1
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
2
|
Muneer R, Qazi REM, Fatima A, Ahmad W, Salim A, Dini L, Khan I. Wnt signaling pathway inhibitor promotes mesenchymal stem cells differentiation into cardiac progenitor cells in vitro and improves cardiomyopathy in vivo. World J Stem Cells 2023; 15:821-841. [PMID: 37700819 PMCID: PMC10494566 DOI: 10.4252/wjsc.v15.i8.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Cardiovascular diseases particularly myocardial infarction (MI) are the leading cause of mortality and morbidity around the globe. As cardiac tissue possesses very limited regeneration potential, therefore use of a potent small molecule, inhibitor Wnt production-4 (IWP-4) for stem cell differentiation into cardiomyocytes could be a promising approach for cardiac regeneration. Wnt pathway inhibitors may help stem cells in their fate determination towards cardiomyogenic lineage and provide better homing and survival of cells in vivo. Mesenchymal stem cells (MSCs) derived from the human umbilical cord have the potential to regenerate cardiac tissue, as they are easy to isolate and possess multilineage differentiation capability. IWP-4 may promote the differentiation of MSCs into the cardiac lineage. AIM To evaluate the cardiac differentiation ability of IWP-4 and its subsequent in vivo effects. METHODS Umbilical cord tissue of human origin was utilized to isolate the MSCs which were characterized by their morphology, immunophenotyping of surface markers specific to MSCs, as well as by tri-lineage differentiation capability. Cytotoxicity analysis was performed to identify the optimal concentration of IWP-4. MSCs were treated with 5 μM IWP-4 at two different time intervals. Differentiation of MSCs into cardiomyocytes was evaluated at DNA and protein levels. The MI rat model was developed. IWP-4 treated as well as untreated MSCs were implanted in the MI model, then the cardiac function was analyzed via echocardiography. MSCs were labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) dye for tracking, while the regeneration of infarcted myocardium was examined by histology and immunohistochemistry. RESULTS MSCs were isolated and characterized. Cytotoxicity analysis showed that IWP-4 was non-cytotoxic at 5 μM concentration. Cardiac specific gene and protein expression analyses exhibited more remarkable results in fourteen days treated group that was eventually selected for in vivo transplantation. Cardiac function was restored in the IWP-4 treated group in comparison to the MI group. Immunohistochemical analysis confirmed the homing of pre-differentiated MSCs that were labeled with DiI cell labeling dye. Histological analysis confirmed the significant reduction in fibrotic area, and improved left ventricular wall thickness in IWP-4 treated MSC group. CONCLUSION Treatment of MSCs with IWP-4 inhibits Wnt pathway and promotes cardiac differentiation. These pre-conditioned MSCs transplanted in vivo improved cardiac function by cell homing, survival, and differentiation at the infarcted region, increased left ventricular wall thickness, and reduced infarct size.
Collapse
Affiliation(s)
- Rabbia Muneer
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Abiha Fatima
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Waqas Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Luciana Dini
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, Rome 00185, Italy
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
3
|
Mirza A, Khan I, Qazi REM, Salim A, Husain M, Herzig JW. Role of Wnt/β-catenin pathway in cardiac lineage commitment of human umbilical cord mesenchymal stem cells by zebularine and 2'-deoxycytidine. Tissue Cell 2022; 77:101850. [PMID: 35679684 DOI: 10.1016/j.tice.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022]
Abstract
Wnt/β-catenin, a highly conserved signaling pathway, is involved in determining cell fate. During heart development, Wnt signaling controls specification, proliferation and differentiation of cardiac cells. This study is aimed to investigate the role of Wnt/β-catenin signaling in cardiac lineage commitment of human umbilical cord mesenchymal stem cells (hUCMSCs) after treatment with demethylating agents, zebularine and 2'-deoxycytidine (2-DC). hUCMSCs were treated with 20 µM zebularine or 2-DC for 24 h and cultured for 14 days. Control and treated MSCs were analyzed for cardiac lineage commitment at gene and protein levels. Significant upregulation of early and late cardiac markers, GATA4, Nkx2.5, cardiac myosin heavy chain (cMHC), α-actinin, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) was observed in treated MSCs as compared to the untreated control. We also analyzed gene expression of key Wnt/β-catenin signaling molecules in cultures of treated and untreated hUCMSCs at 24 h, and days 3, 7 and 14. The pattern of mRNA gene expression showed that Wnt/β-catenin signaling is regulated during cardiac lineage commitment of hUCMSCs in a time-dependent manner, with the pathway being activated early but inhibited later in cardiac development. Findings of this study can lead us to identify more specific and effective strategies for cardiac lineage commitment.
Collapse
Affiliation(s)
- Amber Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | | | | |
Collapse
|
4
|
Chaithra S, Agarwala S, Ramachandra NB. High-risk genes involved in common septal defects of congenital heart disease. Gene 2022; 840:146745. [PMID: 35863714 DOI: 10.1016/j.gene.2022.146745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/21/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
The septation defect is one of the main categories of congenital heart disease (CHD). They can affect the septation of the atria leading to atrial septal defect (ASD), septation of ventricles leading to ventricular septal defect (VSD), and formation of the central part of the heart leading to atrioventricular septal defect (AVSD). Disruption of critical genetic factors involved in the proper development of the heart structure leads to CHD manifestation. Because of this, to identify the high-risk genes involved in common septal defects, a comprehensive search of the literature with the help of databases and the WebGestalt analysis tool was performed. The high-risk genes identified in the analysis were checked in 16 Indian whole-exome sequenced samples, including 13 VSD and three Tetralogy of Fallot for in silico validation. This data revealed three variations in GATA4, i.e., c.C1223A at exon 6: c.C602A and c.C1220A at exon 7; and one variation in MYH6, i.e., c.G3883C at exon 28 in two VSD cases. This study supports previously published studies that suggested GATA4 and MYH6 as the high-risk genes responsible for septal defects. Thus, this study contributes to a better understanding of the genes involved in heart development by identifying the high-risk genes and interacting proteins in the pathway.
Collapse
Affiliation(s)
- S Chaithra
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Swati Agarwala
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - N B Ramachandra
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India.
| |
Collapse
|
5
|
Exploring the Mutational Landscape of Isolated Congenital Heart Defects: An Exome Sequencing Study Using Cardiac DNA. Genes (Basel) 2022; 13:genes13071214. [PMID: 35885997 PMCID: PMC9320903 DOI: 10.3390/genes13071214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital heart defects (CHD) are the most common congenital anomalies in liveborn children. In contrast to syndromic CHD (SCHD), the genetic basis of isolated CHD (ICHD) is complex, and the underlying pathogenic mechanisms appear intricate and are incompletely understood. Next to rare Mendelian conditions, somatic mosaicism or a complex multifactorial genetic architecture are assumed for most ICHD. We performed exome sequencing (ES) in 73 parent–offspring ICHD trios using proband DNA extracted from cardiac tissue. We identified six germline de novo variants and 625 germline rare inherited variants with ‘damaging’ in silico predictions in cardiac-relevant genes expressed in the developing human heart. There were no CHD-relevant somatic variants. Transmission disequilibrium testing (TDT) and association testing (AT) yielded no statistically significant results, except for the AT of missense variants in cilia genes. Somatic mutations are not a common cause of ICHD. Rare de novo and inherited protein-damaging variants may contribute to ICHD, possibly as part of an oligogenic or polygenic disease model. TDT and AT failed to provide informative results, likely due to the lack of power, but provided a framework for future studies in larger cohorts. Overall, the diagnostic value of ES on cardiac tissue is limited in individual ICHD cases.
Collapse
|
6
|
Chen H, Li T, Wu Y, Wang X, Wang M, Wang X, Fang X. Association between single-nucleotide polymorphisms of NKX2.5 and congenital heart disease in Chinese population: A meta-analysis. Open Life Sci 2022; 17:473-482. [PMID: 35647298 PMCID: PMC9102305 DOI: 10.1515/biol-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
NKX2.5 is a transcription factor that plays a key role in cardiovascular growth and development. Several independent studies have been previously conducted to investigate the association between the single-nucleotide polymorphism (SNP) 606G >C (rs3729753) in the coding region of NKX2.5 and congenital heart disease (CHD). However, the results of these studies have been inconsistent. Therefore, the present study aimed to reveal the relationship between NKX2.5 SNP 606G >C and the risk of CHD as possible in the Chinese population through meta-analysis. After retrieving related articles in PubMed, MEDLINE, EMBASE, Web of science, Cochrane, China National Knowledge Infrastructure, Wanfang DATA, and VIP database until August 2021, a total of eight studies were included in the present meta-analysis. The qualified research data were then merged into allele, dominant, recessive, heterozygous, homozygous, and additive models. Overall results of the current meta-analysis showed that 606G >C was not associated with CHD of the Chinese population in any model. In addition, subgroup analysis based on CHD type gave the same negative result. Results of sensitivity analysis showed that there was no significant correlation after the deletion of each study. Furthermore, it was noted that the results were negative and the heterogeneity was not significant. In conclusion, it was evident that NKX2-5 SNP 606G >C may not lead to the risk of CHD in Chinese population.
Collapse
Affiliation(s)
- Huan Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Tianjiao Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Yuqing Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Xi Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Mingyuan Wang
- Department of Pathophysiology, Xiangya Medical College, Central South University , Changsha , Hunan , China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University , Changsha , Hunan , China
| |
Collapse
|
7
|
Association of NFKB1, NKX2-5, GATA4 and RANKL Gene Polymorphisms with Sporadic Congenital Heart Disease in Greek Patients. Balkan J Med Genet 2021; 24:15-20. [PMID: 34447654 PMCID: PMC8366470 DOI: 10.2478/bjmg-2021-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is a group of structural defects of the heart and the great vessels, and one of the leading causes of death among infants and young adults. Several gene variants are involved in diverse mechanisms of cardiac and vessel development and could thus be considered candidate mutated genes for a congenital heart defect or a specific variant could predispose a person to CHD. In the present study, variants in four such genes are investigated for the first time in a group of young Greek CHD patients: the NFKB1 gene polymorphism (-94ins/ delATTG), rs28362491, NKX2-5 gene polymorphism rs2277923, GATA4 gene polymorphism rs11785481 and RANKL gene polymorphism rs4531631. A total of 43 CHD patients and 100 healthy adults were included in the study. The polymerase chain reaction-restriction fragment length polymorphism (PRC-RFLP) method was used to genotype the aforementioned polymorphisms of NFKB1, NKX2-5, GATA4 and RANKL. The association analysis identified that there was a protective association between CHD and the A allele of rs2277923 polymorphism (p = 0.004). The D allele of the rs28362491 polymorphism is also a likely risk factor for causing CHD (p = 0.006). The differences of the rs4531631 and rs11785481 variant contribution had no statistical significance between the groups (p >0.05). In conclusion, our results revealed that the rs28362491 and rs2277923 gene polymorphisms, but not the rs4531631 and rs11785481 polymorphisms, may contribute to CHD risk in a cohort of Greek CHD patients.
Collapse
|
8
|
Ashiq S, Ashiq K, Sabar MF. The role of NKX2-5 gene polymorphisms in congenital heart disease (CHD): a systematic review and meta-analysis. Egypt Heart J 2021; 73:72. [PMID: 34417931 PMCID: PMC8380205 DOI: 10.1186/s43044-021-00199-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/15/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gene NKX2-5 is a key transcription factor that plays an essential role in normal cardiac development. Although some recent studies have studied the role of polymorphisms in the NKX2-5 gene in congenital heart diseases (CHDs), the results were not consistent and remained uncertain. Therefore, we conduct a review of literature and investigate the association of genetic polymorphisms with CHDs. RESULTS We selected seventeen studies regarding the association of NKX2-5 gene rs2277923 polymorphism with CHDs. Overall, in all the tested genetic models, the 63A > G polymorphism was not significantly associated with increased congenital heart defects risk. We used pooled odds ratios (OR) to calculate the association of CHDs with rs2277923 including allelic model: OR 1.00, 95% CI 0.82-1.21; homozygote model: OR 0.95, 95%CI 0.68-1.33, recessive model: OR 0.89 CI 0.70-1.13, heterozygote model: OR: 1.09, 95%CI 0.87-1.37, dominant model: OR 1.08 CI 0.82-1.42 and overdominant model: OR 1.17 CI 1.01-1.35. In addition, our analysis suggests that no publication bias exists in this meta-analysis. CONCLUSIONS Our findings suggested that 63A > G polymorphism in the NKX2-5 gene was not significantly associated with congenital heart defects. However, in the future, more studies with increased sample size are required that may provide us more definite conclusions.
Collapse
Affiliation(s)
- Sana Ashiq
- Centre for Applied Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, 53700 Pakistan
| | - Kanwal Ashiq
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
- Faculty of Pharmaceutical Sciences, Superior University, Lahore, Pakistan
| | - Muhammad Farooq Sabar
- Centre for Applied Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, 53700 Pakistan
| |
Collapse
|
9
|
González-Castro TB, Tovilla-Zárate CA, López-Narvaez ML, Juárez-Rojop IE, Calderón-Colmenero J, Sandoval JP, García-Montes JA, Blachman-Braun R, Castillo-Avila RG, García-Flores E, Cazarín-Santos BG, Borgonio-Cuadra VM, Posadas-Sánchez R, Vargas-Alarcón G, Rodríguez-Pérez JM, Pérez-Hernández N. Association between congenital heart disease and NKX2.5 gene polymorphisms: systematic review and meta-analysis. Biomark Med 2020; 14:1747-1757. [PMID: 33346701 DOI: 10.2217/bmm-2020-0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To analyze the association of NKX2.5 gene with congenital heart disease (CHD), and to determine if the variants rs703752, rs3729753 and rs2277923 increase the risk for developing CHD. Materials & methods: PubMed, EBSCO and Web of Science databases were screened to identify eligible studies. Through a comprehensive meta-analysis software, the association between NKX2.5 gene variants and susceptibility of CHD was calculated by pooled odd ratio (ORs) and 95% CI. Results: We observed that the allelic model of rs703752 and rs2277923 increased the risk in the overall population: OR = 1.24; 95% CI: 1.00-1.55; Z p-value = 0.049; OR = 1.18; 95% CI: 0.01-1.37; Z p-value = 0.036; respectively. Conclusion: Our results suggested that the rs703752 and rs2277923 polymorphisms of the NKX2.5 gene are associated with CHD.
Collapse
Affiliation(s)
- Thelma B González-Castro
- Multidisciplinary Academic Division of Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Carlos A Tovilla-Zárate
- Multidisciplinary Academic Division of Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, Mexico
| | - María L López-Narvaez
- General Hospital of Yajalón Manuel Velasco Siles, Secretaría de Salud, Yajalón, Chiapas, Mexico
| | - Isela E Juárez-Rojop
- Academic Division of Health Sciences, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Juan Calderón-Colmenero
- Department of Pediatric Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Juan P Sandoval
- Laboratory of Hemodynamics & Intervention in Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José A García-Montes
- Laboratory of Hemodynamics & Intervention in Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ruben Blachman-Braun
- Department of Urology, University of Miller School of Medicine, Miami, FL 33136, USA
| | - Rosa G Castillo-Avila
- Academic Division of Health Sciences, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.,Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Esbeidy García-Flores
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benny G Cazarín-Santos
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica M Borgonio-Cuadra
- Department of Genetics, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | | | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José M Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
10
|
BVES downregulation in non-syndromic tetralogy of fallot is associated with ventricular outflow tract stenosis. Sci Rep 2020; 10:14167. [PMID: 32843646 PMCID: PMC7447802 DOI: 10.1038/s41598-020-70806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
BVES is a transmembrane protein, our previous work demonstrated that single nucleotide mutations of BVES in tetralogy of fallot (TOF) patients cause a downregulation of BVES transcription. However, the relationship between BVES and the pathogenesis of TOF has not been determined. Here we reported our research results about the relationship between BVES and the right ventricular outflow tract (RVOT) stenosis. BVES expression was significantly downregulated in most TOF samples compared with controls. The expression of the second heart field (SHF) regulatory network genes, including NKX2.5, GATA4 and HAND2, was also decreased in the TOF samples. In zebrafish, bves knockdown resulted in looping defects and ventricular outflow tract (VOT) stenosis, which was mostly rescued by injecting bves mRNA. bves knockdown in zebrafish also decreased the expression of SHF genes, such as nkx2.5, gata4 and hand2, consistent with the TOF samples` results. The dual-fluorescence reporter system analysis showed that BVES positively regulated the transcriptional activity of GATA4, NKX2.5 and HAND2 promoters. In zebrafish, nkx2.5 mRNA partially rescued VOT stenosis caused by bves knockdown. These results indicate that BVES downregulation may be associated with RVOT stenosis of non-syndromic TOF, and bves is probably involved in the development of VOT in zebrafish.
Collapse
|
11
|
Behiry EG, Al-Azzouny MA, Sabry D, Behairy OG, Salem NE. Association of NKX2-5, GATA4, and TBX5 polymorphisms with congenital heart disease in Egyptian children. Mol Genet Genomic Med 2019; 7:e612. [PMID: 30834692 PMCID: PMC6503026 DOI: 10.1002/mgg3.612] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
Background Several genes encoding transcription factors are known to be the primary cause of congenital heart disease. NKX2‐5 and GATA4 were the first congenital heart disease–causing genes identified by linkage analysis. This study designed to study the association of five single–nucleotide variants of NKX2‐5, GATA4, and TBX5 genes with sporadic nonsyndromic cases of a congenital cardiac septal defect in Egyptian children. Methods Venous blood samples from 150 congenital heart disease children (including a ventricular septal defect, atrial septal defect, tetralogy of Fallot, and patent ductus arteriosus) and 90 apparently healthy of matched age and sex were studied by polymerase chain reaction followed by direct sequencing in order to study two single–nucleotide variants of NKX2‐5 (rs2277923, rs28936670), two single–nucleotide variants of GATA4 (rs368418329, rs56166237) and one single–nucleotide variant TBX5 (rs6489957). The distribution of genotype and allele frequency in the congenital heart diseases (CHD) group and control group were analyzed. Results We found different genotype frequencies of the two variants of NKX2‐5, as CT genotype of rs2277923 was present in 58% and 36% in cases and control respectively, and TT genotype present in 6% of the cases. Also regarding missense variant rs28936670, heterozygous AG presented in 82% of the cases. Also, we observed a five prime UTR variant rs368418329, GT (42% of the cases) and GG (46% of the cases) genotypes showed the most frequent presentation in cases. While regarding a synonymous variant rs56166237, GT and GG were the most presented in cases (41.4%, 56% respectively) in contrast to control group (20%, 1.7% respectively). Also, a synonymous variant in TBX5, the distribution of genotype frequency was significantly different between the CHD group and control group. CT genotype of TBX5 ‐rs6489957 was found in 12 ASD, 24 VSD, six PDA, three aortic coarctation and nine fallot that represent 42% of the cases. Conclusions Significantly higher frequency of different allelle of five variants was observed in cases when compared to the control group, with significant risky effect for the development of septal defect. In addition to two polymorphisms of NKX2‐5 (rs2277923, rs28936670) variant in the cardiac septal defect, two variants in GATA4 (rs368418329, rs56166237) and one variant in TBX5 (rs6489957) seem to have a role in the pathogenesis of congenital heart disease.
Collapse
Affiliation(s)
- Eman G Behiry
- Clinical and Chemical Pathology Department, Benha Faculty of Medicine, Benha University, Benha, Egypt
| | - Mahmoud A Al-Azzouny
- Clinical and Chemical Pathology Department, Benha Faculty of Medicine, Benha University, Benha, Egypt
| | - Dina Sabry
- Biochemistry Department, Cairo Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ola G Behairy
- Pediatrics Department, Benha Faculty of Medicine, Benha University, Benha, Egypt
| | - Nessrine E Salem
- Histology Department, Benha Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|