively-acquired 3DRAs that were converted to AR, compared to Computer Models (CM). Median patient age 6.5 years (0.24-38.8) and weight 20.6 kg (3.4-107.0). AR and CM quality were graded highly. RV pacing was associated with higher quality of both model types (p = 0.02). Visualization and identification of structures were graded as "very easy" in 81.1% (n = 73) and 67.8% (n = 61) of AR and CM, respectively. Fifty-nine (66%) grades 'Agreed' or 'Strongly Agreed' that AR models provided superior appreciation of 3D relationships; AR was found to be least beneficial in visualization of aortic arch obstruction. AR models were thought to be helpful in identifying pathology and assisting in interventional planning in 85 assessments (94.4%). There was significant potential seen in the opportunity for patient/family counseling and trainee/staff education with AR models. It is feasible to convert 3D models of 3DRAs into AR models, which are of similar image quality as compared to CM. AR models provided additional benefits to visualization of 3D relationships in most anatomies. Future directions include integration of interventional simulation, peri-procedural counseling of patients and families, and education of trainees and staff with AR models.
Collapse
Affiliation(s)
- Arash Salavitabar
- Cardiac Catheterization & Interventional Therapies, The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Jeffrey D Zampi
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Courtney Thomas
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Dominic Zanaboni
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Andrea Les
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Ray Lowery
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Sunkyung Yu
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Wendy Whiteside
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Sachdeva R, Armstrong AK, Arnaout R, Grosse-Wortmann L, Han BK, Mertens L, Moore RA, Olivieri LJ, Parthiban A, Powell AJ. Novel Techniques in Imaging Congenital Heart Disease: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:63-81. [PMID: 38171712 PMCID: PMC10947556 DOI: 10.1016/j.jacc.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
Recent years have witnessed exponential growth in cardiac imaging technologies, allowing better visualization of complex cardiac anatomy and improved assessment of physiology. These advances have become increasingly important as more complex surgical and catheter-based procedures are evolving to address the needs of a growing congenital heart disease population. This state-of-the-art review presents advances in echocardiography, cardiac magnetic resonance, cardiac computed tomography, invasive angiography, 3-dimensional modeling, and digital twin technology. The paper also highlights the integration of artificial intelligence with imaging technology. While some techniques are in their infancy and need further refinement, others have found their way into clinical workflow at well-resourced centers. Studies to evaluate the clinical value and cost-effectiveness of these techniques are needed. For techniques that enhance the value of care for congenital heart disease patients, resources will need to be allocated for education and training to promote widespread implementation.
Collapse
Affiliation(s)
- Ritu Sachdeva
- Department of Pediatrics, Division of Pediatric Cardiology, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Aimee K Armstrong
- The Heart Center, Nationwide Children's Hospital, Department of Pediatrics, Division of Cardiology, Ohio State University, Columbus, Ohio, USA
| | - Rima Arnaout
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Lars Grosse-Wortmann
- Division of Cardiology, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - B Kelly Han
- Division of Cardiology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan A Moore
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura J Olivieri
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anitha Parthiban
- Department of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Salavitabar A, Boe BA, Berman DP, Harrison A, Swinning J, Baptista K, Eisner M, Bai S, Armstrong AK. Optimizing 3D Rotational Angiography for Congenital Cardiac Catheterization. Pediatr Cardiol 2023; 44:132-140. [PMID: 36029321 DOI: 10.1007/s00246-022-02994-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
The aim of the study was to determine the variables associated with high-quality (HQ) versus low-quality (LQ) three-dimensional rotational angiography (3DRA) and create guides for optimization of approach to 3DRA in congenital cardiac catheterization (CCC). CCC has adopted 3DRA as a mainstay, but there has not been systematic analysis of approach to and factors associated with HQ 3DRA. This was a single-center, retrospective study of 3DRAs using Canon Infinix-I platform. Reconstructions were graded by 3 interventionalists. Quality was dichotomized into HQ and LQ. Univariable analyses and multivariable logistic regression models were performed. From 8/2016 to 12/2018, 208 3DRAs were performed in 195 CCCs; median age 7 years (2, 16), weight 23 kg (12, 57). The majority of 3DRAs were performed in patients with biventricular physiology (N = 137, 66%) and in pulsatile sites (N = 144, 69%). HQ 3DRA (N = 182, 88%) was associated with greater total injection volume [2.20 mL/kg (1.44, 3.29) vs. 1.62 mL/kg (1.10, 1.98), p = 0.005] and more dilute contrast solution [60% (50, 100) vs. 100% (60, 100), p = 0.007], but not with contrast volume administered (p = 0.2) on univariable analysis. On multivariable logistic regression, HQ 3DRA was significantly associated with patient weight [OR 0.97 (95% CI (0.94, 0.99), p = 0.018], total injection volume [OR 1.04 (95% CI 1.01, 1.07) p = 0.011], and percent contrast solution [OR 0.97 (95% CI 0.95, 1.00), p = 0.022]. These data resulted in creation of scatter plots and a novel 3DRA Nomogram for estimating the probability of HQ 3DRA. This is the first study to create evidence-based contrast dose guides and nomogram for 3DRA in CCC. HQ 3DRA was associated with lower weight, higher total injection volumes, and more dilute contrast solution.
Collapse
Affiliation(s)
- Arash Salavitabar
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Brian A Boe
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | | | - Andrew Harrison
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Jason Swinning
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Kristine Baptista
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Mariah Eisner
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, OH, USA
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Aimee K Armstrong
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| |
Collapse
|
4
|
Avesani M, Kang SL, Jalal Z, Thambo JB, Iriart X. Renaissance of Cardiac Imaging to Assist Percutaneous Interventions in Congenital Heart Diseases:The Role of Three-Dimensional Echocardiography and Multimodality Imaging. Front Pediatr 2022; 10:894472. [PMID: 35664875 PMCID: PMC9160663 DOI: 10.3389/fped.2022.894472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
Percutaneous interventions have completely refashioned the management of children with congenital heart diseases (CHD) and the use of non-invasive imaging has become the gold standard to plan and guide these procedures in the modern era. We are now facing a dual challenge to improve the standard of care in low-risk patients, and to shift our strategies from the classic open chest surgery to imaging-guided percutaneous interventions in high-risk patients. Such rapid evolution of ultrasound technologies over the last 20 years have permitted the integration of transthoracic, transesophageal and intracardiac echocardiography into the interventional workflow to improve image guidance and reduce radiation burden from fluoroscopy and angiography. Specifically, miniaturization of transesophageal probe and advances in three-dimensional (3D) imaging techniques have enabled real-time 3D image guidance during complex interventional procedure, In addition, multimodality and fusion imaging techniques harness the strengths of different modalities to enhance understanding of anatomical and spatial relationship between different structures, improving communication and coordination between interventionalists and imaging specialists. In this review, we aim to provide an overview of 3D imaging modalities and multimodal fusion in procedural planning and live guidance of percutaneous interventions. At the present times, 3D imaging can no longer be considered a luxury but a routine clinical tool to improve procedural success and patient outcomes.
Collapse
Affiliation(s)
- Martina Avesani
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France
| | - Sok-Leng Kang
- Department of Pediatric Cardiology, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Zakaria Jalal
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France.,Institut Hospitalo-Universitaire (IHU) Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, Pessac, France
| | - Jean-Benoit Thambo
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France.,Institut Hospitalo-Universitaire (IHU) Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, Pessac, France
| | - Xavier Iriart
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France.,Institut Hospitalo-Universitaire (IHU) Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, Pessac, France
| |
Collapse
|
5
|
Use of rotational angiography in congenital cardiac catheterisations to generate three-dimensional-printed models. Cardiol Young 2021; 31:1407-1411. [PMID: 33597057 DOI: 10.1017/s1047951121000275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Three-dimensional printing is increasingly utilised for congenital heart defect procedural planning. CT or MR datasets are typically used for printing, but similar datasets can be obtained from three-dimensional rotational angiography. We sought to assess the feasibility and accuracy of printing three-dimensional models of CHD from rotational angiography datasets. METHODS Retrospective review of CHD catheterisations using rotational angiography was performed, and patient and procedural details were collected. Imaging data from rotational angiography were segmented, cleaned, and printed with polylactic acid on a Dremel® 3D Idea Builder (Dremel, Mount Prospect, IL, USA). Printing time and materials' costs were captured. CT scans of printed models were compared objectively to the original virtual models. Two independent, non-interventional paediatric cardiologists provided subjective ratings of the quality and accuracy of the printed models. RESULTS Rotational angiography data from 15 catheterisations on vascular structures were printed. Median print time was 3.83 hours, and material costs were $2.84. The CT scans of the printed models highly matched with the original digital models (root mean square for Hausdorff distance 0.013 ± 0.003 mesh units). Independent reviewers correctly described 80 and 87% of the models (p = 0.334) and reported high quality and accuracy (5 versus 5, p = NS; κ = 0.615). CONCLUSION Imaging data from rotational angiography can be converted into accurate three-dimensional-printed models of CHD. The cost of printing the models was negligible, but the print time was prohibitive for real-time use. As the speed of three-dimensional printing technology increases, novel future applications may allow for printing patient-specific devices based on rotational angiography datasets.
Collapse
|
6
|
Bruckheimer E, Goreczny S. Advanced imaging techniques to assist transcatheter congenital heart defects therapies. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Söder S, Wällisch W, Dittrich S, Cesnjevar R, Pfammatter JP, Glöckler M. Three-Dimensional Rotational Angiography during Catheterization of Congenital Heart Disease - A ten Years' experience at a single center. Sci Rep 2020; 10:6973. [PMID: 32332807 PMCID: PMC7181762 DOI: 10.1038/s41598-020-63903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
This paper aims to assess the usability and advantages of three-dimensional rotational angiography (3DRA) in patients with congenital heart disease (CHD) and its application in the cath lab. Up to now, its use in CHD is not widespread or standardized. We analyzed all patients with CHD who underwent a 3DRA at our facility between January 2010 and May 2019. The 3DRAs were evaluated for radiation exposure, contrast dye consumption, diagnostic utility and image quality. We performed 872 3DRAs. 3DRA was used in 67.1% of the cases for interventional procedures and in 32.9% for diagnostic purposes. Two different acquisition programs were applied. The median dose-area product (DAP) for all 872 rotations was 54.1 µGym2 (21.7–147.5 µGym2) and 1.6 ml/kg (0.9–2.07 ml/kg) of contrast dye was used. Diagnostic utility of the generated 3D-model was rated superior to the native 3D angiography in 94% (819/872). 3DRA is an excellent and save diagnostic and interventional tool. However, 3DRA has not become a standard imaging procedure in pediatric cardiology up to now. Effort and advantage seems to be unbalanced, but new less invasive techniques may upgrade this method in future.
Collapse
Affiliation(s)
- Stefanie Söder
- Department of Pediatric Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Wällisch
- Department of Pediatric Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Dittrich
- Department of Pediatric Cardiology, University Hospital Erlangen, Erlangen, Germany
| | - Robert Cesnjevar
- Department of Congenital Heart Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Jean-Pierre Pfammatter
- Department of Cardiology, Pediatric Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Glöckler
- Department of Pediatric Cardiology, University Hospital Erlangen, Erlangen, Germany. .,Department of Cardiology, Pediatric Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Giugno L, Faccini A, Carminati M. Percutaneous Pulmonary Valve Implantation. Korean Circ J 2020; 50:302-316. [PMID: 32157831 PMCID: PMC7067602 DOI: 10.4070/kcj.2019.0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 01/09/2023] Open
Abstract
Percutaneous pulmonary valve implantation (PPVI) is recognized as a feasible and low risk alternative to surgery to treat dysfunctional right ventricular outflow tract (RVOT) in usually pluri-operated patients. Evolving technology allowed to develop different kind of prosthesis and to go from an initial treatment exclusively of stenotic conduit to an actual approach extended also to wide native RVOT. The Melody transcatheter pulmonary valve (TPV) and the Edwards Sapien valve are nowadays the most commonly implanted prostheses. However, other devices have been developed to treat large RVOT (i.e., the Venus p-valve, the Medtronic Harmony TPV, the Alterra Adaptive Prestent, and the Pulsta valve). Indications for PPVI are the same as for surgical interventions on pulmonary valve, with limits related to the maximum diameter of the available percutaneous prosthesis. Therefore, an accurate preoperative evaluation is of paramount importance to select patients who could benefit from this procedure. The overall periprocedural mortality incidence is around 1.4%, while freedom from RVOT reintervention ranges from 100% at 4 months to 70% at 70 months, according to the different published studies.
Collapse
Affiliation(s)
- Luca Giugno
- Department of Pediatric and Adult Congenital Cardiology and Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alessia Faccini
- Department of Pediatric and Adult Congenital Cardiology and Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Mario Carminati
- Department of Pediatric and Adult Congenital Cardiology and Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
| |
Collapse
|
9
|
Abstract
The history of congenital interventional cardiology has seen numerous groundbreaking innovations typically related to the introduction of a new device or a novel treatment technique. Similarly, imaging of cardiac defects has changed dramatically over the past decades, although some of the advancements have seemed to omit the catheterisation laboratories. Rotational angiography, one of the imaging techniques for guidance of cardiac catheterisation currently referred to as "advanced", in fact was described already in 1960s.1 More recently its improved version, including three-dimensional reconstruction (3DRA), became a valuable intra-procedural imaging tool in interventional cardiology and neuroradiology.2 Dr Evan Zahn was one of the pioneers of 3DRA in the field of congenital cardiology, setting an example for many to follow. With his innovative publication and subsequent lecture at 2011 Pediatric and Adult Interventional Cardiac Symposium (PICS-AICS) on "The Emerging Use of 3-Dimensional Rotational Angiography in Congenital Heart Disease" he motivated many to explore benefits of this modality to strive for improved procedural outcomes and reduced patients' burden of cardiac catheterisation3. I was one of those to take Dr Zahn's thoughts and implement them into routine workflow.4-6 However, almost a decade after Dr Zahn shared his important work, despite tremendous efforts by teams from Utrecht, (Netherlands) and Columbus (Ohio, United States of America) to popularise 3D imaging in catheterisation laboratory during dedicated meetings, two-dimensional (2D) angiography does not seem to be threatened in many, otherwise-progressive, laboratories. During the recent 30th Japanese Pediatric Interventional Cardiology (JPIC) meeting I had the opportunity to ask Dr Zahn why giving up knowledge is almost never a good idea, what is technology's natural order of things, and why the technology has to be more than just exciting, pretty, and new.
Collapse
|
10
|
Pros, cons and future perspectives - three questions on three dimensional guidance for cardiac catheterization in congenital heart disease. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2019; 15:263-273. [PMID: 31592250 PMCID: PMC6777176 DOI: 10.5114/aic.2019.87688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/11/2019] [Indexed: 02/01/2023] Open
Abstract
Step changes in angiographic imaging are not commonplace. Since the move from analogue to digital and flat detector plates, two-dimensional imaging technology has certainly evolved but not jumped forward. Of all the routine imaging techniques used in cardiology, angiography has been the last modality to embrace the third dimension. Although the development of rotational angiography was initially for the benefit of neuroimaging and fusion of cross sectional datasets was aimed at the treatment of descending aortic pathology, interventional physicians in congenital and structural cardiology have immersed themselves in this technology over the last 10 years. Like many disruptive technologies, its introduction has divided opinion. We aimed to explore the mindset of those in the field of interventional cardiology who are driving imaging forward. These structured interviews recorded during the 21st Pediatric and Adult Interventional Cardiac Symposium illustrate the challenges and sticking points as well as giving an insight into the direction of travel for three-dimensional imaging and fusion techniques. Covering a wide range of career development, seniority and experience, the interviewees in this article are probably responsible for the majority of the published literature on invasive three-dimensional imaging in congenital heart disease.
Collapse
|
11
|
Kang SL, Armstrong A, Krings G, Benson L. Three-dimensional rotational angiography in congenital heart disease: Present status and evolving future. CONGENIT HEART DIS 2019; 14:1046-1057. [PMID: 31483574 DOI: 10.1111/chd.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 01/17/2023]
Abstract
Three-dimensional rotational angiography (3D-RA) enables volumetric imaging through rotation of the C-arm of an angiographic system and real-time 3D reconstruction during cardiac catheterization procedures. In the field of congenital heart disease (CHD), 3D-RA has gained considerable traction, owing to its capability for enhanced visualization of spatial relationships in complex cardiac morphologies and real time image guidance in an intricate interventional environment. This review provides an overview of the current applications, strengths, and limitations of 3D-RA acquisition in the management of CHD and potential future directions. In addition, issues of dosimetry, radiation exposure, and optimization strategies will be reviewed. Further implementation of 3D-RA will be driven by patient benefits relative to existing 3D imaging capabilities and fusion techniques balanced against radiation exposure.
Collapse
Affiliation(s)
- Sok-Leng Kang
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| | - Aimee Armstrong
- The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gregor Krings
- Children's Heart Center, Utrecht University, Utrecht, Netherlands
| | - Lee Benson
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
12
|
van der Stelt F, Siegerink SN, Krings GJ, Molenschot MMC, Breur JMPJ. Three-Dimensional Rotational Angiography in Pediatric Patients with Congenital Heart Disease: A Literature Review. Pediatr Cardiol 2019; 40:257-264. [PMID: 30680421 PMCID: PMC6399168 DOI: 10.1007/s00246-019-02052-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/07/2019] [Indexed: 12/02/2022]
Abstract
Cardiac catheterization is a commonly used form of imaging and treatment in pediatric patients with congenital heart disease. Traditionally, two-dimensional conventional angiography was the method used, but since 2000 three-dimensional rotational angiography (3DRA) is increasingly used in the field of cardiology in both adult and pediatric patients. To investigate the use and applications of 3DRA in pediatric congenital cardiology, literature was systematically reviewed and 29 eligible articles were found. Those showed that 3DRA is already a greatly valued diagnostic and therapeutic technique in pediatric cardiology. However, the literature misses well-designed clinical, homogeneous, multicenter, prospective studies recording data in a standardized manner. These studies are necessary to ensure proper data analysis and to investigate the true advantages of 3DRA and how it exactly benefits the patients.
Collapse
Affiliation(s)
- Femke van der Stelt
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, the Netherlands
| | - Sebastiaan N. Siegerink
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, the Netherlands
| | - Gregor J. Krings
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, the Netherlands
| | - Mirella M. C. Molenschot
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, the Netherlands
| | - Johannes M. P. J. Breur
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, P.O. Box 85090, 3508 AB Utrecht, the Netherlands
| |
Collapse
|
13
|
Minderhoud SCS, van der Stelt F, Molenschot MMC, Koster MS, Krings GJ, Breur JMPJ. Dramatic Dose Reduction in Three-Dimensional Rotational Angiography After Implementation of a Simple Dose Reduction Protocol. Pediatr Cardiol 2018; 39:1635-1641. [PMID: 30076424 PMCID: PMC6244991 DOI: 10.1007/s00246-018-1943-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/28/2018] [Indexed: 11/04/2022]
Abstract
Previously, median effective dose (ED) of 1.6 mSv per three-dimensional rotational angiography (3DRA) has been reported. This study evaluated ED and image quality in 3DRA after implementation of a simple dose reduction protocol in pediatric catheterizations. Simple conversion factors between 3DRA ED and readily available parameters at the cathlab were determined. The dose reduction protocol consisted of frame reduction (60-30 frames/s (f/s)), active collimation of the X-ray beam, usage of a readily available low dosage program, and a pre-3DRA run check. EDs were calculated with Monte Carlo PCXMC 2.0. Three observers blindly assessed 3DRA image quality of the dose reduction and normal-dose cohort. Between October 2014 and October 2015, 84 patients (median age 4.3 years) underwent 100 3DRAs with a median ED of 0.54 mSv (0.12-2.2) using the dose reduction protocol. Median ED in the normal-dose cohort (17 3DRAs) was 1.6 mSv (1.2-4.9). Image quality in the dose reduction cohort remained excellent. Correlations between ED and dose area product (DAP) and ED and skin dose were found with a ρ of 0.82 and 0.83, respectively. ED exposure of the entire catheterization was reduced to 2.64 mSv. Introduction of a simple protocol led to 66% dose reduction in 3DRA and 79% in the entire catheterization. 3DRA image quality in this group remained excellent. In 3DRA ED correlates well with DAP and skin dose, parameters readily available at the cathlab.
Collapse
Affiliation(s)
- Savine C S Minderhoud
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
| | - Femke van der Stelt
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Mirella M C Molenschot
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Michel S Koster
- Radiation Protection and Consultancy, NRG-Consultancy and Services, Westerduinweg 3, 1755 LE, Petten, The Netherlands
| | - Gregor J Krings
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
14
|
Hascoët S, Hadeed K, Karsenty C, Dulac Y, Heitz F, Combes N, Chausseray G, Alacoque X, Auriol F, Amedro P, Fraisse A, Acar P. Feasibility, Safety and Accuracy of Echocardiography-Fluoroscopy Imaging Fusion During Percutaneous Atrial Septal Defect Closure in Children. J Am Soc Echocardiogr 2018; 31:1229-1237. [DOI: 10.1016/j.echo.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 10/28/2022]
|
15
|
Hadeed K, Hascoët S, Karsenty C, Ratsimandresy M, Dulac Y, Chausseray G, Alacoque X, Fraisse A, Acar P. Usefulness of echocardiographic-fluoroscopic fusion imaging in children with congenital heart disease. Arch Cardiovasc Dis 2018; 111:399-410. [DOI: 10.1016/j.acvd.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022]
|
16
|
A new approach of three-dimensional guidance in paediatric cath lab: segmented and tessellated heart models for cardiovascular interventions in CHD. Cardiol Young 2018; 28:661-667. [PMID: 29345604 DOI: 10.1017/s1047951117002840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Optimal imaging is essential for catheter-based interventions in CHD. The three-dimensional models in volume-rendering technique currently in use are not standardised. This paper investigates the feasibility and impact of novel three-dimensional guidance with segmented and tessellated three-dimensional heart models in catheterisation of CHD. In addition, a nearly radiation-free two- to three-dimensional registration and a biplane overlay were used.Methods and resultsWe analysed 60 consecutive cases in which segmented tessellated three-dimensional heart models were merged with live fluoroscopy images and aligned using the tracheal bifurcation as a fiducial mark. The models were generated from previous MRI or CT by dedicated medical software. We chose the stereo-lithography format, as this promises advantage over volume-rendering-technique models regarding visualisation. Prospects, potential benefits, and accuracy of the two- to three-dimensional registration were rated separately by two paediatric interventionalists on a five-point Likert scale. Fluoroscopy time, radiation dose, and contrast dye consumption were evaluated. Over a 10-month study period, two- to three-dimensional image fusion was applied to 60 out of 354 cases. Of the 60 catheterisations, 73.3% were performed in the context of interventions. The accuracy of two- to three-dimensional registration was sufficient in all cases. Three-dimensional guidance was rated superior to conventional biplane imaging in all 60 cases. We registered significantly smaller amounts of used contrast dye (p<0.01), lower levels of radiation dose (p<0.02), and less fluoroscopy time (p<0.01) during interventions concerning the aortic arch compared with a control group. CONCLUSIONS Two- to three-dimensional image fusion can be applied successfully in most catheter-based interventions of CHD. Meshes in stereo-lithography format are accurate and base for standardised and reproducible three-dimensional models.
Collapse
|
17
|
Abstract
The field of pediatric and adult congenital cardiac catheterization has evolved rapidly in recent years. This review will focus on some of the newer endovascular technological and management strategies now being applied in the pediatric interventional laboratory. Emerging imaging techniques such as three-dimensional (3D) rotational angiography, multi-modal image fusion, 3D printing, and holographic imaging have the potential to enhance our understanding of complex congenital heart lesions for diagnostic or interventional purposes. While fluoroscopy and standard angiography remain procedural cornerstones, improved equipment design has allowed for effective radiation exposure reduction strategies. Innovations in device design and implantation techniques have enabled the application of percutaneous therapies in a wider range of patients, especially those with prohibitive surgical risk. For example, there is growing experience in transcatheter duct occlusion in symptomatic low-weight or premature infants and stent implantation into the right ventricular outflow tract or arterial duct in cyanotic neonates with duct-dependent pulmonary circulations. The application of percutaneous pulmonary valve implantation has been extended to a broader patient population with dysfunctional ‘native’ right ventricular outflow tracts and has spurred the development of novel techniques and devices to solve associated anatomic challenges. Finally, hybrid strategies, combining cardiosurgical and interventional approaches, have enhanced our capabilities to provide care for those with the most complex of lesions while optimizing efficacy and safety.
Collapse
Affiliation(s)
- Sok-Leng Kang
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, The Labatt Family Heart Center, The University of Toronto School of Medicine, Toronto, Canada.,Department of Pediatric Cardiology, Bristol Royal Hospital for Children, Bristol, BS2 OJJ, UK
| | - Lee Benson
- Department of Pediatrics, Division of Cardiology, The Hospital for Sick Children, The Labatt Family Heart Center, The University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
18
|
Auyang PL, Chinnadurai P, MacGillivray T, Lumsden AB, Breinholt JP, Lin CH. Intraoperative cone beam computed tomography-guided endovascular recanalization of an interrupted aorta. J Vasc Surg 2018; 67:1292-1296. [PMID: 29463459 DOI: 10.1016/j.jvs.2017.11.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/18/2017] [Indexed: 11/30/2022]
Abstract
A 42-year-old man sustained a stroke secondary to malignant hypertension and was found to have complete aortic interruption. We report a case of real-time image-guided endovascular repair to highlight the value of preprocedural planning and intraprocedural cone beam computed tomography. Two-dimensional fluoroscopy enhanced with three-dimensional landmarks from cone beam computed tomography was used to direct a Nykanen radiofrequency wire (Baylis Medical, Montreal, Quebec, Canada) through the interruption, avoiding critical adjacent structures. A covered Cheatham-Platinum stent (NuMED, Inc, Hopkinton, NY) was deployed successfully, recanalizing the thoracic aorta. The pressure gradient normalized, and the patient was discharged on postoperative day 1. At 10-month follow-up, the patient was on an antihypertensive regimen of two minimum-dose drugs.
Collapse
Affiliation(s)
- Philip L Auyang
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Tex.
| | | | | | - Alan B Lumsden
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Tex
| | - John P Breinholt
- University of Texas Health Science Center, Houston, Tex; Division of Pediatric Cardiology, Children's Memorial Hermann Hospital, Houston, Tex
| | - C Huie Lin
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Tex
| |
Collapse
|
19
|
Starmans NLP, Krings GJ, Molenschot MMC, van der Stelt F, Breur JMPJ. Three-dimensional rotational angiography in children with an aortic coarctation. Neth Heart J 2016; 24:666-674. [PMID: 27659792 PMCID: PMC5065539 DOI: 10.1007/s12471-016-0899-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Children with aortic coarctations (CoA) are increasingly percutaneously treated. Good visualisation of the CoA is mandatory and can be obtained with three-dimensional rotational angiography (3DRA). This study aims to compare the diagnostic and therapeutic additional value of 3DRA with conventional biplane angiography (CA) in children with a CoA. Methods Patients undergoing percutaneous treatment of CoA with balloon angioplasty (BA) or stent between 2003 and 2015, were retrospectively reviewed on success rate, complications, radiation and technical settings. Diagnostic quality of CA and 3DRA and additional value of 3DRA were scored. Results In total, 134 patients underwent 183 catheterisations, 121 CA and 62 3DRA-guided. Median age was 0.52 years in the BA group and 11.19 years in the stent group. 3DRA was superior to CA in displaying the left ventricle (p = 0.008), ascending aorta (p < 0.001), aortic arch (p = 0.005) and coronary arteries (p < 0.001). In the BA group, 3DRA had a significantly higher success rate than CA (100.0 % versus 68.9 %, p = 0.016). All stent interventions were successful. Complication rates did not differ significantly. The median total dose area product did not significantly differ between CA and 3DRA in the BA (27.88 μGym2/kg versus 15.81 μGym2/kg, p = 0.275) or stent group (37.34 μGym2/kg versus 45.24 μGym2/kg, p = 0.090). 3DRA was of additional value in 96.8 % of the interventions. Conclusions 3DRA is superior to CA in diagnostic quality and not associated with increased radiation exposure. It provides high additional value in guiding CoA related interventions. Electronic supplementary material The online version of this article (doi: 10.1007/s12471-016-0899-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- N L P Starmans
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G J Krings
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M M C Molenschot
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F van der Stelt
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J M P J Breur
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|