1
|
Zhao J, Dai S, He J, Liu N, Zhang B, Li S. Prediction of High-Dose Methotrexate Blood Concentration in Osteosarcoma Patients Using Machine Learning. Drug Des Devel Ther 2025; 19:3631-3643. [PMID: 40336661 PMCID: PMC12057627 DOI: 10.2147/dddt.s515535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 05/09/2025] Open
Abstract
Introduction High-dose methotrexate is a typical chemotherapy that is widely used in the treatment of osteosarcoma. However, the unique dose-response relationship of methotrexate makes its treatment window relatively narrow, and its clinical use is in a dilemma: either the drug concentration in the patient's body cannot reach the effective concentration level, or adverse reactions may occur due to drug overdose. For this circumstance, monitoring and predicting the drug concentration in the patient's body is well founded and necessary. While pharmacokinetic models exist, they often oversimplify patient-specific covariates. This study addresses the unmet need for early-exposure prediction through interpretable machine learning, enabling data-driven decisions before toxicity manifestation. Methods In this article, 68 osteosarcoma patients' information including demography, administration and assay was gathered. We analyzed medical data and selected 10 important features using a random forest, including hydration status, red blood cell distribution width coefficient of variation, platelet distribution width, creatinine, γ-glutamyl transferase, large platelet ratio, serum potassium, lactate dehydrogenase, weight, and prealbumin. Then, cross-validation and SHAP has been conducted to confirm the robust and interpretation of the model. Results On this basis, 7 machine learning regression models was built to predict the blood concentration of methotrexate. R2, MSE, RMSE, MAE are the evaluation metrics. Finally, LightGBM was selected as the best prediction model with a performance of R2=0.87, MSE=0.020, RMSE=0.141, MAE=0.065. Discussion This machine learning framework addresses a critical gap in high-dose methotrexate therapeutic monitoring by achieving early and personalized blood drug concentration prediction, allowing for personalized dosing of patients based on predicted concentrations. The interpretability of SHAP-derived feature importance enhances clinical utility, offering a paradigm shift from reactive toxicity management to proactive precision dosing in osteosarcoma therapy.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Shuqi Dai
- Department of Pharmacy, Qujing Medical College, Qujing, Yunnan, 655000, People’s Republic of China
| | - Jiali He
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Na Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Baowanze Zhang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People’s Republic of China
| |
Collapse
|
2
|
Rodriguez-Merchan EC. Some artificial intelligence tools may currently be useful in orthopedic surgery and traumatology. World J Orthop 2025; 16:102252. [PMID: 40027961 PMCID: PMC11866107 DOI: 10.5312/wjo.v16.i2.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/12/2025] Open
Abstract
Artificial intelligence (AI) can help in diagnosing fractures and demonstrating effusions, dislocations, and focal bone lesions in both adult and pediatric aged individuals and also aid in early tumor discovery (bone osteosarcoma) and in robot-assisted surgery. A recent AI model [Mask R-CNN (region-based convolutional neural network)] has shown to be dependable for detecting surgical target zones in pediatric hip and periarticular infections, offering a more convenient and quicker alternative to conventional methods. It can help inexperienced physicians in pre-treatment evaluations, diminishing the risk of missed diagnosis and misdiagnosis. AI has some very interesting applications in orthopedic surgery, which orthopedic surgeons should be aware of and if possible use. Although some interesting advances have been made recently on AI in orthopedic surgery, its usefulness in clinical practice is still very limited. Ethical concerns, such as transparency in AI decision-making, data privacy, and the potential loss of human intuition cannot be forgotten. Besides, it is paramount to explore how to gain trust from both healthcare professionals and patients in the utilization of AI.
Collapse
|
3
|
Dalboni da Rocha JL, Lai J, Pandey P, Myat PSM, Loschinskey Z, Bag AK, Sitaram R. Artificial Intelligence for Neuroimaging in Pediatric Cancer. Cancers (Basel) 2025; 17:622. [PMID: 40002217 PMCID: PMC11852968 DOI: 10.3390/cancers17040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Artificial intelligence (AI) is transforming neuroimaging by enhancing diagnostic precision and treatment planning. However, its applications in pediatric cancer neuroimaging remain limited. This review assesses the current state, potential applications, and challenges of AI in pediatric neuroimaging for cancer, emphasizing the unique needs of the pediatric population. METHODS A comprehensive literature review was conducted, focusing on AI's impact on pediatric neuroimaging through accelerated image acquisition, reduced radiation, and improved tumor detection. Key methods include convolutional neural networks for tumor segmentation, radiomics for tumor characterization, and several tools for functional imaging. Challenges such as limited pediatric datasets, developmental variability, ethical concerns, and the need for explainable models were analyzed. RESULTS AI has shown significant potential to improve imaging quality, reduce scan times, and enhance diagnostic accuracy in pediatric neuroimaging, resulting in improved accuracy in tumor segmentation and outcome prediction for treatment. However, progress is hindered by the scarcity of pediatric datasets, issues with data sharing, and the ethical implications of applying AI in vulnerable populations. CONCLUSIONS To overcome current limitations, future research should focus on building robust pediatric datasets, fostering multi-institutional collaborations for data sharing, and developing interpretable AI models that align with clinical practice and ethical standards. These efforts are essential in harnessing the full potential of AI in pediatric neuroimaging and improving outcomes for children with cancer.
Collapse
Affiliation(s)
- Josue Luiz Dalboni da Rocha
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.); (P.P.); (P.S.M.M.); (Z.L.); (A.K.B.)
| | - Jesyin Lai
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.); (P.P.); (P.S.M.M.); (Z.L.); (A.K.B.)
| | - Pankaj Pandey
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.); (P.P.); (P.S.M.M.); (Z.L.); (A.K.B.)
| | - Phyu Sin M. Myat
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.); (P.P.); (P.S.M.M.); (Z.L.); (A.K.B.)
| | - Zachary Loschinskey
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.); (P.P.); (P.S.M.M.); (Z.L.); (A.K.B.)
- Department of Chemical and Biomedical Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Asim K. Bag
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.); (P.P.); (P.S.M.M.); (Z.L.); (A.K.B.)
| | - Ranganatha Sitaram
- Department of Radiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.); (P.P.); (P.S.M.M.); (Z.L.); (A.K.B.)
| |
Collapse
|
4
|
Alomran AK, Alomar MF, Akhdher AA, Al Qanber AR, Albik AK, Alumran A, Abdulwahab AH. Artificial intelligence awareness and perceptions among pediatric orthopedic surgeons: A cross-sectional observational study. World J Orthop 2024; 15:1023-1035. [PMID: 39600858 PMCID: PMC11586741 DOI: 10.5312/wjo.v15.i11.1023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) is a branch of computer science that allows machines to analyze large datasets, learn from patterns, and perform tasks that would otherwise require human intelligence and supervision. It is an emerging tool in pediatric orthopedic surgery, with various promising applications. An evaluation of the current awareness and perceptions among pediatric orthopedic surgeons is necessary to facilitate AI utilization and highlight possible areas of concern. AIM To assess the awareness and perceptions of AI among pediatric orthopedic surgeons. METHODS This cross-sectional observational study was conducted using a structured questionnaire designed using QuestionPro online survey software to collect quantitative and qualitative data. One hundred and twenty-eight pediatric orthopedic surgeons affiliated with two groups: Pediatric Orthopedic Chapter of Saudi Orthopedics Association and Middle East Pediatric Orthopedic Society in Gulf Cooperation Council Countries were surveyed. RESULTS The pediatric orthopedic surgeons surveyed had a low level of familiarity with AI, with more than 60% of respondents rating themselves as being slightly familiar or not at all familiar. The most positively rated aspect of AI applications for pediatric orthopedic surgery was their ability to save time and enhance productivity, with 61.97% agreeing or strongly agreeing, and only 4.23% disagreeing or strongly disagreeing. Our participants also placed a high priority on patient privacy and data security, with over 90% rating them as quite important or highly important. Additional bivariate analyses suggested that physicians with a higher awareness of AI also have a more positive perception. CONCLUSION Our study highlights a lack of familiarity among pediatric orthopedic surgeons towards AI, and suggests a need for enhanced education and regulatory frameworks to ensure the safe adoption of AI.
Collapse
Affiliation(s)
- Ammar K Alomran
- Department of Orthopedic, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Eastern, Saudi Arabia
| | - Mohammed F Alomar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Eastern, Saudi Arabia
| | - Ali A Akhdher
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Eastern, Saudi Arabia
| | - Ali R Al Qanber
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Eastern, Saudi Arabia
| | - Ahmad K Albik
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Eastern, Saudi Arabia
| | - Arwa Alumran
- Department of Health Information Management and Technology, Imam Abdulrahman Bin Faisal University, Dammam 34212, Eastern, Saudi Arabia
| | - Ahmed H Abdulwahab
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Eastern, Saudi Arabia
| |
Collapse
|
5
|
Khan A, Tareen A. Comment on: Implementation of a formalized evaluation and planning tool to improve pediatric oncology outcomes in Kenya. Pediatr Blood Cancer 2024; 71:e31249. [PMID: 39086109 DOI: 10.1002/pbc.31249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Anoud Khan
- Department of Medicine, Ziauddin Medical College, Karachi, Sindh, Pakistan
| | - Aryan Tareen
- Department of Medicine, Ziauddin Medical College, Karachi, Sindh, Pakistan
| |
Collapse
|
6
|
Boutet A, Haile SS, Yang AZ, Son HJ, Malik M, Pai V, Nasralla M, Germann J, Vetkas A, Khalvati F, Ertl-Wagner BB. Assessing the Emergence and Evolution of Artificial Intelligence and Machine Learning Research in Neuroradiology. AJNR Am J Neuroradiol 2024; 45:1269-1275. [PMID: 38521092 PMCID: PMC11392363 DOI: 10.3174/ajnr.a8252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND PURPOSE Interest in artificial intelligence (AI) and machine learning (ML) has been growing in neuroradiology, but there is limited knowledge on how this interest has manifested into research and specifically, its qualities and characteristics. This study aims to characterize the emergence and evolution of AI/ML articles within neuroradiology and provide a comprehensive overview of the trends, challenges, and future directions of the field. MATERIALS AND METHODS We performed a bibliometric analysis of the American Journal of Neuroradiology; the journal was queried for original research articles published since inception (January 1, 1980) to December 3, 2022 that contained any of the following key terms: "machine learning," "artificial intelligence," "radiomics," "deep learning," "neural network," "generative adversarial network," "object detection," or "natural language processing." Articles were screened by 2 independent reviewers, and categorized into statistical modeling (type 1), AI/ML development (type 2), both representing developmental research work but without a direct clinical integration, or end-user application (type 3), which is the closest surrogate of potential AI/ML integration into day-to-day practice. To better understand the limiting factors to type 3 articles being published, we analyzed type 2 articles as they should represent the precursor work leading to type 3. RESULTS A total of 182 articles were identified with 79% being nonintegration focused (type 1 n = 53, type 2 n = 90) and 21% (n = 39) being type 3. The total number of articles published grew roughly 5-fold in the last 5 years, with the nonintegration focused articles mainly driving this growth. Additionally, a minority of type 2 articles addressed bias (22%) and explainability (16%). These articles were primarily led by radiologists (63%), with most (60%) having additional postgraduate degrees. CONCLUSIONS AI/ML publications have been rapidly increasing in neuroradiology with only a minority of this growth being attributable to end-user application. Areas identified for improvement include enhancing the quality of type 2 articles, namely external validation, and addressing both bias and explainability. These results ultimately provide authors, editors, clinicians, and policymakers important insights to promote a shift toward integrating practical AI/ML solutions in neuroradiology.
Collapse
Affiliation(s)
- Alexandre Boutet
- From the Joint Department of Medical Imaging (A.B., M.N.), University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Samuel S Haile
- Temerty Faculty of Medicine (S.S.H., H.J.S., M.M.), University of Toronto, Toronto, Ontario, Canada
| | - Andrew Z Yang
- Division of Neurosurgery, Department of Surgery (A.Z.Y., J.G., A.V.), Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hyo Jin Son
- Temerty Faculty of Medicine (S.S.H., H.J.S., M.M.), University of Toronto, Toronto, Ontario, Canada
| | - Mikail Malik
- Temerty Faculty of Medicine (S.S.H., H.J.S., M.M.), University of Toronto, Toronto, Ontario, Canada
| | - Vivek Pai
- Division of Neuroradiology, Department of Diagnostic Imaging (V.P., B.B.E.-W.), The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging (V.P., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
| | - Mehran Nasralla
- From the Joint Department of Medical Imaging (A.B., M.N.), University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery (A.Z.Y., J.G., A.V.), Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery (A.Z.Y., J.G., A.V.), Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Farzad Khalvati
- Department of Medical Imaging (V.P., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program (F.K., B.B.E.-W.), SickKids Research Institute, Toronto, Ontario, Canada
- Department of Computer Science (F.K.), University of Toronto, Toronto, Ontario, Canada
- Department of Mechanical and Industrial Engineering (F.K.), University of Toronto, Toronto, Ontario, Canada
| | - Birgit B Ertl-Wagner
- Division of Neuroradiology, Department of Diagnostic Imaging (V.P., B.B.E.-W.), The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging (V.P., F.K., B.B.E.-W.), University of Toronto, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program (F.K., B.B.E.-W.), SickKids Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Kumar K, Yeo AU, McIntosh L, Kron T, Wheeler G, Franich RD. Deep Learning Auto-Segmentation Network for Pediatric Computed Tomography Data Sets: Can We Extrapolate From Adults? Int J Radiat Oncol Biol Phys 2024; 119:1297-1306. [PMID: 38246249 DOI: 10.1016/j.ijrobp.2024.01.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/10/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Artificial intelligence (AI)-based auto-segmentation models hold promise for enhanced efficiency and consistency in organ contouring for adaptive radiation therapy and radiation therapy planning. However, their performance on pediatric computed tomography (CT) data and cross-scanner compatibility remain unclear. This study aimed to evaluate the performance of AI-based auto-segmentation models trained on adult CT data when applied to pediatric data sets and explore the improvement in performance gained by including pediatric training data. It also examined their ability to accurately segment CT data acquired from different scanners. METHODS AND MATERIALS Using the nnU-Net framework, segmentation models were trained on data sets of adult, pediatric, and combined CT scans for 7 pelvic/thoracic organs. Each model was trained on 290 to 300 cases per category and organ. Training data sets included a combination of clinical data and several open repositories. The study incorporated a database of 459 pediatric (0-16 years) CT scans and 950 adults (>18 years), ensuring all scans had human expert ground-truth contours of the selected organs. Performance was evaluated based on Dice similarity coefficients (DSC) of the model-generated contours. RESULTS AI models trained exclusively on adult data underperformed on pediatric data, especially for the 0 to 2 age group: mean DSC was below 0.5 for the bladder and spleen. The addition of pediatric training data demonstrated significant improvement for all age groups, achieving a mean DSC of above 0.85 for all organs in every age group. Larger organs like the liver and kidneys maintained consistent performance for all models across age groups. No significant difference emerged in the cross-scanner performance evaluation, suggesting robust cross-scanner generalization. CONCLUSIONS For optimal segmentation across age groups, it is important to include pediatric data in the training of segmentation models. The successful cross-scanner generalization also supports the real-world clinical applicability of these AI models. This study emphasizes the significance of data set diversity in training robust AI systems for medical image interpretation tasks.
Collapse
Affiliation(s)
- Kartik Kumar
- Physical Sciences Department, Peter MacCallum Cancer Centre, Victoria, Australia; School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Adam U Yeo
- Physical Sciences Department, Peter MacCallum Cancer Centre, Victoria, Australia; School of Science, RMIT University, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lachlan McIntosh
- Physical Sciences Department, Peter MacCallum Cancer Centre, Victoria, Australia; School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Tomas Kron
- Physical Sciences Department, Peter MacCallum Cancer Centre, Victoria, Australia; School of Science, RMIT University, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Greg Wheeler
- Physical Sciences Department, Peter MacCallum Cancer Centre, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rick D Franich
- Physical Sciences Department, Peter MacCallum Cancer Centre, Victoria, Australia; School of Science, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Veiga-Canuto D, Cerdá Alberich L, Fernández-Patón M, Jiménez Pastor A, Lozano-Montoya J, Miguel Blanco A, Martínez de Las Heras B, Sangüesa Nebot C, Martí-Bonmatí L. Imaging biomarkers and radiomics in pediatric oncology: a view from the PRIMAGE (PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers) project. Pediatr Radiol 2024; 54:562-570. [PMID: 37747582 DOI: 10.1007/s00247-023-05770-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023]
Abstract
This review paper presents the practical development of imaging biomarkers in the scope of the PRIMAGE (PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers) project, as a noninvasive and reliable way to improve the diagnosis and prognosis in pediatric oncology. The PRIMAGE project is a European multi-center research initiative that focuses on developing medical imaging-derived artificial intelligence (AI) solutions designed to enhance overall management and decision-making for two types of pediatric cancer: neuroblastoma and diffuse intrinsic pontine glioma. To allow this, the PRIMAGE project has created an open-cloud platform that combines imaging, clinical, and molecular data together with AI models developed from this data, creating a comprehensive decision support environment for clinicians managing patients with these two cancers. In order to achieve this, a standardized data processing and analysis workflow was implemented to generate robust and reliable predictions for different clinical endpoints. Magnetic resonance (MR) image harmonization and registration was performed as part of the workflow. Subsequently, an automated tool for the detection and segmentation of tumors was trained and internally validated. The Dice similarity coefficient obtained for the independent validation dataset was 0.997, indicating compatibility with the manual segmentation variability. Following this, radiomics and deep features were extracted and correlated with clinical endpoints. Finally, reproducible and relevant imaging quantitative features were integrated with clinical and molecular data to enrich both the predictive models and a set of visual analytics tools, making the PRIMAGE platform a complete clinical decision aid system. In order to ensure the advancement of research in this field and to foster engagement with the wider research community, the PRIMAGE data repository and platform are currently being integrated into the European Federation for Cancer Images (EUCAIM), which is the largest European cancer imaging research infrastructure created to date.
Collapse
Affiliation(s)
- Diana Veiga-Canuto
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026, Valencia, Spain.
- Área Clínica de Imagen Médica, Área Clínica de Imagen Médica, Hospital Universitari i Politècnic La Fe, Avinguda Fernando Abril Martorell, 106 Torre E planta 0, 46026, València, Spain.
| | - Leonor Cerdá Alberich
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026, Valencia, Spain
| | - Matías Fernández-Patón
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026, Valencia, Spain
| | | | | | - Ana Miguel Blanco
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026, Valencia, Spain
| | - Blanca Martínez de Las Heras
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106 Torre G planta 2, 46026, Valencia, Spain
| | - Cinta Sangüesa Nebot
- Área Clínica de Imagen Médica, Área Clínica de Imagen Médica, Hospital Universitari i Politècnic La Fe, Avinguda Fernando Abril Martorell, 106 Torre E planta 0, 46026, València, Spain
| | - Luis Martí-Bonmatí
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A planta 7, 46026, Valencia, Spain
- Área Clínica de Imagen Médica, Área Clínica de Imagen Médica, Hospital Universitari i Politècnic La Fe, Avinguda Fernando Abril Martorell, 106 Torre E planta 0, 46026, València, Spain
| |
Collapse
|
9
|
Hardie RC, Trout AT, Dillman JR, Narayanan BN, Tanimoto AA. Performance Analysis in Children of Traditional and Deep Learning CT Lung Nodule Computer-Aided Detection Systems Trained on Adults. AJR Am J Roentgenol 2024; 222:e2330345. [PMID: 37991333 DOI: 10.2214/ajr.23.30345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
BACKGROUND. Although primary lung cancer is rare in children, chest CT is commonly performed to assess for lung metastases in children with cancer. Lung nodule computer-aided detection (CAD) systems have been designed and studied primarily using adult training data, and the efficacy of such systems when applied to pediatric patients is poorly understood. OBJECTIVE. The purpose of this study was to evaluate in children the diagnostic performance of traditional and deep learning CAD systems trained with adult data for the detection of lung nodules on chest CT scans and to compare the ability of such systems to generalize to children versus to other adults. METHODS. This retrospective study included pediatric and adult chest CT test sets. The pediatric test set comprised 59 CT scans in 59 patients (30 boys, 29 girls; mean age, 13.1 years; age range, 4-17 years), which were obtained from November 30, 2018, to August 31, 2020; lung nodules were annotated by fellowship-trained pediatric radiologists as the reference standard. The adult test set was the publicly available adult Lung Nodule Analysis (LUNA) 2016 subset 0, which contained 89 deidentified scans with previously annotated nodules. The test sets were processed through the traditional FlyerScan (github.com/rhardie1/FlyerScanCT) and deep learning Medical Open Network for Artificial Intelligence (MONAI; github.com/Project-MONAI/model-zoo/releases) lung nodule CAD systems, which had been trained on separate sets of CT scans in adults. Sensitivity and false-positive (FP) frequency were calculated for nodules measuring 3-30 mm; nonoverlapping 95% CIs indicated significant differences. RESULTS. Operating at two FPs per scan, on pediatric testing data FlyerScan and MONAI showed significantly lower detection sensitivities of 68.4% (197/288; 95% CI, 65.1-73.0%) and 53.1% (153/288; 95% CI, 46.7-58.4%), respectively, than on adult LUNA 2016 subset 0 testing data (83.9% [94/112; 95% CI, 79.1-88.0%] and 95.5% [107/112; 95% CI, 90.0-98.4%], respectively). Mean nodule size was smaller (p < .001) in the pediatric testing data (5.4 ± 3.1 [SD] mm) than in the adult LUNA 2016 subset 0 testing data (11.0 ± 6.2 mm). CONCLUSION. Adult-trained traditional and deep learning-based lung nodule CAD systems had significantly lower sensitivity for detection on pediatric data than on adult data at a matching FP frequency. The performance difference may relate to the smaller size of pediatric lung nodules. CLINICAL IMPACT. The results indicate a need for pediatric-specific lung nodule CAD systems trained on data specific to pediatric patients.
Collapse
Affiliation(s)
- Russell C Hardie
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Barath N Narayanan
- Sensor and Software Systems, University of Dayton Research Institute, Dayton, OH
| | - Aki A Tanimoto
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
10
|
Tsang B, Gupta A, Takahashi MS, Baffi H, Ola T, Doria AS. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment. Jpn J Radiol 2023; 41:1127-1147. [PMID: 37395982 DOI: 10.1007/s11604-023-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/18/2023] [Indexed: 07/04/2023]
Abstract
PURPOSES To review the uses of AI for magnetic resonance (MR) imaging assessment of primary pediatric cancer and identify common literature topics and knowledge gaps. To assess the adherence of the existing literature to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines. MATERIALS AND METHODS A scoping literature search using MEDLINE, EMBASE and Cochrane databases was performed, including studies of > 10 subjects with a mean age of < 21 years. Relevant data were summarized into three categories based on AI application: detection, characterization, treatment and monitoring. Readers independently scored each study using CLAIM guidelines, and inter-rater reproducibility was assessed using intraclass correlation coefficients. RESULTS Twenty-one studies were included. The most common AI application for pediatric cancer MR imaging was pediatric tumor diagnosis and detection (13/21 [62%] studies). The most commonly studied tumor was posterior fossa tumors (14 [67%] studies). Knowledge gaps included a lack of research in AI-driven tumor staging (0/21 [0%] studies), imaging genomics (1/21 [5%] studies), and tumor segmentation (2/21 [10%] studies). Adherence to CLAIM guidelines was moderate in primary studies, with an average (range) of 55% (34%-73%) CLAIM items reported. Adherence has improved over time based on publication year. CONCLUSION The literature surrounding AI applications of MR imaging in pediatric cancers is limited. The existing literature shows moderate adherence to CLAIM guidelines, suggesting that better adherence is required for future studies.
Collapse
Affiliation(s)
- Brian Tsang
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aaryan Gupta
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcelo Straus Takahashi
- Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InRad/HC-FMUSP), São Paulo, SP, Brazil
- Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP), São Paulo, SP, Brazil
- DasaInova, Diagnósticos da América SA (Dasa), São Paulo, SP, Brazil
| | | | - Tolulope Ola
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrea S Doria
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
11
|
Laborie LB, Naidoo J, Pace E, Ciet P, Eade C, Wagner MW, Huisman TAGM, Shelmerdine SC. European Society of Paediatric Radiology Artificial Intelligence taskforce: a new taskforce for the digital age. Pediatr Radiol 2023; 53:576-580. [PMID: 35731260 PMCID: PMC9214669 DOI: 10.1007/s00247-022-05426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
A new task force dedicated to artificial intelligence (AI) with respect to paediatric radiology was created in 2021 at the International Paediatric Radiology (IPR) meeting in Rome, Italy (a joint society meeting by the European Society of Pediatric Radiology [ESPR] and the Society for Pediatric Radiology [SPR]). The concept of a separate task force dedicated to AI was borne from an ESPR-led international survey of health care professionals' opinions, expectations and concerns regarding AI integration within children's imaging departments. In this survey, the majority (> 80%) of ESPR respondents supported the creation of a task force and helped define our key objectives. These include providing educational content about AI relevant for paediatric radiologists, brainstorming ideas for future projects and collaborating on AI-related studies with respect to collating data sets, de-identifying images and engaging in multi-case, multi-reader studies. This manuscript outlines the starting point of the ESPR AI task force and where we wish to go.
Collapse
Affiliation(s)
- Lene Bjerke Laborie
- grid.412008.f0000 0000 9753 1393Department of Radiology, Section for Paediatrics, Haukeland University Hospital, Bergen, Norway
- grid.7914.b0000 0004 1936 7443Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jaishree Naidoo
- Paediatric Diagnostic Imaging and Envisionit Deep AI, Johannesburg, South Africa
| | - Erika Pace
- grid.5072.00000 0001 0304 893XDepartment of Diagnostic Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Pierluigi Ciet
- grid.5645.2000000040459992XDepartment of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- grid.5645.2000000040459992XDepartment of Pediatric Pulmonology and Allergology, Erasmus MC, Sophia’s Children’s Hospital, Rotterdam, The Netherlands
| | - Christine Eade
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, Exeter, UK
| | - Matthias W. Wagner
- grid.42327.300000 0004 0473 9646Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, Canada
- grid.17063.330000 0001 2157 2938Department of Medical Imaging, University of Toronto, Toronto, Ontario Canada
| | - Thierry A. G. M. Huisman
- grid.39382.330000 0001 2160 926XEdward B. Singleton Department of Radiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas USA
| | - Susan C. Shelmerdine
- grid.424537.30000 0004 5902 9895Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1H 3JH London, UK
- grid.83440.3b0000000121901201UCL Great Ormond Street Institute of Child Health, London, UK
- grid.451056.30000 0001 2116 3923NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- grid.464688.00000 0001 2300 7844Department of Clinical Radiology, St. George’s Hospital, London, UK
| |
Collapse
|
12
|
Prediction of chemotherapy-related complications in pediatric oncology patients: artificial intelligence and machine learning implementations. Pediatr Res 2023; 93:390-395. [PMID: 36302858 DOI: 10.1038/s41390-022-02356-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
Abstract
Although the overall incidence of pediatric oncological diseases tends to increase over the years, it is among the rare diseases of the pediatric population. The diagnosis, treatment, and healthcare management of this group of diseases are important. Prevention of treatment-related complications is vital for patients, particularly in the pediatric population. Nowadays, the use of artificial intelligence and machine learning technologies in the management of oncological diseases is becoming increasingly important. With the advancement of software technologies, improvements have been made in the early diagnosis of risk groups in oncological diseases, in radiology, pathology, and imaging technologies, in cancer staging and management. In addition, these technologies can be used to predict the outcome in chemotherapy treatment of oncological diseases. In this context, this study identifies artificial intelligence and machine learning methods used in the prediction of complications due to chemotherapeutic agents used in childhood cancer treatment. For this purpose, the concepts of artificial intelligence and machine learning are explained in this review. A general framework for the use of machine learning in healthcare and pediatric oncology has been drawn and examples of studies conducted on this topic in pediatric oncology have been given. IMPACT: Artificial intelligence and machine learning are advanced tools that can be used to predict chemotherapy-related complications. Algorithms can assist clinicians' decision-making processes in the management of complications. Although studies are using these methods, there is a need to increase the number of studies on artificial intelligence applications in pediatric clinics.
Collapse
|
13
|
Otjen JP, Moore MM, Romberg EK, Perez FA, Iyer RS. The current and future roles of artificial intelligence in pediatric radiology. Pediatr Radiol 2022; 52:2065-2073. [PMID: 34046708 DOI: 10.1007/s00247-021-05086-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Artificial intelligence (AI) is a broad and complicated concept that has begun to affect many areas of medicine, perhaps none so much as radiology. While pediatric radiology has been less affected than other radiology subspecialties, there are some well-developed and some nascent applications within the field. This review focuses on the use of AI within pediatric radiology for image interpretation, with descriptive summaries of the literature to date. We highlight common features that enable successful application of the technology, along with some of the limitations that can inhibit the development of this field. We present some ideas for further research in this area and challenges that must be overcome, with an understanding that technology often advances in unpredictable ways.
Collapse
Affiliation(s)
- Jeffrey P Otjen
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way NE, MA.7.220, Seattle, WA, 98105, USA
| | - Michael M Moore
- Department of Radiology, Penn State Children's Hospital, Penn State Health System, Hershey, PA, USA
| | - Erin K Romberg
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way NE, MA.7.220, Seattle, WA, 98105, USA
| | - Francisco A Perez
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way NE, MA.7.220, Seattle, WA, 98105, USA
| | - Ramesh S Iyer
- Department of Radiology, Seattle Children's Hospital, University of Washington School of Medicine, 4800 Sand Point Way NE, MA.7.220, Seattle, WA, 98105, USA.
| |
Collapse
|
14
|
Wu J, Zhou L, Gou F, Tan Y. A Residual Fusion Network for Osteosarcoma MRI Image Segmentation in Developing Countries. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7285600. [PMID: 35965771 PMCID: PMC9365532 DOI: 10.1155/2022/7285600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023]
Abstract
Among primary bone cancers, osteosarcoma is the most common, peaking between the ages of a child's rapid bone growth and adolescence. The diagnosis of osteosarcoma requires observing the radiological appearance of the infected bones. A common approach is MRI, but the manual diagnosis of MRI images is prone to observer bias and inaccuracy and is rather time consuming. The MRI images of osteosarcoma contain semantic messages in several different resolutions, which are often ignored by current segmentation techniques, leading to low generalizability and accuracy. In the meantime, the boundaries between osteosarcoma and bones or other tissues are sometimes too ambiguous to separate, making it a challenging job for inexperienced doctors to draw a line between them. In this paper, we propose using a multiscale residual fusion network to handle the MRI images. We placed a novel subnetwork after the encoders to exchange information between the feature maps of different resolutions, to fuse the information they contain. The outputs are then directed to both the decoders and a shape flow block, used for improving the spatial accuracy of the segmentation map. We tested over 80,000 osteosarcoma MRI images from the PET-CT center of a well-known hospital in China. Our approach can significantly improve the effectiveness of the semantic segmentation of osteosarcoma images. Our method has higher F1, DSC, and IOU compared with other models while maintaining the number of parameters and FLOPS.
Collapse
Affiliation(s)
- Jia Wu
- School of Computer Science and Engineering, Central South University, Chang Sha 410083, China
- Research Center for Artificial Intelligence, Monash University, Clayton Vic 3800, Melbourne, Australia
| | - Luting Zhou
- School of Computer Science and Engineering, Central South University, Chang Sha 410083, China
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Chang Sha 410083, China
| | - Yanlin Tan
- PET-CT Center, The Second Xiangya Hospital of Central South University, Changsha 410083, China
| |
Collapse
|
15
|
Calandrelli R, Boldrini L, Tran HE, Quinci V, Massimi L, Pilato F, Lenkowicz J, Votta C, Colosimo C. CT-based radiomics modeling for skull dysmorphology severity and surgical outcome prediction in children with isolated sagittal synostosis: a hypothesis-generating study. LA RADIOLOGIA MEDICA 2022; 127:616-626. [PMID: 35538388 PMCID: PMC9130191 DOI: 10.1007/s11547-022-01493-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the potentialities of radiomic analysis and develop radiomic models to predict the skull dysmorphology severity and post-surgical outcome in children with isolated sagittal synostosis (ISS). MATERIALS AND METHODS Preoperative high-resolution CT scans of infants with ISS treated with surgical correction were retrospectively reviewed. The sagittal suture (ROI_entire) and its sections (ROI_anterior/central/posterior) were segmented. Radiomic features extracted from ROI_entire were correlated to the scaphocephalic severity, while radiomic features extracted from ROI_anterior/central/posterior were correlated to the post-surgical outcome. Logistic regression models were built from selected radiomic features and validated to predict the scaphocephalic severity and post-surgical outcome. RESULTS A total of 105 patients were enrolled in this study. The kurtosis was obtained from the feature selection process for both scaphocephalic severity and post-surgical outcome prediction. The model predicting the scaphocephalic severity had an area under the curve (AUC) of the receiver operating characteristic of 0.71 and a positive predictive value of 0.83 for the testing set. The model built for the post-surgical outcome showed an AUC (95% CI) of 0.75 (0.61;0.88) and a negative predictive value (95% CI) of 0.95 (0.84;0.99). CONCLUSION Our results suggest that radiomics could be useful in quantifying tissue microarchitecture along the mid-suture space and potentially provide relevant biological information about the sutural ossification processes to predict the onset of skull deformities and stratify post-surgical outcome.
Collapse
Affiliation(s)
- Rosalinda Calandrelli
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, UOC Neuroradiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Luca Boldrini
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Huong Elena Tran
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vincenzo Quinci
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, UOC Neuroradiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Massimi
- Pediatric Neurosurgery, Neurosurgery Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio Pilato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | - Jacopo Lenkowicz
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudio Votta
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Cesare Colosimo
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, UOC Neuroradiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Engwall-Gill AJ, Chan SS, Boyd KP, Saito JM, Fallat ME, St Peter SD, Bolger-Theut S, Crotty EJ, Green JR, Hulett Bowling RL, Kumbhar SS, Rattan MS, Young CM, Canner JK, Deans KJ, Gadepalli SK, Helmrath MA, Hirschl RB, Kabre R, Lal DR, Landman MP, Leys CM, Mak GZ, Minneci PC, Wright TN, Kunisaki SM. Accuracy of Chest Computed Tomography in Distinguishing Cystic Pleuropulmonary Blastoma From Benign Congenital Lung Malformations in Children. JAMA Netw Open 2022; 5:e2219814. [PMID: 35771571 PMCID: PMC9247735 DOI: 10.1001/jamanetworkopen.2022.19814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
Importance The ability of computed tomography (CT) to distinguish between benign congenital lung malformations and malignant cystic pleuropulmonary blastomas (PPBs) is unclear. Objective To assess whether chest CT can detect malignant tumors among postnatally detected lung lesions in children. Design, Setting, and Participants This retrospective multicenter case-control study used a consortium database of 521 pathologically confirmed primary lung lesions from January 1, 2009, through December 31, 2015, to assess diagnostic accuracy. Preoperative CT scans of children with cystic PPB (cases) were selected and age-matched with CT scans from patients with postnatally detected congenital lung malformations (controls). Statistical analysis was performed from January 18 to September 6, 2020. Preoperative CT scans were interpreted independently by 9 experienced pediatric radiologists in a blinded fashion and analyzed from January 24, 2019, to September 6, 2020. Main Outcomes and Measures Accuracy, sensitivity, and specificity of CT in correctly identifying children with malignant tumors. Results Among 477 CT scans identified (282 boys [59%]; median age at CT, 3.6 months [IQR, 1.2-7.2 months]; median age at resection, 6.9 months [IQR, 4.2-12.8 months]), 40 cases were extensively reviewed; 9 cases (23%) had pathologically confirmed cystic PPB. The median age at CT was 7.3 months (IQR, 2.9-22.4 months), and median age at resection was 8.7 months (IQR, 5.0-24.4 months). The sensitivity of CT for detecting PPB was 58%, and the specificity was 83%. High suspicion for malignancy correlated with PPB pathology (odds ratio, 13.5; 95% CI, 2.7-67.3; P = .002). There was poor interrater reliability (κ = 0.36 [range, 0.06-0.64]; P < .001) and no significant difference in specific imaging characteristics between PPB and benign cystic lesions. The overall accuracy rate for distinguishing benign vs malignant lesions was 81%. Conclusions and Relevance This study suggests that chest CT, the current criterion standard imaging modality to assess the lung parenchyma, may not accurately and reliably distinguish PPB from benign congenital lung malformations in children. In any cystic lung lesion without a prenatal diagnosis, operative management to confirm pathologic diagnosis is warranted.
Collapse
Affiliation(s)
- Abigail J. Engwall-Gill
- Division of General Pediatric Surgery, Johns Hopkins Children’s Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sherwin S. Chan
- Department of Pediatric Radiology, Children’s Mercy Hospital, University of Missouri–Kansas City School of Medicine, Kansas City
| | - Kevin P. Boyd
- Department of Pediatric Radiology, Children’s Wisconsin, Medical College of Wisconsin, Milwaukee
| | - Jacqueline M. Saito
- Department of Pediatric Surgery, St Louis Children’s Hospital, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Mary E. Fallat
- Division of Pediatric Surgery, Norton Children’s Hospital, University of Louisville, Louisville, Kentucky
| | - Shawn D. St Peter
- Division of Pediatric Surgery, Children’s Mercy Hospital, University of Missouri–Kansas City School of Medicine, Kansas City
| | - Stephanie Bolger-Theut
- Department of Pediatric Radiology, Children’s Mercy Hospital, University of Missouri–Kansas City School of Medicine, Kansas City
| | - Eric J. Crotty
- Department of Pediatric Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Jared R. Green
- Department of Pediatric Radiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rebecca L. Hulett Bowling
- Department of Pediatric Radiology, St Louis Children’s Hospital, Washington University School of Medicine in St Louis, St Louis, St Louis, Missouri
| | - Sachin S. Kumbhar
- Department of Pediatric Radiology, Children’s Wisconsin, Medical College of Wisconsin, Milwaukee
| | - Mantosh S. Rattan
- Department of Pediatric Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Cody M. Young
- Department of Pediatric Radiology, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus
| | - Joseph K. Canner
- Center for Surgery Outcomes Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katherine J. Deans
- Center for Surgical Outcomes Research, Abigail Wexner Research Institute, Department of Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus
| | - Samir K. Gadepalli
- Section of Pediatric Surgery, C. S. Mott Children’s and Von Voigtlander Women’s Hospital, University of Michigan Medical School, Ann Arbor
| | - Michael A. Helmrath
- Division of Pediatric Surgery, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Ronald B. Hirschl
- Section of Pediatric Surgery, C. S. Mott Children’s and Von Voigtlander Women’s Hospital, University of Michigan Medical School, Ann Arbor
| | - Rashmi Kabre
- Division of Pediatric Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dave R. Lal
- Division of Pediatric Surgery, Children’s Wisconsin, Medical College of Wisconsin, Milwaukee
| | - Matthew P. Landman
- Division of Pediatric Surgery, Riley Children’s Hospital, Indiana University School of Medicine, Indianapolis
| | - Charles M. Leys
- Division of Pediatric Surgery, American Family Children’s Hospital, University of Wisconsin, Madison
| | - Grace Z. Mak
- Division of Pediatric Surgery, Comer Children’s Hospital, University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Peter C. Minneci
- Center for Surgical Outcomes Research, Abigail Wexner Research Institute, Department of Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus
| | - Tiffany N. Wright
- Division of Pediatric Surgery, Norton Children’s Hospital, University of Louisville, Louisville, Kentucky
| | - Shaun M. Kunisaki
- Division of General Pediatric Surgery, Johns Hopkins Children’s Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Tozzi AE, Fabozzi F, Eckley M, Croci I, Dell’Anna VA, Colantonio E, Mastronuzzi A. Gaps and Opportunities of Artificial Intelligence Applications for Pediatric Oncology in European Research: A Systematic Review of Reviews and a Bibliometric Analysis. Front Oncol 2022; 12:905770. [PMID: 35712463 PMCID: PMC9194810 DOI: 10.3389/fonc.2022.905770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
The application of artificial intelligence (AI) systems is emerging in many fields in recent years, due to the increased computing power available at lower cost. Although its applications in various branches of medicine, such as pediatric oncology, are many and promising, its use is still in an embryonic stage. The aim of this paper is to provide an overview of the state of the art regarding the AI application in pediatric oncology, through a systematic review of systematic reviews, and to analyze current trends in Europe, through a bibliometric analysis of publications written by European authors. Among 330 records found, 25 were included in the systematic review. All papers have been published since 2017, demonstrating only recent attention to this field. The total number of studies included in the selected reviews was 674, with a third including an author with a European affiliation. In bibliometric analysis, 304 out of the 978 records found were included. Similarly, the number of publications began to dramatically increase from 2017. Most explored AI applications regard the use of diagnostic images, particularly radiomics, as well as the group of neoplasms most involved are the central nervous system tumors. No evidence was found regarding the use of AI for process mining, clinical pathway modeling, or computer interpreted guidelines to improve the healthcare process. No robust evidence is yet available in any of the domains investigated by systematic reviews. However, the scientific production in Europe is significant and consistent with the topics covered in systematic reviews at the global level. The use of AI in pediatric oncology is developing rapidly with promising results, but numerous gaps and challenges persist to validate its utilization in clinical practice. An important limitation is the need for large datasets for training algorithms, calling for international collaborative studies.
Collapse
Affiliation(s)
- Alberto Eugenio Tozzi
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, Rome, Italy
| | - Megan Eckley
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ileana Croci
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vito Andrea Dell’Anna
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Erica Colantonio
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco Hematology and Cell and Gene Therapy, Bambino Gesù Pediatric Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
18
|
Daldrup-Link HE, Theruvath AJ, Baratto L, Hawk KE. One-stop local and whole-body staging of children with cancer. Pediatr Radiol 2022; 52:391-400. [PMID: 33929564 PMCID: PMC10874282 DOI: 10.1007/s00247-021-05076-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Accurate staging and re-staging of cancer in children is crucial for patient management. Currently, children with a newly diagnosed cancer must undergo a series of imaging tests, which are stressful, time-consuming, partially redundant, expensive, and can require repetitive anesthesia. New approaches for pediatric cancer staging can evaluate the primary tumor and metastases in a single session. However, traditional one-stop imaging tests, such as CT and positron emission tomography (PET)/CT, are associated with considerable radiation exposure. This is particularly concerning for children because they are more sensitive to ionizing radiation than adults and they live long enough to experience secondary cancers later in life. In this review article we discuss child-tailored imaging tests for tumor detection and therapy response assessment - tests that can be obtained with substantially reduced radiation exposure compared to traditional CT and PET/CT scans. This includes diffusion-weighted imaging (DWI)/MRI and integrated [F-18]2-fluoro-2-deoxyglucose (18F-FDG) PET/MRI scans. While several investigators have compared the value of DWI/MRI and 18F-FDG PET/MRI for staging pediatric cancer, the value of these novel imaging technologies for cancer therapy monitoring has received surprisingly little attention. In this article, we share our experiences and review existing literature on this subject.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA.
| | - Ashok J Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| | - Lucia Baratto
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| | - Kristina Elizabeth Hawk
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Lucile Packard Children's Hospital, Stanford University, 725 Welch Road, Room 1665, Stanford, CA, 94305-5614, USA
- Cancer Imaging and Early Detection Program, Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
19
|
Theruvath AJ, Siedek F, Yerneni K, Muehe AM, Spunt SL, Pribnow A, Moseley M, Lu Y, Zhao Q, Gulaka P, Chaudhari A, Daldrup-Link HE. Validation of Deep Learning-based Augmentation for Reduced 18F-FDG Dose for PET/MRI in Children and Young Adults with Lymphoma. Radiol Artif Intell 2021; 3:e200232. [PMID: 34870211 DOI: 10.1148/ryai.2021200232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
Purpose To investigate if a deep learning convolutional neural network (CNN) could enable low-dose fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI for correct treatment response assessment of children and young adults with lymphoma. Materials and Methods In this secondary analysis of prospectively collected data (ClinicalTrials.gov identifier: NCT01542879), 20 patients with lymphoma (mean age, 16.4 years ± 6.4 [standard deviation]) underwent 18F-FDG PET/MRI between July 2015 and August 2019 at baseline and after induction chemotherapy. Full-dose 18F-FDG PET data (3 MBq/kg) were simulated to lower 18F-FDG doses based on the percentage of coincidence events (representing simulated 75%, 50%, 25%, 12.5%, and 6.25% 18F-FDG dose [hereafter referred to as 75%Sim, 50%Sim, 25%Sim, 12.5%Sim, and 6.25%Sim, respectively]). A U.S. Food and Drug Administration-approved CNN was used to augment input simulated low-dose scans to full-dose scans. For each follow-up scan after induction chemotherapy, the standardized uptake value (SUV) response score was calculated as the maximum SUV (SUVmax) of the tumor normalized to the mean liver SUV; tumor response was classified as adequate or inadequate. Sensitivity and specificity in the detection of correct response status were computed using full-dose PET as the reference standard. Results With decreasing simulated radiotracer doses, tumor SUVmax increased. A dose below 75%Sim of the full dose led to erroneous upstaging of adequate responders to inadequate responders (43% [six of 14 patients] for 75%Sim; 93% [13 of 14 patients] for 50%Sim; and 100% [14 of 14 patients] below 50%Sim; P < .05 for all). CNN-enhanced low-dose PET/MRI scans at 75%Sim and 50%Sim enabled correct response assessments for all patients. Use of the CNN augmentation for assessing adequate and inadequate responses resulted in identical sensitivities (100%) and specificities (100%) between the assessment of 100% full-dose PET, augmented 75%Sim, and augmented 50%Sim images. Conclusion CNN enhancement of PET/MRI scans may enable 50% 18F-FDG dose reduction with correct treatment response assessment of children and young adults with lymphoma.Keywords: Pediatrics, PET/MRI, Computer Applications Detection/Diagnosis, Lymphoma, Tumor Response, Whole-Body Imaging, Technology AssessmentClinical trial registration no: NCT01542879 Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Ashok J Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Florian Siedek
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Ketan Yerneni
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Anne M Muehe
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Sheri L Spunt
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Allison Pribnow
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Ying Lu
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Qian Zhao
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Praveen Gulaka
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Akshay Chaudhari
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (A.J.T., F.S., K.Y., A.M.M., M.M., A.C., H.E.D.L.), Department of Pediatrics, Division of Hematology/Oncology, Lucile Packard Children's Hospital (S.L.S., A.P., H.E.D.L.), and Department of Biomedical Data Science (Y.L., Q.Z.), Stanford University, 725 Welch Rd, Stanford, CA 94304; and Subtle Medical, Menlo Park, Calif (P.G.)
| |
Collapse
|
20
|
Ramesh S, Chokkara S, Shen T, Major A, Volchenboum SL, Mayampurath A, Applebaum MA. Applications of Artificial Intelligence in Pediatric Oncology: A Systematic Review. JCO Clin Cancer Inform 2021; 5:1208-1219. [PMID: 34910588 PMCID: PMC8812636 DOI: 10.1200/cci.21.00102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE There is a need for an improved understanding of clinical and biologic risk factors in pediatric cancer to improve patient outcomes. Machine learning (ML) represents the application of computational inference from advanced statistical methods that can be applied to increasing amount of data available for study in pediatric oncology. The goal of this systematic review was to systematically characterize the state of ML in pediatric oncology and highlight advances and opportunities in the field. METHODS We conducted a systematic review of the Embase, Scopus, and MEDLINE databases for applications of ML in pediatric oncology. Query results from all three databases were aggregated and duplicate studies were removed. RESULTS A total of 42 unique articles that examined the applications of ML in pediatric oncology met inclusion criteria for review. We identified 20 studies of CNS tumors, 13 of solid tumors, and nine of leukemia. ML tasks included classification, prediction of treatment response, and dose optimization with a variety of methods being used including neural network, k-nearest neighbor, random forest, naive Bayes, and support vector machines. Strengths of the identified studies included matching or outperforming physician comparators via automated analysis and predicting therapeutic response. Common limitations included significant heterogeneity in reporting standards, clinical applicability, small sample sizes, and missing external validation cohorts. CONCLUSION We identified areas where ML can enhance clinical care in ways that may not otherwise be achievable. Although ML promises enormous potential in improving diagnostics, decision making, and monitoring for children with cancer, the field remains in early stages and future work will be aided by standards and guidelines to ensure rigorous methodologic design and maximizing clinical utility.
Collapse
Affiliation(s)
- Siddhi Ramesh
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Sukarn Chokkara
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Timothy Shen
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Ajay Major
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Samuel L. Volchenboum
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Anoop Mayampurath
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Mark A. Applebaum
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| |
Collapse
|
21
|
Caruso M, Ricciardi C, Delli Paoli G, Di Dato F, Donisi L, Romeo V, Petretta M, Iorio R, Cesarelli G, Brunetti A, Maurea S. Machine Learning Evaluation of Biliary Atresia Patients to Predict Long-Term Outcome after the Kasai Procedure. Bioengineering (Basel) 2021; 8:152. [PMID: 34821718 PMCID: PMC8615125 DOI: 10.3390/bioengineering8110152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Kasai portoenterostomy (KP) represents the first-line treatment for biliary atresia (BA). The purpose was to compare the accuracy of quantitative parameters extracted from laboratory tests, US imaging, and MR imaging studies using machine learning (ML) algorithms to predict the long-term medical outcome in native liver survivor BA patients after KP. Twenty-four patients were evaluated according to clinical and laboratory data at initial evaluation (median follow-up = 9.7 years) after KP as having ideal (n = 15) or non-ideal (n = 9) medical outcomes. Patients were re-evaluated after an additional 4 years and classified in group 1 (n = 12) as stable and group 2 (n = 12) as non-stable in the disease course. Laboratory and quantitative imaging parameters were merged to test ML algorithms. Total and direct bilirubin (TB and DB), as laboratory parameters, and US stiffness, as an imaging parameter, were the only statistically significant parameters between the groups. The best algorithm in terms of accuracy, sensitivity, specificity, and AUCROC was naive Bayes algorithm, selecting only laboratory parameters (TB and DB). This preliminary ML analysis confirms the fundamental role of TB and DB values in predicting the long-term medical outcome for BA patients after KP, even though their values may be within the normal range. Physicians should be alert when TB and DB values change slightly.
Collapse
Affiliation(s)
- Martina Caruso
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.P.); (L.D.); (V.R.); (A.B.); (S.M.)
| | - Carlo Ricciardi
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80125 Naples, Italy;
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Telese Terme, Italy;
| | - Gregorio Delli Paoli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.P.); (L.D.); (V.R.); (A.B.); (S.M.)
| | - Fabiola Di Dato
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (F.D.D.); (M.P.); (R.I.)
| | - Leandro Donisi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.P.); (L.D.); (V.R.); (A.B.); (S.M.)
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Telese Terme, Italy;
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.P.); (L.D.); (V.R.); (A.B.); (S.M.)
| | - Mario Petretta
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (F.D.D.); (M.P.); (R.I.)
| | - Raffaele Iorio
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (F.D.D.); (M.P.); (R.I.)
| | - Giuseppe Cesarelli
- Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Telese Terme, Italy;
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, 80125 Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.P.); (L.D.); (V.R.); (A.B.); (S.M.)
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.D.P.); (L.D.); (V.R.); (A.B.); (S.M.)
| |
Collapse
|
22
|
Bosmans H, Zanca F, Gelaude F. Procurement, commissioning and QA of AI based solutions: An MPE's perspective on introducing AI in clinical practice. Phys Med 2021; 83:257-263. [PMID: 33984579 DOI: 10.1016/j.ejmp.2021.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE In this study, we propose a framework to help the MPE take up a unique and important role at the introduction of AI solutions in clinical practice, and more in particular at procurement, acceptance, commissioning and QA. MATERIAL AND METHODS The steps for the introduction of Medical Radiological Equipment in a hospital setting were extrapolated to AI tools. Literature review and in-house experience was added to prepare similar, yet dedicated test methods. RESULTS Procurement starts from the clinical cases to be solved and is usually a complex process with many stakeholders and possibly many candidate AI solutions. Specific KPIs and metrics need to be defined. Acceptance testing follows, to verify the installation and test for critical exams. Commissioning should test the suitability of the AI tool for the intended use in the local institution. Results may be predicted from peer reviewed papers that treat representative populations. If not available, local data sets can be prepared to assess the KPIs, or 'virtual clinical trials' could be used to create large, simulated test data sets. Quality assurance must be performed periodically to verify if KPIs are stable, especially if the software is upscaled or upgraded, and as soon as self-learning AI tools would enter the medical practice. DISCUSSION MPEs are well placed to bridge between manufacturer and medical team and help from procurement up to reporting to the management board. More work is needed to establish consolidated test protocols.
Collapse
Affiliation(s)
- Hilde Bosmans
- University Hospitals of the KU Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
23
|
Pediatric Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Davendralingam N, Sebire NJ, Arthurs OJ, Shelmerdine SC. Artificial intelligence in paediatric radiology: Future opportunities. Br J Radiol 2021; 94:20200975. [PMID: 32941736 PMCID: PMC7774693 DOI: 10.1259/bjr.20200975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) has received widespread and growing interest in healthcare, as a method to save time, cost and improve efficiencies. The high-performance statistics and diagnostic accuracies reported by using AI algorithms (with respect to predefined reference standards), particularly from image pattern recognition studies, have resulted in extensive applications proposed for clinical radiology, especially for enhanced image interpretation. Whilst certain sub-speciality areas in radiology, such as those relating to cancer screening, have received wide-spread attention in the media and scientific community, children's imaging has been hitherto neglected.In this article, we discuss a variety of possible 'use cases' in paediatric radiology from a patient pathway perspective where AI has either been implemented or shown early-stage feasibility, while also taking inspiration from the adult literature to propose potential areas for future development. We aim to demonstrate how a 'future, enhanced paediatric radiology service' could operate and to stimulate further discussion with avenues for research.
Collapse
Affiliation(s)
- Natasha Davendralingam
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | | | | |
Collapse
|
25
|
Isaac A, Lecouvet F, Dalili D, Fayad L, Pasoglou V, Papakonstantinou O, Ahlawat S, Messiou C, Weber MA, Padhani AR. Detection and Characterization of Musculoskeletal Cancer Using Whole-Body Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2020; 24:726-750. [PMID: 33307587 DOI: 10.1055/s-0040-1719018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is gradually being integrated into clinical pathways for the detection, characterization, and staging of malignant tumors including those arising in the musculoskeletal (MSK) system. Although further developments and research are needed, it is now recognized that WB-MRI enables reliable, sensitive, and specific detection and quantification of disease burden, with clinical applications for a variety of disease types and a particular application for skeletal involvement. Advances in imaging techniques now allow the reliable incorporation of WB-MRI into clinical pathways, and guidelines recommending its use are emerging. This review assesses the benefits, clinical applications, limitations, and future capabilities of WB-MRI in the context of other next-generation imaging modalities, as a qualitative and quantitative tool for the detection and characterization of skeletal and soft tissue MSK malignancies.
Collapse
Affiliation(s)
- Amanda Isaac
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Guy's & St Thomas' Hospitals, London, United Kingdom
| | - Frederic Lecouvet
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Danoob Dalili
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Laura Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Vasiliki Pasoglou
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Olympia Papakonstantinou
- 2nd Department of Radiology, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
| | - Anwar R Padhani
- The Institute of Cancer Research, London, United Kingdom.,Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| |
Collapse
|
26
|
Vogrin M, Trojner T, Kelc R. Artificial intelligence in musculoskeletal oncological radiology. Radiol Oncol 2020; 55:1-6. [PMID: 33885240 PMCID: PMC7877260 DOI: 10.2478/raon-2020-0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Due to the rarity of primary bone tumors, precise radiologic diagnosis often requires an experienced musculoskeletal radiologist. In order to make the diagnosis more precise and to prevent the overlooking of potentially dangerous conditions, artificial intelligence has been continuously incorporated into medical practice in recent decades. This paper reviews some of the most promising systems developed, including those for diagnosis of primary and secondary bone tumors, breast, lung and colon neoplasms. CONCLUSIONS Although there is still a shortage of long-term studies confirming its benefits, there is probably a considerable potential for further development of computer-based expert systems aiming at a more efficient diagnosis of bone and soft tissue tumors.
Collapse
Affiliation(s)
- Matjaz Vogrin
- Department of Orthopaedic Surgery, University Medical CenterMaribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Teodor Trojner
- Department of Orthopaedic Surgery, University Medical CenterMaribor, Slovenia
| | - Robi Kelc
- Department of Orthopaedic Surgery, University Medical CenterMaribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
27
|
Wagner MW, Bilbily A, Beheshti M, Shammas A, Vali R. Artificial intelligence and radiomics in pediatric molecular imaging. Methods 2020; 188:37-43. [PMID: 32544594 DOI: 10.1016/j.ymeth.2020.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
In the past decade, a new approach for quantitative analysis of medical images and prognostic modelling has emerged. Defined as the extraction and analysis of a large number of quantitative parameters from medical images, radiomics is an evolving field in precision medicine with the ultimate goal of the discovery of new imaging biomarkers for disease. Radiomics has already shown promising results in extracting diagnostic, prognostic, and molecular information latent in medical images. After acquisition of the medical images as part of the standard of care, a region of interest is defined often via a manual or semi-automatic approach. An algorithm then extracts and computes quantitative radiomics parameters from the region of interest. Whereas radiomics captures quantitative values of shape and texture based on predefined mathematical terms, neural networks have recently been used to directly learn and identify predictive features from medical images. Thereby, neural networks largely forego the need for so called "hand-engineered" features, which appears to result in significantly improved performance and reliability. Opportunities for radiomics and neural networks in pediatric nuclear medicine/radiology/molecular imaging are broad and can be thought of in three categories: automating well-defined administrative or clinical tasks, augmenting broader administrative or clinical tasks, and unlocking new methods of generating value. Specific applications include intelligent order sets, automated protocoling, improved image acquisition, computer aided triage and detection of abnormalities, next generation voice dictation systems, biomarker development, and therapy planning.
Collapse
Affiliation(s)
- Matthias W Wagner
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Alexander Bilbily
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany; Department of Nuclear Medicine & Endocrinology, Paracelsus Medical University, Salzburg, Austria
| | - Amer Shammas
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Reza Vali
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|