1
|
Mejia E, Sweeney S, Zablah JE. Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography. 3D Print Med 2025; 11:4. [PMID: 39869281 PMCID: PMC11770958 DOI: 10.1186/s41205-024-00247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Despite advancements in imaging technologies, including CT scans and MRI, these modalities may still fail to capture intricate details of congenital heart defects accurately. Virtual 3D models have revolutionized the field of pediatric interventional cardiology by providing clinicians with tangible representations of complex anatomical structures. We examined the feasibility and accuracy of utilizing an automated, Artificial Intelligence (AI) driven, cloud-based platform for virtual 3D visualization of complex congenital heart disease obtained from 3D rotational angiography DICOM images. METHODS Five patients selected at random with 3DRA performed in the pediatric cardiac catheterization suite were selected. 3DRA's were performed following published institutional protocols and segmentations performed by primary operators. The 3DRA DICOM images were anonymized as per protocol and exported. Images when then processed by Axial3D Artificial Intelligence (AI) driven cloud-based platform for virtual segmentation. Two separate expert operators were selected to subjectively analyze the segmentations and compare them to the operator reconstructions for anatomic accuracy. RESULTS Comparing results with local reconstructions by expert operators, five different patient anatomies were analyzed, showcasing Axial3D's ability to produce highly detailed reconstructions with improved visual appeal, including color-coded segments for implanted materials like stents. The reconstructions exhibited superior segmentation of different intrathoracic structures when compared to local models, offering valuable insights for medical professionals and patients. CONCLUSIONS The use of the AI driven, cloud-based platform for 3D visualization of complex congenital heart lesions presents a promising advancement in pediatric interventional cardiology, facilitating enhanced patient care, procedural planning, and educational opportunities for trainees and patients alike.
Collapse
Affiliation(s)
- Ernesto Mejia
- Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA
| | - Shannon Sweeney
- Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA
| | - Jenny E Zablah
- Department of Pediatric Cardiology, The Heart Institute, University of Colorado, Children's Hospital Colorado, 13123 E 16th Ave B100, 80045, Aurora, CO, USA.
| |
Collapse
|
2
|
Salavitabar A, Zampi JD, Thomas C, Zanaboni D, Les A, Lowery R, Yu S, Whiteside W. Augmented Reality Visualization of 3D Rotational Angiography in Congenital Heart Disease: A Comparative Study to Standard Computer Visualization. Pediatr Cardiol 2024; 45:1759-1766. [PMID: 37725124 DOI: 10.1007/s00246-023-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
Augmented reality (AR) visualization of 3D rotational angiography (3DRA) provides 3D representations of cardiac structures with full visualization of the procedural environment. The purpose of this study was to evaluate the feasibility of converting 3DRAs of congenital heart disease patients to AR models, highlight the workflow for 3DRA optimization for AR visualization, and assess physicians' perceptions of their use. This single-center study prospectively evaluated 30 retrospectively-acquired 3DRAs that were converted to AR, compared to Computer Models (CM). Median patient age 6.5 years (0.24-38.8) and weight 20.6 kg (3.4-107.0). AR and CM quality were graded highly. RV pacing was associated with higher quality of both model types (p = 0.02). Visualization and identification of structures were graded as "very easy" in 81.1% (n = 73) and 67.8% (n = 61) of AR and CM, respectively. Fifty-nine (66%) grades 'Agreed' or 'Strongly Agreed' that AR models provided superior appreciation of 3D relationships; AR was found to be least beneficial in visualization of aortic arch obstruction. AR models were thought to be helpful in identifying pathology and assisting in interventional planning in 85 assessments (94.4%). There was significant potential seen in the opportunity for patient/family counseling and trainee/staff education with AR models. It is feasible to convert 3D models of 3DRAs into AR models, which are of similar image quality as compared to CM. AR models provided additional benefits to visualization of 3D relationships in most anatomies. Future directions include integration of interventional simulation, peri-procedural counseling of patients and families, and education of trainees and staff with AR models.
Collapse
Affiliation(s)
- Arash Salavitabar
- Cardiac Catheterization & Interventional Therapies, The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Jeffrey D Zampi
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Courtney Thomas
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Dominic Zanaboni
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Andrea Les
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Ray Lowery
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Sunkyung Yu
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Wendy Whiteside
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Ryan JR, Ghosh R, Sturgeon G, Ali A, Arribas E, Braden E, Chadalavada S, Chepelev L, Decker S, Huang YH, Ionita C, Lee J, Liacouras P, Parthasarathy J, Ravi P, Sandelier M, Sommer K, Wake N, Rybicki F, Ballard D. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: pediatric congenital heart disease conditions. 3D Print Med 2024; 10:3. [PMID: 38282094 PMCID: PMC10823658 DOI: 10.1186/s41205-023-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The use of medical 3D printing (focusing on anatomical modeling) has continued to grow since the Radiological Society of North America's (RSNA) 3D Printing Special Interest Group (3DPSIG) released its initial guideline and appropriateness rating document in 2018. The 3DPSIG formed a focused writing group to provide updated appropriateness ratings for 3D printing anatomical models across a variety of congenital heart disease. Evidence-based- (where available) and expert-consensus-driven appropriateness ratings are provided for twenty-eight congenital heart lesion categories. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with pediatric congenital heart disease indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. RESULTS Evidence-based recommendations for when 3D printing is appropriate are provided for pediatric congenital heart lesions. Recommendations are provided in accordance with strength of evidence of publications corresponding to each cardiac clinical scenario combined with expert opinion from members of the 3DPSIG. CONCLUSIONS This consensus appropriateness ratings document, created by the members of the RSNA 3DPSIG, provides a reference for clinical standards of 3D printing for pediatric congenital heart disease clinical scenarios.
Collapse
Affiliation(s)
- Justin R Ryan
- Webster Foundation 3D Innovations Lab, Rady Children's Hospital-San Diego, San Diego, CA, USA.
- Department of Neurological Surgery, UC San Diego Health, La Jolla, CA, USA.
| | - Reena Ghosh
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Greg Sturgeon
- Duke Children's Pediatric & Congenital Heart Center, Durham, NC, USA
| | - Arafat Ali
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elsa Arribas
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Braden
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Seetharam Chadalavada
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leonid Chepelev
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Summer Decker
- Department of Radiology, University of South Florida Morsani College of Medicine, Tampa, USA
- Tampa General Hospital, Tampa, FL, USA
| | - Yu-Hui Huang
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Ciprian Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Joonhyuk Lee
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter Liacouras
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Prashanth Ravi
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Sandelier
- Department of Radiology - Advanced Reality Lab, James A. Haley VA Hospital, Tampa, FL, USA
| | | | - Nicole Wake
- Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene, Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Rybicki
- Department of Radiology, University of Arizona, Phoenix, AZ, USA
| | - David Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
4
|
Feasibility of intraprocedural augmented reality visualisation of 3D rotational angiography in congenital cardiac catheterisation. Cardiol Young 2023; 33:476-478. [PMID: 35815564 DOI: 10.1017/s1047951122002153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three-dimensional rotational angiography has become a mainstay of congenital cardiac catheterisation. Augmented reality is an exciting and emerging technology that allows for interactive visualisation of 3D holographic images in the user's environment. This case series reports on the feasibility of intraprocedural augmented reality visualisation of 3D rotational angiography in five patients with CHD.
Collapse
|
5
|
Sun Z, Wong YH, Yeong CH. Patient-Specific 3D-Printed Low-Cost Models in Medical Education and Clinical Practice. MICROMACHINES 2023; 14:464. [PMID: 36838164 PMCID: PMC9959835 DOI: 10.3390/mi14020464] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
3D printing has been increasingly used for medical applications with studies reporting its value, ranging from medical education to pre-surgical planning and simulation, assisting doctor-patient communication or communication with clinicians, and the development of optimal computed tomography (CT) imaging protocols. This article presents our experience of utilising a 3D-printing facility to print a range of patient-specific low-cost models for medical applications. These models include personalized models in cardiovascular disease (from congenital heart disease to aortic aneurysm, aortic dissection and coronary artery disease) and tumours (lung cancer, pancreatic cancer and biliary disease) based on CT data. Furthermore, we designed and developed novel 3D-printed models, including a 3D-printed breast model for the simulation of breast cancer magnetic resonance imaging (MRI), and calcified coronary plaques for the simulation of extensive calcifications in the coronary arteries. Most of these 3D-printed models were scanned with CT (except for the breast model which was scanned using MRI) for investigation of their educational and clinical value, with promising results achieved. The models were confirmed to be highly accurate in replicating both anatomy and pathology in different body regions with affordable costs. Our experience of producing low-cost and affordable 3D-printed models highlights the feasibility of utilizing 3D-printing technology in medical education and clinical practice.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth 6845, Australia
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Yin How Wong
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Chai Hong Yeong
- School of Medicine and Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
6
|
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020319. [PMID: 36832448 PMCID: PMC9955978 DOI: 10.3390/children10020319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Three-dimensional (3D) printing technology has become increasingly used in the medical field, with reports demonstrating its superior advantages in both educational and clinical value when compared with standard image visualizations or current diagnostic approaches. Patient-specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D flat screens. Additionally, the added value of using 3D-printed models is especially apparent in congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for medical students or graduates, clinical applications such as pre-operative planning and simulation of congenital heart surgical procedures, and communication between physicians and patients/parents of patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives on future research directions for the application of 3D printing technology into pediatric cardiology practice are highlighted.
Collapse
|
7
|
Salavitabar A, Boe BA, Berman DP, Harrison A, Swinning J, Baptista K, Eisner M, Bai S, Armstrong AK. Optimizing 3D Rotational Angiography for Congenital Cardiac Catheterization. Pediatr Cardiol 2023; 44:132-140. [PMID: 36029321 DOI: 10.1007/s00246-022-02994-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
The aim of the study was to determine the variables associated with high-quality (HQ) versus low-quality (LQ) three-dimensional rotational angiography (3DRA) and create guides for optimization of approach to 3DRA in congenital cardiac catheterization (CCC). CCC has adopted 3DRA as a mainstay, but there has not been systematic analysis of approach to and factors associated with HQ 3DRA. This was a single-center, retrospective study of 3DRAs using Canon Infinix-I platform. Reconstructions were graded by 3 interventionalists. Quality was dichotomized into HQ and LQ. Univariable analyses and multivariable logistic regression models were performed. From 8/2016 to 12/2018, 208 3DRAs were performed in 195 CCCs; median age 7 years (2, 16), weight 23 kg (12, 57). The majority of 3DRAs were performed in patients with biventricular physiology (N = 137, 66%) and in pulsatile sites (N = 144, 69%). HQ 3DRA (N = 182, 88%) was associated with greater total injection volume [2.20 mL/kg (1.44, 3.29) vs. 1.62 mL/kg (1.10, 1.98), p = 0.005] and more dilute contrast solution [60% (50, 100) vs. 100% (60, 100), p = 0.007], but not with contrast volume administered (p = 0.2) on univariable analysis. On multivariable logistic regression, HQ 3DRA was significantly associated with patient weight [OR 0.97 (95% CI (0.94, 0.99), p = 0.018], total injection volume [OR 1.04 (95% CI 1.01, 1.07) p = 0.011], and percent contrast solution [OR 0.97 (95% CI 0.95, 1.00), p = 0.022]. These data resulted in creation of scatter plots and a novel 3DRA Nomogram for estimating the probability of HQ 3DRA. This is the first study to create evidence-based contrast dose guides and nomogram for 3DRA in CCC. HQ 3DRA was associated with lower weight, higher total injection volumes, and more dilute contrast solution.
Collapse
Affiliation(s)
- Arash Salavitabar
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Brian A Boe
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | | | - Andrew Harrison
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Jason Swinning
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Kristine Baptista
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Mariah Eisner
- Biostatistics Resource at Nationwide Children's Hospital, Columbus, OH, USA
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Shasha Bai
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Aimee K Armstrong
- Nationwide Children's Hospital, The Heart Center, 700 Children's Drive, Columbus, OH, 43205, USA
| |
Collapse
|
8
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
9
|
Illi J, Bernhard B, Nguyen C, Pilgrim T, Praz F, Gloeckler M, Windecker S, Haeberlin A, Gräni C. Translating Imaging Into 3D Printed Cardiovascular Phantoms. JACC Basic Transl Sci 2022; 7:1050-1062. [PMID: 36337920 PMCID: PMC9626905 DOI: 10.1016/j.jacbts.2022.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
3D printed patient specific phantoms can visualize complex cardiovascular anatomy Common imaging modalities for 3D printing are CCT and CMR Material jetting/PolyJet and stereolithography are widely used printing techniques Standardized validation is warranted to compare different 3D printing technologies
Translation of imaging into 3-dimensional (3D) printed patient-specific phantoms (3DPSPs) can help visualize complex cardiovascular anatomy and enable tailoring of therapy. The aim of this paper is to review the entire process of phantom production, including imaging, materials, 3D printing technologies, and the validation of 3DPSPs. A systematic review of published research was conducted using Embase and MEDLINE, including studies that investigated 3DPSPs in cardiovascular medicine. Among 2,534 screened papers, 212 fulfilled inclusion criteria and described 3DPSPs as a valuable adjunct for planning and guiding interventions (n = 108 [51%]), simulation of physiological or pathological conditions (n = 19 [9%]), teaching of health care professionals (n = 23 [11%]), patient education (n = 3 [1.4%]), outcome prediction (n = 6 [2.8%]), or other purposes (n = 53 [25%]). The most common imaging modalities to enable 3D printing were cardiac computed tomography (n = 131 [61.8%]) and cardiac magnetic resonance (n = 26 [12.3%]). The printing process was conducted mostly by material jetting (n = 54 [25.5%]) or stereolithography (n = 43 [20.3%]). The 10 largest studies that evaluated the geometric accuracy of 3DPSPs described a mean bias <±1 mm; however, the validation process was very heterogeneous among the studies. Three-dimensional printed patient-specific phantoms are highly accurate, used for teaching, and applied to guide cardiovascular therapy. Systematic comparison of imaging and printing modalities following a standardized validation process is warranted to allow conclusions on the optimal production process of 3DPSPs in the field of cardiovascular medicine.
Collapse
|
10
|
Zablah JE, Rodriguez SA, Jacobson N, Morgan GJ. Rapid prototyping airway and vascular models from 3D rotational angiography: Beans to cup 3D printing. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
van de Woestijne PC, Bakhuis W, Sadeghi AH, Peek JJ, Taverne YJ, Bogers AJ. 3D Virtual Reality Imaging of Major Aortopulmonary Collateral Arteries: A Novel Diagnostic Modality. World J Pediatr Congenit Heart Surg 2021; 12:765-772. [PMID: 34812684 PMCID: PMC8637380 DOI: 10.1177/21501351211045064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Major aortopulmonary collateral arteries (MAPCAs), as seen in patients with pulmonary atresia, are arteries that supply blood from the aorta to the lungs and often require surgical intervention. To achieve complete repair in the least number of interventions, optimal imaging of the pulmonary arterial anatomy and MAPCAs is critical. 3D virtual reality (3D-VR) is a promising and upcoming new technology that could potentially ameliorate current imaging shortcomings. METHODS A retrospective, proof-of-concept study was performed of all operated patients with pulmonary atresia and MAPCAs at our center between 2010 and 2020 with a preoperative computed tomography (CT) scan. CT images were reviewed by two congenital cardiac surgeons in 3D-VR to determine additional value of VR for MAPCA imaging compared to conventional CT and for preoperative planning of MAPCA repair. RESULTS 3D-VR visualizations were reconstructed from CT scans of seven newborns where the enhanced topographic anatomy resulted in improved visualization of MAPCA. In addition, surgical planning was improved since new observations or different preoperative plans were apparent in 4 out of 7 cases. After the initial setup, VR software and hardware was reported to be easy and intuitive to use. CONCLUSIONS This study showed technical feasibility of 3D-VR reconstruction of children with immersive visualization of topographic anatomy in an easy-to-use format leading to an improved surgical planning of MAPCA surgery. Future prospective studies are required to investigate the clinical benefits in larger populations.
Collapse
Affiliation(s)
| | - Wouter Bakhuis
- Thoraxcenter, Erasmus University Medical
Center, Rotterdam, the Netherlands
| | - Amir H. Sadeghi
- Thoraxcenter, Erasmus University Medical
Center, Rotterdam, the Netherlands
| | - Jette J. Peek
- Thoraxcenter, Erasmus University Medical
Center, Rotterdam, the Netherlands
| | | | - Ad J.J.C. Bogers
- Thoraxcenter, Erasmus University Medical
Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Micheli L, Durante M, Lucarini E, Sgambellone S, Lucarini L, Di Cesare Mannelli L, Ghelardini C, Masini E. The Histamine H 4 Receptor Participates in the Anti-Neuropathic Effect of the Adenosine A 3 Receptor Agonist IB-MECA: Role of CD4 + T Cells. Biomolecules 2021; 11:biom11101447. [PMID: 34680083 PMCID: PMC8533073 DOI: 10.3390/biom11101447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
A3 adenosine receptor (A3AR) agonists have emerged as potent relievers of neuropathic pain by a T cell-mediated production of IL-10. The H4 histamine receptor (H4R), also implicated in pain modulation, is expressed on T cells playing a preeminent role in its activation and release of IL-10. To improve the therapeutic opportunities, this study aimed to verify the hypothesis of a possible cross-talk between A3AR and H4R in the resolution of neuropathic pain. In the mouse model of Chronic Constriction Injury (CCI), the acute intraperitoneal co-administration of the A3AR agonist IB-MECA (0.5 mg/kg) and the H4R agonist VUF 8430 (10 mg/kg), were additive in counteracting mechano-allodynia increasing IL-10 plasma levels. In H4R−/− mice, IB-MECA activity was reduced, lower pain relief and lower modulation of plasma IL-1β, TNF-α, IL-6 and IL-10 were shown. The complete anti-allodynia effect of IB-MECA in H4R−/− mice was restored after intravenous administration of CD4+ T cells obtained from naïve wild type mice. In conclusion, a role of the histaminergic system in the mechanism of A3AR-mediated neuropathic pain relief was suggested highlighting the driving force evoked by CD4+ T cells throughout IL-10 up-regulation.
Collapse
|
13
|
Use of rotational angiography in congenital cardiac catheterisations to generate three-dimensional-printed models. Cardiol Young 2021; 31:1407-1411. [PMID: 33597057 DOI: 10.1017/s1047951121000275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Three-dimensional printing is increasingly utilised for congenital heart defect procedural planning. CT or MR datasets are typically used for printing, but similar datasets can be obtained from three-dimensional rotational angiography. We sought to assess the feasibility and accuracy of printing three-dimensional models of CHD from rotational angiography datasets. METHODS Retrospective review of CHD catheterisations using rotational angiography was performed, and patient and procedural details were collected. Imaging data from rotational angiography were segmented, cleaned, and printed with polylactic acid on a Dremel® 3D Idea Builder (Dremel, Mount Prospect, IL, USA). Printing time and materials' costs were captured. CT scans of printed models were compared objectively to the original virtual models. Two independent, non-interventional paediatric cardiologists provided subjective ratings of the quality and accuracy of the printed models. RESULTS Rotational angiography data from 15 catheterisations on vascular structures were printed. Median print time was 3.83 hours, and material costs were $2.84. The CT scans of the printed models highly matched with the original digital models (root mean square for Hausdorff distance 0.013 ± 0.003 mesh units). Independent reviewers correctly described 80 and 87% of the models (p = 0.334) and reported high quality and accuracy (5 versus 5, p = NS; κ = 0.615). CONCLUSION Imaging data from rotational angiography can be converted into accurate three-dimensional-printed models of CHD. The cost of printing the models was negligible, but the print time was prohibitive for real-time use. As the speed of three-dimensional printing technology increases, novel future applications may allow for printing patient-specific devices based on rotational angiography datasets.
Collapse
|
14
|
Cernica D, Benedek I, Polexa S, Tolescu C, Benedek T. 3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients. Life (Basel) 2021; 11:910. [PMID: 34575059 PMCID: PMC8468787 DOI: 10.3390/life11090910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing complexity of cardiovascular interventions requires advanced peri-procedural imaging and tailored treatment. Three-dimensional printing technology represents one of the most significant advances in the field of cardiac imaging, interventional cardiology or cardiovascular surgery. Patient-specific models may provide substantial information on intervention planning in complex cardiovascular diseases, and volumetric medical imaging from CT or MRI can be translated into patient-specific 3D models using advanced post-processing applications. 3D printing and additive manufacturing have a great variety of clinical applications targeting anatomy, implants and devices, assisting optimal interventional treatment and post-interventional evaluation. Although the 3D printing technology still lacks scientific evidence, its benefits have been shown in structural heart diseases as well as for treatment of complex arrhythmias and corrective surgery interventions. Recent development has enabled transformation of conventional 3D printing into complex 3D functional living tissues contributing to regenerative medicine through engineered bionic materials such hydrogels, cell suspensions or matrix components. This review aims to present the most recent clinical applications of 3D printing in cardiovascular medicine, highlighting also the potential for future development of this revolutionary technology in the medical field.
Collapse
Affiliation(s)
- Daniel Cernica
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Imre Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Stefania Polexa
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Cosmin Tolescu
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Theodora Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| |
Collapse
|
15
|
Gharleghi R, Dessalles CA, Lal R, McCraith S, Sarathy K, Jepson N, Otton J, Barakat AI, Beier S. 3D Printing for Cardiovascular Applications: From End-to-End Processes to Emerging Developments. Ann Biomed Eng 2021; 49:1598-1618. [PMID: 34002286 PMCID: PMC8648709 DOI: 10.1007/s10439-021-02784-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
3D printing as a means of fabrication has seen increasing applications in medicine in the last decade, becoming invaluable for cardiovascular applications. This rapidly developing technology has had a significant impact on cardiovascular research, its clinical translation and education. It has expanded our understanding of the cardiovascular system resulting in better devices, tools and consequently improved patient outcomes. This review discusses the latest developments and future directions of generating medical replicas ('phantoms') for use in the cardiovascular field, detailing the end-to-end process from medical imaging to capture structures of interest, to production and use of 3D printed models. We provide comparisons of available imaging modalities and overview of segmentation and post-processing techniques to process images for printing, detailed exploration of latest 3D printing methods and materials, and a comprehensive, up-to-date review of milestone applications and their impact within the cardiovascular domain across research, clinical use and education. We then provide an in-depth exploration of future technologies and innovations around these methods, capturing opportunities and emerging directions across increasingly realistic representations, bioprinting and tissue engineering, and complementary virtual and mixed reality solutions. The next generation of 3D printing techniques allow patient-specific models that are increasingly realistic, replicating properties, anatomy and function.
Collapse
Affiliation(s)
- Ramtin Gharleghi
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Ronil Lal
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | - Sinead McCraith
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Nigel Jepson
- Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School of Medicine, UNSW, Sydney, Australia
| | - James Otton
- Department of Cardiology, Liverpool Hospital, Sydney, Australia
| | | | - Susann Beier
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia.
| |
Collapse
|
16
|
Bruckheimer E, Goreczny S. Advanced imaging techniques to assist transcatheter congenital heart defects therapies. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Lee S, Squelch A, Sun Z. Quantitative Assessment of 3D Printed Model Accuracy in Delineating Congenital Heart Disease. Biomolecules 2021; 11:biom11020270. [PMID: 33673159 PMCID: PMC7917618 DOI: 10.3390/biom11020270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Three-dimensional (3D) printing is promising in medical applications, especially presurgical planning and the simulation of congenital heart disease (CHD). Thus, it is clinically important to generate highly accurate 3D-printed models in replicating cardiac anatomy and defects. The present study aimed to investigate the accuracy of the 3D-printed CHD model by comparing them with computed tomography (CT) images and standard tessellation language (STL) files. Methods: Three models were printed, comprising different CHD pathologies, including the tetralogy of Fallot (ToF), ventricular septal defect (VSD) and double-outlet right-ventricle (DORV). The ten anatomical locations were measured in each comparison. Pearson’s correlation coefficient, Bland–Altman analysis and intra-class correlation coefficient (ICC) determined the model accuracy. Results: All measurements with three printed models showed a strong correlation (r = 0.99) and excellent reliability (ICC = 0.97) when compared to original CT images, CT images of the 3D-printed models, STL files and 3D-printed CHD models. Conclusion: This study demonstrated the high accuracy of 3D-printed heart models with excellent correlation and reliability when compared to multiple source data. Further investigation into 3D printing in CHD should focus on the clinical value and the benefits to patients.
Collapse
Affiliation(s)
- Shenyuan Lee
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, GPO Box, U1987, Perth, WA 6845, Australia;
| | - Andrew Squelch
- Discipline of Exploration Geophysics, Western Australian School of Mines, Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia;
| | - Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, GPO Box, U1987, Perth, WA 6845, Australia;
- Correspondence: ; Tel.: +61-8-9266-7509; Fax: +61-8-9266-2377
| |
Collapse
|
18
|
Yoo SJ, Hussein N, Peel B, Coles J, van Arsdell GS, Honjo O, Haller C, Lam CZ, Seed M, Barron D. 3D Modeling and Printing in Congenital Heart Surgery: Entering the Stage of Maturation. Front Pediatr 2021; 9:621672. [PMID: 33614554 PMCID: PMC7892770 DOI: 10.3389/fped.2021.621672] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/05/2022] Open
Abstract
3D printing allows the most realistic perception of the surgical anatomy of congenital heart diseases without the requirement of physical devices such as a computer screen or virtual headset. It is useful for surgical decision making and simulation, hands-on surgical training (HOST) and cardiovascular morphology teaching. 3D-printed models allow easy understanding of surgical morphology and preoperative surgical simulation. The most common indications for its clinical use include complex forms of double outlet right ventricle and transposition of the great arteries, anomalous systemic and pulmonary venous connections, and heterotaxy. Its utility in congenital heart surgery is indisputable, although it is hard to "scientifically" prove the impact of its use in surgery because of many confounding factors that contribute to the surgical outcome. 3D-printed models are valuable resources for morphology teaching. Educational models can be produced for almost all different variations of congenital heart diseases, and replicated in any number. HOST using 3D-printed models enables efficient education of surgeons in-training. Implementation of the HOST courses in congenital heart surgical training programs is not an option but an absolute necessity. In conclusion, 3D printing is entering the stage of maturation in its use for congenital heart surgery. It is now time for imagers and surgeons to find how to effectively utilize 3D printing and how to improve the quality of the products for improved patient outcomes and impact of education and training.
Collapse
Affiliation(s)
- Shi Joon Yoo
- Department of Diagnostic Imaging, The University of Toronto, Toronto, ON, Canada
- Department of Paediatrics–Division of Cardiology, The University of Toronto, Toronto, ON, Canada
- Center for Image Guided Innovation and Therapeutic Intervention, The University of Toronto, Toronto, ON, Canada
| | - Nabil Hussein
- Center for Image Guided Innovation and Therapeutic Intervention, The University of Toronto, Toronto, ON, Canada
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Brandon Peel
- Center for Image Guided Innovation and Therapeutic Intervention, The University of Toronto, Toronto, ON, Canada
| | - John Coles
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Glen S. van Arsdell
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
- Department of Surgery, Mattel Children's Hospital at UCLA, Los Angeles, CA, United States
| | - Osami Honjo
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Christopher Z. Lam
- Department of Diagnostic Imaging, The University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Department of Diagnostic Imaging, The University of Toronto, Toronto, ON, Canada
- Department of Paediatrics–Division of Cardiology, The University of Toronto, Toronto, ON, Canada
| | - David Barron
- Department of Surgery-Division of Cardiovascular Surgery, Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol 2020; 21:133-145. [PMID: 31997589 PMCID: PMC6992436 DOI: 10.3348/kjr.2019.0625] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) imaging and image reconstruction play a prominent role in the diagnosis, treatment planning, and post-therapeutic monitoring of patients with congenital heart disease. More interactive and realistic medical experiences take advantage of advanced visualization techniques like augmented, mixed, and virtual reality. Further, 3D printing is now used in medicine. All these technologies improve the understanding of the complex morphologies of congenital heart disease. In this review article, we describe the technical advantages and disadvantages of various advanced visualization techniques and their medical applications in the field of congenital heart disease. In addition, unresolved issues and future perspectives of these evolving techniques are described.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Sang Joon Park
- Department of Radiology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Shi Joon Yoo
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Personalized Interventions: A Reality in the Next 20 Years or Pie in the Sky. Pediatr Cardiol 2020; 41:486-502. [PMID: 32198592 DOI: 10.1007/s00246-020-02303-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
There is no better representation of the need for personalization of care than the breadth and complexity of congenital heart disease. Advanced imaging modalities are now standard of care in the field, and the advancements being made to three-dimensional visualization technologies are growing as a means of pre-procedural preparation. Incorporating emerging modeling approaches, such as computational fluid dynamics, will push the limits of our ability to predict outcomes, and this information may be both obtained and utilized during a single procedure in the future. Artificial intelligence and customized devices may soon surface as realistic tools for the care of patients with congenital heart disease, as they are showing growing evidence of feasibility within other fields. This review illustrates the great strides that have been made and the persistent challenges that exist within the field of congenital interventional cardiology, a field which must continue to innovate and push the limits to achieve personalization of the interventions it provides.
Collapse
|
21
|
Lau IWW, Sun Z. Dimensional Accuracy and Clinical Value of 3D Printed Models in Congenital Heart Disease: A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:jcm8091483. [PMID: 31540421 PMCID: PMC6780783 DOI: 10.3390/jcm8091483] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this paper is to summarize and evaluate results from existing studies on accuracy and clinical value of three-dimensional printed heart models (3DPHM) for determining whether 3D printing can significantly improve on how the congenital heart disease (CHD) is managed in current clinical practice. Proquest, Google Scholar, Scopus, PubMed, and Medline were searched for relevant studies until April 2019. Two independent reviewers performed manual data extraction and assessed the risk of bias of the studies using the tools published on National Institutes of Health (NIH) website. The following data were extracted from the studies: author, year of publication, study design, imaging modality, segmentation software, utility of 3DPHM, CHD types, and dimensional accuracy. R software was used for the meta-analysis. Twenty-four articles met the inclusion criteria and were included in the systematic review. However, only 7 studies met the statistical requirements and were eligible for meta-analysis. Cochran's Q test demonstrated significant variation among the studies for both of the meta-analyses of accuracy of 3DPHM and the utility of 3DPHM in medical education. Analysis of all included studies reported the mean deviation between the 3DPHM and the medical images is not significant, implying that 3DPHM are highly accurate. As for the utility of the 3DPHM, it is reported in all relevant studies that the 3DPHM improve the learning experience and satisfaction among the users, and play a critical role in facilitating surgical planning of complex CHD cases. 3DPHM have the potential to enhance communication in medical practice, however their clinical value remains debatable. More studies are required to yield a more meaningful meta-analysis.
Collapse
Affiliation(s)
- Ivan Wen Wen Lau
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia.
| | - Zhonghua Sun
- Discipline of Medical Radiation Sciences, School of Molecular and Life Sciences, Curtin University, Perth 6845, Western Australia, Australia.
| |
Collapse
|
22
|
Kang SL, Armstrong A, Krings G, Benson L. Three-dimensional rotational angiography in congenital heart disease: Present status and evolving future. CONGENIT HEART DIS 2019; 14:1046-1057. [PMID: 31483574 DOI: 10.1111/chd.12838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 01/17/2023]
Abstract
Three-dimensional rotational angiography (3D-RA) enables volumetric imaging through rotation of the C-arm of an angiographic system and real-time 3D reconstruction during cardiac catheterization procedures. In the field of congenital heart disease (CHD), 3D-RA has gained considerable traction, owing to its capability for enhanced visualization of spatial relationships in complex cardiac morphologies and real time image guidance in an intricate interventional environment. This review provides an overview of the current applications, strengths, and limitations of 3D-RA acquisition in the management of CHD and potential future directions. In addition, issues of dosimetry, radiation exposure, and optimization strategies will be reviewed. Further implementation of 3D-RA will be driven by patient benefits relative to existing 3D imaging capabilities and fusion techniques balanced against radiation exposure.
Collapse
Affiliation(s)
- Sok-Leng Kang
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| | - Aimee Armstrong
- The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gregor Krings
- Children's Heart Center, Utrecht University, Utrecht, Netherlands
| | - Lee Benson
- Division of Cardiology, The Labatt Family Heart Center, The Hospital for Sick Children, The University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
23
|
Abstract
Advances in biomedical engineering have led to three-dimensional (3D)-printed models being used for a broad range of different applications. Teaching medical personnel, communicating with patients and relatives, planning complex heart surgery, or designing new techniques for repair of CHD via cardiac catheterisation are now options available using patient-specific 3D-printed models. The management of CHD can be challenging owing to the wide spectrum of morphological conditions and the differences between patients. Direct visualisation and manipulation of the patients' individual anatomy has opened new horizons in personalised treatment, providing the possibility of performing the whole procedure in vitro beforehand, thus anticipating complications and possible outcomes. In this review, we discuss the workflow to implement 3D printing in clinical practice, the imaging modalities used for anatomical segmentation, the applications of this emerging technique in patients with structural heart disease, and its limitations and future directions.
Collapse
|
24
|
Personalized Three-Dimensional Printed Models in Congenital Heart Disease. J Clin Med 2019; 8:jcm8040522. [PMID: 30995803 PMCID: PMC6517984 DOI: 10.3390/jcm8040522] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Patient-specific three-dimensional (3D) printed models have been increasingly used in cardiology and cardiac surgery, in particular, showing great value in the domain of congenital heart disease (CHD). CHD is characterized by complex cardiac anomalies with disease variations between individuals; thus, it is difficult to obtain comprehensive spatial conceptualization of the cardiac structures based on the current imaging visualizations. 3D printed models derived from patient's cardiac imaging data overcome this limitation by creating personalized 3D heart models, which not only improve spatial visualization, but also assist preoperative planning and simulation of cardiac procedures, serve as a useful tool in medical education and training, and improve doctor-patient communication. This review article provides an overall view of the clinical applications and usefulness of 3D printed models in CHD. Current limitations and future research directions of 3D printed heart models are highlighted.
Collapse
|
25
|
Farooqi KM, Cooper C, Chelliah A, Saeed O, Chai PJ, Jambawalikar SR, Lipson H, Bacha EA, Einstein AJ, Jorde UP. 3D Printing and Heart Failure: The Present and the Future. JACC-HEART FAILURE 2018; 7:132-142. [PMID: 30553901 DOI: 10.1016/j.jchf.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/05/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Advanced imaging modalities provide essential anatomic and spatial information in patients with complex heart disease. Two-dimensional imaging can be limited in the extent to which true 3-dimensional (3D) relationships are represented. The application of 3D printing technology has increased the creation of physical models that overcomes the limitations of a 2D screen. Many groups have reported the use of 3D printing for preprocedural planning in patients with different causes of heart failure. This paper reviews the innovative applications of this technique to provide patient-specific models to improve patient care.
Collapse
Affiliation(s)
- Kanwal M Farooqi
- Department of Pediatrics, Division of Cardiology, Columbia University Medical Center, New York, New York.
| | - Cathleen Cooper
- Department of Radiology, Columbia University Medical Center, and New York-Presbyterian Hospital, New York, New York
| | - Anjali Chelliah
- Department of Pediatrics, Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Omar Saeed
- Department of Internal Medicine, Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Paul J Chai
- Department of Surgery, Division of Pediatric Cardiothoracic Surgery, Columbia University Medical Center, New York, New York
| | - Sachin R Jambawalikar
- Department of Radiology, Columbia University Medical Center, and New York-Presbyterian Hospital, New York, New York
| | - Hod Lipson
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Emile A Bacha
- Department of Surgery, Division of Pediatric Cardiothoracic Surgery, Columbia University Medical Center, New York, New York
| | - Andrew J Einstein
- Department of Radiology, Columbia University Medical Center, and New York-Presbyterian Hospital, New York, New York; Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Ulrich P Jorde
- Department of Internal Medicine, Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|