1
|
Iqbal MM, Nishimura M, Tsukamoto Y, Yoshizawa S. Changes in microbial community structure related to biodegradation of eelgrass (Zostera marina). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172798. [PMID: 38688366 DOI: 10.1016/j.scitotenv.2024.172798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Seagrass meadows produce organic carbon and deposit it on the seabed through the decaying process. Microbial activity is closely related to the process of eelgrass death and collapse. We investigated the microbial community structure of eelgrass during the eelgrass decomposition process by using a microcosm containing raw seawater and excised eelgrass leaves collected from a Zostera marina bed in Futtsu, Chiba Prefecture, Japan. The fast-growing microbes (i.e., Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia) rapidly adhered to the eelgrass leaf surface and proliferated in the first two weeks but gradually decreased the relative abundance as the months moved on. On the other hand, the slow-growing microbes (i.e., Cytophagia, Anaerolineae, Thaumarchaeota, and Actinobacteria) became predominant over the eelgrass surface late in the culture experiment (120, 180 days). The fast-growing groups of Gammaproteobacteria and Flavobacteriia appear to be closely related to the initial decomposition of eelgrass, especially the rapid decomposition of leaf-derived biopolymers. Changes in nitrogen content due to the bacterial rapid consumption of readily degradable organic carbon induced changes in the community structure at the early stage of eelgrass decomposition. In addition, shifts in the C/N ratio were driven by microbial community changes during later decomposition phases.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Masahiko Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Yuya Tsukamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| |
Collapse
|
2
|
Mao B, Cui T, Su T, Xu Q, Lu F, Su H, Zhang J, Xiao S. Mixed-litter effects of fresh leaf semi-decomposed litter and fine root on soil enzyme activity and microbial community in an evergreen broadleaf karst forest in southwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:1065807. [PMID: 36570900 PMCID: PMC9780490 DOI: 10.3389/fpls.2022.1065807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Litter decomposition is the main process that affects nutrient cycling and carbon budgets in mixed forests. However, knowledge of the response of the soil microbial processes to the mixed-litter decomposition of fresh leaf, semi-decomposed leaf and fine root is limited. Thus, a laboratory microcosm experiment was performed to explore the mixed-litter effects of fresh leaf, semi-decomposed leaf and fine root on the soil enzyme activity and microbial community in an evergreen broadleaf karst forest in Southwest China. Fresh leaf litter, semi-decomposed litter and fine root in the Parakmeria nitida and Dayaoshania cotinifolia forests, which are unique protective species and dominant species in the evergreen broadleaf forest, were decomposed alone and in all possible combinations, respectively. Our results showed that the mass loss of fresh leaf litter in three mixed-litter treatment was significantly higher than that in two mixed-litter treatment in the P. nitida and D. cotinifolia forests. Mass loss of fine root in the single litter treatment was significantly lower in the P. nitida forest and higher in the D. cotinifolia forest compared to that in the other litter treatments. There were insignificant differences in the activities of β-glucosidase (BG) and leucine aminopeptidase (LAP) between control and mixed-litter treatment in the P. nitida forest and between control and single litter treatment in the D. cotinifolia forest. The N-acetyl-β-D-glucosaminidase (NAG) activity was significantly increased by the single litter decomposition of fresh leaf and fine root and three mixed-litter decomposition in the P. nitida and D. cotinifolia forests. The activity of acid phospomonoesterase (AP) in the decomposition of fresh leaf litter was lower in the P. nitida forest and higher in the D. cotinifolia forest compared to that in control. The most dominant soil bacteria were Proteobacteria in the P. nitida forest and were Actinobacteria and Proteobacteria in the D. cotinifolia forest. Shannon, Chao1, ACE and PD indexes in the mixed-litter decomposition of fresh leaf and semi-decomposition litter were higher than that in control in P. nitida forest. There were insignificant differences in observed species and indexes of Chao1, ACE and PD between litter treatments in the D. cotinifolia forest. Richness of mixed-litter significantly affected mass loss, soil enzyme activity and microbial diversity in the P. nitida forest. Litter N concentration and the presence of fresh leaf litter were significantly correlated with the mass loss and soil enzyme activity in the P. nitida and D. cotinifolia forests. These results indicated that the presence of fresh leaf litter showed a non-negligible influence on mixed-litter decomposition and soil enzyme activity, which might be partly explained by litter initial quality in the P. nitida and D. cotinifolia forests.
Collapse
Affiliation(s)
- Bing Mao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, China
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Tingting Cui
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, China
| | - Tongqing Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, China
| | - Feng Lu
- Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi, Laibin, China
| | - Hongxin Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, China
- Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi, Laibin, China
| | - Jianbing Zhang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, China
| | - Shuangshuang Xiao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning, China
| |
Collapse
|
3
|
Boey JS, Mortimer R, Couturier A, Worrallo K, Handley KM. Estuarine microbial diversity and nitrogen cycling increase along sand-mud gradients independent of salinity and distance. Environ Microbiol 2021; 24:50-65. [PMID: 33973326 DOI: 10.1111/1462-2920.15550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023]
Abstract
Estuaries are depositional environments prone to terrigenous mud sedimentation. While macrofaunal diversity and nitrogen retention are greatly affected by changes in sedimentary mud content, its impact on prokaryotic diversity and nitrogen cycling activity remains understudied. We characterized the composition of estuarine tidal flat prokaryotic communities spanning a habitat range from sandy to muddy sediments, while controlling for salinity and distance. We also determined the diversity, abundance and expression of ammonia oxidizers and N2 O-reducers within these communities by amoA and clade I nosZ gene and transcript analysis. Results show that prokaryotic communities and nitrogen cycling fractions were sensitive to changes in sedimentary mud content, and that changes in the overall community were driven by a small number of phyla. Significant changes occurred in prokaryotic communities and N2 O-reducing fractions with only a 3% increase in mud, while thresholds for ammonia oxidizers were less distinct, suggesting other factors are also important for structuring these guilds. Expression of nitrogen cycling genes was substantially higher in muddier sediments, and results indicate that the potential for coupled nitrification-denitrification became increasingly prevalent as mud content increased. Altogether, results demonstrate that mud content is a strong environmental driver of diversity and N-cycling dynamics in estuarine microbial communities.
Collapse
Affiliation(s)
- Jian Sheng Boey
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Redmond Mortimer
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Agathe Couturier
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,Ecole Supérieure de Biologie Biochimie Biotechnologies, Faculté des Sciences, Université Catholique de Lyon, Lyon, France
| | - Katie Worrallo
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Kim M Handley
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Ma Y, Huang S, Gan Z, Xiong Y, Cai R, Liu Y, Wu L, Ge G. The succession of bacterial and fungal communities during decomposition of two hygrophytes in a freshwater lake wetland. Ecosphere 2020. [DOI: 10.1002/ecs2.3242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yantian Ma
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Shihao Huang
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Zhiwei Gan
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Yong Xiong
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Runfa Cai
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Yajun Liu
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Lan Wu
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| | - Gang Ge
- School of Life Science Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education Nanchang University Nanchang330022China
| |
Collapse
|
5
|
Smith MW, Herfort L, Rivers AR, Simon HM. Genomic Signatures for Sedimentary Microbial Utilization of Phytoplankton Detritus in a Fast-Flowing Estuary. Front Microbiol 2019; 10:2475. [PMID: 31749780 PMCID: PMC6848030 DOI: 10.3389/fmicb.2019.02475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023] Open
Abstract
In fast-flowing, river-dominated estuaries, “hotspots” of microbial biogeochemical cycling can be found within areas of extended water retention. Lateral bays located off of the North and South channels of the Columbia River estuary are proposed to be such hotspots. Previous metagenomic studies on water samples indicated that these regions function both as sources and sinks of biogenic particles, with potential to impact organic matter fluxes in the estuary. To extend this work, we analyzed 11 sediment metagenomes from three disparate bays: the freshwater Cathlamet Bay, and the brackish Youngs Bay and more saline Baker Bay located nearer the mouth to the south and north of the main channel, respectively. Samples were collected from upper layers of sediments in August of 2011 and 2013 for DNA extraction and metagenome sequencing. All metagenomes were dominated by bacterial sequences, although diatom sequences as high as 26% of the total annotated sequences were observed in the higher salinity samples. Unsupervised 2D hierarchical clustering analysis resulted in the eleven metagenome samples clustered into four groups by microbial taxonomic composition, with Bacteroides, diatom, and phage levels driving most of the grouping. Results of functional gene clustering further indicated that diatom bloom degradation stage (early vs. late) was an important factor. While the Flavobacteriia and Cytophagia classes were well represented in metagenomes containing abundant diatoms, taxa from the Bacteroidia class, along with certain members of the Sphingobacteriia class, were particularly abundant in metagenomes representing later stages of diatom decomposition. In contrast, the sediment metagenomes with low relative abundance of diatom and Bacteroidetes sequences appeared to have a metabolic potential biased toward microbial growth under nutrient limitation. While differences in water salinity clearly also influenced the microbial community composition and metabolic potential, our results highlight a central role for allochthonous labile organic matter (i.e., diatom detritus), in shaping bacterial taxonomic and functional properties in the Columbia River estuary lateral bay sediments. These results suggest that in fast-flowing, river-dominated estuaries, sediment microbial communities in areas of extended water retention, such as the lateral bays, may contribute disproportionately to estuarine organic matter degradation and recycling.
Collapse
Affiliation(s)
- Maria W Smith
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States
| | - Lydie Herfort
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, United States
| | - Adam R Rivers
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Holly M Simon
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
6
|
Microbial Consortia versus Single-Strain Inoculants: An Advantage in PGPM-Assisted Tomato Production? AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9020105] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of biostimulants with plant growth-promoting properties, but without significant input of nutrients, is discussed as a strategy to increase stress resistance and nutrient use efficiency of crops. However, limited reproducibility under real production conditions remains a major challenge. The use of combination products based on microbial and non-microbial biostimulants or microbial consortia, with the aim to exploit complementary or synergistic interactions and increase the flexibility of responses under different environmental conditions, is discussed as a potential strategy to overcome this problem. This study aimed at comparing the efficiency of selected microbial single-strain inoculants with proven plant-growth promoting potential versus consortium products under real production conditions in large-scale tomato cultivation systems, exposed to different environmental challenges. In a protected greenhouse production system at Timisoara, Romania, with composted cow manure, guano, hair-, and feather-meals as major fertilizers, different fungal and bacterial single-strain inoculants, as well as microbial consortium products, showed very similar beneficial responses. Nursery performance, fruit setting, fruit size distribution, seasonal yield share, and cumulative yield (39–84% as compared to the control) were significantly improved over two growing periods. By contrast, superior performance of the microbial consortia products (MCPs) was recorded under more challenging environmental conditions in an open-field drip-fertigated tomato production system in the Negev desert, Israel with mineral fertilization on a high pH (7.9), low fertility, and sandy soil. This was reflected by improved phosphate (P) acquisition, a stimulation of vegetative shoot biomass production and increased final fruit yield under conditions of limited P supply. Moreover, MCP inoculation was associated with selective changes of the rhizosphere-bacterial community structure particularly with respect to Sphingobacteriia and Flavobacteria, reported as salinity indicators and drought stress protectants. Phosphate limitation reduced the diversity of bacterial populations at the root surface (rhizoplane) and this effect was reverted by MCP inoculation, reflecting the improved P status of the plants. The results support the hypothesis that the use of microbial consortia can increase the efficiency and reproducibility of BS-assisted strategies for crop production, particularly under challenging environmental conditions.
Collapse
|
7
|
Lan M, Li M, Liu J, Quan X, Li Y, Li B. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system. BIORESOURCE TECHNOLOGY 2018; 270:120-128. [PMID: 30216921 DOI: 10.1016/j.biortech.2018.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Coal chemical reverse osmosis concentrate (ROC), which is characterized by high salinity and high organics, remains as a serious environmental problem. In this study, a lab-scale three-stage membrane-aerated biofilm reactor (MABR) system was designed to treat such a ROC. The effects of influent salinity and operating parameters (pH, DO and HRT) on the treatment efficiency were discussed. The removal efficiencies of COD, NH4-N and TN under the optimal operating parameters reached to 81.01%, 92.31% and 70.72%, respectively. Simultaneous nitrification and denitrification (SND) as well as shortcut nitrogen removal were achieved. The salinity less than 3% did not induce significant decrease in treatment efficiency and microbial communities. Moreover, the dominant phyla in biofilms were Proteobacteria and Bacteroidetes. This work demonstrated MABR had great potential in ROC treatment.
Collapse
Affiliation(s)
- Meichao Lan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Mei Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Jun Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiao Quan
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Yi Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Baoan Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
8
|
Iwaoka C, Imada S, Taniguchi T, Du S, Yamanaka N, Tateno R. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk. MICROBIAL ECOLOGY 2018; 75:985-996. [PMID: 29032430 DOI: 10.1007/s00248-017-1090-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.
Collapse
Affiliation(s)
- Chikae Iwaoka
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Sakyo, Kyoto, 606-8502, Japan.
| | - Shogo Imada
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
- Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori, 039-3212, Japan
| | - Takeshi Taniguchi
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi, 712100, China
| | - Norikazu Yamanaka
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Zhao B, Xing P, Wu QL. Microbes participated in macrophyte leaf litters decomposition in freshwater habitat. FEMS Microbiol Ecol 2018; 93:4103542. [PMID: 28961908 DOI: 10.1093/femsec/fix108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/01/2017] [Indexed: 11/14/2022] Open
Abstract
Knowledge of aquatic microbes involved in macrophyte leaf litter decomposition is still scarce in freshwater lakes. In situ experiments (150 days) were conducted to study the decomposition processes of macrophyte leaf litters: Zizania latifolia (Zl), Hydrilla verticillata (Hv) and Nymphoides peltata (Np). The decomposition of Np leaf litter was fastest, whereas Zl was slowest. The alpha diversity of both bacterial and fungal communities significantly increased, and their community structures showed significant variations over time. For bacteria, the relative abundance of Gammaproteobacteria decreased, whereas that of Firmicutes, Betaproteobacteria, Deltaproteobacteria and Alphaproteobacteria increased. The dominant fungal phylum Cryptomycota increased significantly in all of the three macrophytes. Both bacteria and fungi were significantly correlated with the dynamics of total phosphorous in the water and the carbon content of the leaf litters. The dynamics of nitrogen content, phosphorous content and N/P ratio of the leaf litters have more influences on fungal communities than on bacteria. In addition, cellulase and xylanase activities were significantly correlated with bacterial and fungal communities, respectively, thereby reflecting the niches differentiation and cooperation between bacteria and fungi on litter decomposition. This work contributes to the understanding of microbially involved carbon and nutrient cycling in macrophyte-dominated freshwater ecosystems.
Collapse
Affiliation(s)
- Biying Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100039, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
10
|
Crespo-Medina M, Bowles MW, Samarkin VA, Hunter KS, Joye SB. Microbial diversity and activity in seafloor brine lake sediments (Alaminos Canyon block 601, Gulf of Mexico). GEOBIOLOGY 2016; 14:483-498. [PMID: 27444236 DOI: 10.1111/gbi.12185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
The microbial communities thriving in deep-sea brines are sustained largely by energy rich substrates supplied through active seepage. Geochemical, microbial activity, and microbial community composition data from different habitats at a Gulf of Mexico brine lake in Alaminos Canyon revealed habitat-linked variability in geochemistry that in turn drove patterns in microbial community composition and activity. The bottom of the brine lake was the most geochemically extreme (highest salinity and nutrient concentrations) habitat and its microbial community exhibited the highest diversity and richness indices. The habitat at the upper halocline of the lake hosted the highest rates of sulfate reduction and methane oxidation, and the largest inventories of dissolved inorganic carbon, particulate organic carbon, and hydrogen sulfide. Statistical analyses indicated a significant positive correlation between the bacterial and archaeal diversity in the bottom brine sample and NH4+ inventories. Other environmental factors with positive correlation with microbial diversity indices were DOC, H2 S, and DIC concentrations. The geochemical regime of different sites within this deep seafloor extreme environment exerts a clear selective force on microbial communities and on patterns of microbial activity.
Collapse
Affiliation(s)
- M Crespo-Medina
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - M W Bowles
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - V A Samarkin
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - K S Hunter
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - S B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Jessen GL, Lichtschlag A, Struck U, Boetius A. Distribution and Composition of Thiotrophic Mats in the Hypoxic Zone of the Black Sea (150-170 m Water Depth, Crimea Margin). Front Microbiol 2016; 7:1011. [PMID: 27446049 PMCID: PMC4925705 DOI: 10.3389/fmicb.2016.01011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 01/28/2023] Open
Abstract
At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150-170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km(2) on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25-55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria which are adapted to exploit steep gradients in oxygen and sulfide availability; in addition to a specific seafloor topography which may relate to internal waves at the shelf break.
Collapse
Affiliation(s)
- Gerdhard L Jessen
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Anna Lichtschlag
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Ulrich Struck
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung Berlin, Germany
| | - Antje Boetius
- HGF-MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Alfred Wegener Institute, Helmholtz Center for Polar and Marine ResearchBremerhaven, Germany
| |
Collapse
|
12
|
Almutairi A. Spatial-temporal variations and diversity of the bacterioplankton communities in the coastal waters of Kuwait. MARINE POLLUTION BULLETIN 2015; 100:699-709. [PMID: 26404068 DOI: 10.1016/j.marpolbul.2015.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/23/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The dynamics and composition of the bacterial community in the coastal waters of Kuwait are poorly understood. In this study, the spatial-temporal variations in the bacterial composition in the surface water along the Kuwaiti coast was examined by 16S rRNA denaturing gradient gel electrophoresis (DGGE) fingerprinting and phylogeny analyses. The sampling sites were Kuwait Bay, Al-Sabbiya (north of the bay) and Al-Khairan (to the south). The bacterial composition was more variable in the summer for all sites. A cluster analysis of the DGGE fingerprint revealed two main clusters, indicating a temporal similarity between sites. Kuwait Bay and Al-Khairan were more similar to each other than to Al-Sabbiya. The bacterial community composition exhibited distinctive spatial variations, with more diversity at Al-Khairan and less diversity at Al-Sabbiya. At all sites, the dominant bacteria were Alphaproteobacteria, in particular Rhodobacteraceae, followed by Alteromonadaceae (Gammaproteobacteria) and Bacteroidetes.
Collapse
Affiliation(s)
- Awatef Almutairi
- Kuwait University, Faculty of Science, Department of Biological Sciences, P.O. Box 5969, Safat 13060, Kuwait.
| |
Collapse
|
13
|
Campbell AM, Fleisher J, Sinigalliano C, White JR, Lopez JV. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida. Microbiologyopen 2015; 4:390-408. [PMID: 25740409 PMCID: PMC4475383 DOI: 10.1002/mbo3.245] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/09/2015] [Accepted: 01/26/2015] [Indexed: 02/01/2023] Open
Abstract
Coastal waters adjacent to populated southeast Florida possess different habitats (reefs, oceanic inlets, sewage outfalls) that may affect the composition of their inherent microbiomes. To determine variation according to site, season, and depth, over the course of 1 year, we characterized the bacterioplankton communities within 38 nearshore seawater samples derived from the Florida Area Coastal Environment (FACE) water quality survey. Six distinct coastal locales were profiled – the Port Everglades and Hillsboro Inlets, Hollywood and Broward wastewater outfalls, and associated reef sites using culture-independent, high-throughput pyrosequencing of the 16S rRNA V4 region. More than 227,000 sequences helped describe longitudinal taxonomic profiles of marine bacteria and archaea. There were 4447 unique operational taxonomic units (OTUs) identified with a mean OTU count of 5986 OTUs across all sites. Bacterial taxa varied significantly by season and by site using weighted and unweighted Unifrac, but depth was only supported by weighted Unifrac, suggesting a change due to presence/absence of certain OTUs. Abundant microbial taxa across all samples included Synechococcus, Pelagibacteraceae, Bacteroidetes, and various Proteobacteria. Unifrac analysis confirmed significant differences at inlet sites relative to reef and outfalls. Inlet-based bacterioplankton significantly differed in greater abundances of Rhodobacteraceae and Cryomorphaceae, and depletion of SAR406 sequences. This study also found higher counts of Firmicutes, Chloroflexi, and wastewater associated SBR1093 bacteria at the outfall and reef sites compared to inlet sites. This study profiles local bacterioplankton populations in a much broader context, beyond culturing and quantitative PCR, and expands upon the work completed by the National Oceanic and Atmospheric Administration FACE program.
Collapse
Affiliation(s)
- Alexandra M Campbell
- Center of Excellence in Coral Reef Ecosystem Research, Nova Southeastern University, Dania Beach, Florida, 33004
| | - Jay Fleisher
- School of Osteopathic Medicine, Nova Southeastern University, 3301 College Avenue, Davie, Florida, 33004
| | - Christopher Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, 33149
| | | | - Jose V Lopez
- Center of Excellence in Coral Reef Ecosystem Research, Nova Southeastern University, Dania Beach, Florida, 33004
| |
Collapse
|
14
|
Li J, Li N, Li F, Zou T, Yu S, Wang Y, Qin S, Wang G. Spatial diversity of bacterioplankton communities in surface water of northern South China Sea. PLoS One 2014; 9:e113014. [PMID: 25402458 PMCID: PMC4234503 DOI: 10.1371/journal.pone.0113014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/21/2014] [Indexed: 11/23/2022] Open
Abstract
The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Nan Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Fuchao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tao Zou
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Shuxian Yu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yinchu Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- * E-mail: (SQ); (GW)
| | - Guangyi Wang
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Sciences and Engineering, Tianjin University, Tianjin, China
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail: (SQ); (GW)
| |
Collapse
|
15
|
Darjany LE, Whitcraft CR, Dillon JG. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 2014; 5:263. [PMID: 24917856 PMCID: PMC4040508 DOI: 10.3389/fmicb.2014.00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/25/2022] Open
Abstract
Carbon cycling by microbes has been recognized as the main mechanism of organic matter decomposition and export in coastal wetlands, yet very little is known about the functional diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their diversity and functional roles within salt marsh benthic food web pathways. We used DNA stable isotope probing (SIP) utilizing 13C-labeled lignocellulose as a proxy to evaluate the fate of macrophyte-derived carbon in benthic salt marsh bacterial communities. Overall, 146 bacterial species were detected using SIP, of which only 12 lineages were shared between enriched and non-enriched communities. Abundant groups from the 13C-labeled community included Desulfosarcina, Spirochaeta, and Kangiella. This study is the first to use heavy-labeled lignocellulose to identify bacteria responsible for macrophyte carbon utilization in salt marsh sediments and will allow future studies to target specific lineages to elucidate their role in salt marsh carbon cycling and ultimately aid our understanding of the potential of salt marshes to store carbon.
Collapse
Affiliation(s)
- Lindsay E Darjany
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | | | - Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach, CA, USA
| |
Collapse
|
16
|
Lucas J, García-Villaraco A, Ramos B, García-Cristobal J, Algar E, Gutierrez-Mañero J. Structural and functional study in the rhizosphere of Oryza sativa
L. plants growing under biotic and abiotic stress. J Appl Microbiol 2013; 115:218-35. [DOI: 10.1111/jam.12225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 04/08/2013] [Indexed: 11/30/2022]
Affiliation(s)
- J.A. Lucas
- Department of Biology; Faculty of Pharmacy; Univ. San Pablo CEU; Madrid Spain
| | - A. García-Villaraco
- Department of Biology; Faculty of Pharmacy; Univ. San Pablo CEU; Madrid Spain
| | - B. Ramos
- Department of Biology; Faculty of Pharmacy; Univ. San Pablo CEU; Madrid Spain
| | - J. García-Cristobal
- Department of Biology; Faculty of Pharmacy; Univ. San Pablo CEU; Madrid Spain
| | - E. Algar
- Department of Biology; Faculty of Pharmacy; Univ. San Pablo CEU; Madrid Spain
| | - J. Gutierrez-Mañero
- Department of Biology; Faculty of Pharmacy; Univ. San Pablo CEU; Madrid Spain
| |
Collapse
|
17
|
Interspecies variation in survival and growth of filamentous heterotrophic bacteria in response to UVC radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:234-42. [PMID: 21530299 DOI: 10.1016/j.jphotobiol.2011.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/14/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Ultraviolet radiation is an important environmental constraint on the evolution of life. In addition to its harmful effects, ultraviolet radiation plays an important role in generating genetic polymorphisms and acting as a selective agent. Understanding how prokaryotes cope with high radiation can give insights on the evolution of life on Earth. Four representative filamentous bacteria from the family Cytophagaceae with different pigmentation were selected and exposed to different doses of UVC radiation (15-32,400Jm(-2)). The effect of UVC radiation on bacterial survival, growth and morphology were investigated. Results showed high survival in response to UVC for Rudanella lutea and Fibrisoma limi, whereas low survival was observed for Fibrella aestuarina and Spirosoma linguale. S. linguale showed slow growth recovery after ultraviolet exposure, R. lutea and F. limi showed intermediate growth recovery, while F. aestuarina had the fastest recovery among the four tested bacteria. In terms of survival, S. linguale was the most sensitive bacterium whereas R. lutea and F. limi were better at coping with UVC stress. The latter two resumed growth even after 2h exposure (∼10,800Jm(-2)). Additionally, the ability to form multicellular filaments after exposure was tested using two bacteria: one representative of the high (R. lutea) and one of the low (F. aestuarina) survival rates. The ability to elongate filaments due to cell division was preserved but modified. In R. lutea 10min exposure reduced the average filament length. The opposite was observed in F. aestuarina, where the 5 and 10min exposures increased the average filament length. R. lutea and F. limi are potential candidates for further research into survival and resistance to ultraviolet radiation stress.
Collapse
|
18
|
Hutalle-Schmelzer KML, Zwirnmann E, Krüger A, Grossart HP. Changes in pelagic bacteria communities due to leaf litter addition. MICROBIAL ECOLOGY 2010; 60:462-475. [PMID: 20198369 DOI: 10.1007/s00248-010-9639-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
In many limnetic systems, the input of allochthonous organic matter, e.g., leaf litter, is a substantial source of dissolved organic carbon (DOC) for pelagic bacteria, especially in fall and winter when autochthonous DOC production is low. However, relatively little is known about community changes of pelagic lake bacteria due to leaf litter input which includes both the release of leaf leachates and microorganisms from the leaf litter into the surrounding water. Therefore, we have experimentally studied the effects of different types of leaf litter (Betula pendula, Fagus silvatica, and Pinus silvestris) on the pelagic bacterial community composition by adding leaves to different treatments of epilimnic water samples (unfiltered, 0.2 µm and 5.0 µm-pre-filtered) from humic Lake Grosse Fuchskuhle (Northeastern Germany). The addition of leaf litter led to a significant increase in DOC concentration in lake water, and each leaf litter type produced significantly different amounts of DOC (p = <0.001) as well as of specific DOC fractions (p = <0.001), except of polysaccharides. DGGE banding patterns varied over time, between types of leaf litter, and among treatments. Bacteria belonging to known bacterial phylotypes in the southwest basin of Lake Grosse Fuchskuhle were frequently found and even persisted after leaf litter additions. Upon leaf litter addition, α-proteobacteria (Azospirillum, Novosphingobium, and Sphingopyxis) as well as β-proteobacteria (Curvibacter and Polynucleobacter) were enriched. Our results indicate that supply of leaf litter DOM shifted the bacterial community in the surrounding water towards specific phylotypes including species capable of assimilating the more recalcitrant DOC pools. Statistical analyses, however, show that DGGE banding patterns are not only affected by DOC pools but also by treatment. This indicates that biological factors such as source community and grazing may be also important for shifts in bacterial community structure following leaf litter input into different lakes.
Collapse
|
19
|
Alteration of microbial communities colonizing leaf litter in a temperate woodland stream by growth of trees under conditions of elevated atmospheric CO2. Appl Environ Microbiol 2010; 76:4950-9. [PMID: 20543045 DOI: 10.1128/aem.00221-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated atmospheric CO(2) can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO(2) would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO(2), and their leaves were incubated in a woodland stream. Elevated-CO(2) treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO(2) treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall gram-positive bacterial sequences.
Collapse
|
20
|
Sei A, Fathepure B. Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. J Appl Microbiol 2009; 107:2001-8. [DOI: 10.1111/j.1365-2672.2009.04385.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Nielsen PH, Kragelund C, Seviour RJ, Nielsen JL. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev 2009; 33:969-98. [DOI: 10.1111/j.1574-6976.2009.00186.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Lasher C, Dyszynski G, Everett K, Edmonds J, Ye W, Sheldon W, Wang S, Joye SB, Moran MA, Whitman WB. The diverse bacterial community in intertidal, anaerobic sediments at Sapelo Island, Georgia. MICROBIAL ECOLOGY 2009; 58:244-61. [PMID: 19212699 PMCID: PMC2709879 DOI: 10.1007/s00248-008-9481-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/05/2008] [Indexed: 05/20/2023]
Abstract
The phylogenetic diversity and composition of the bacterial community in anaerobic sediments from Sapelo Island, GA, USA were examined using 16S rRNA gene libraries. The diversity of this community was comparable to that of soil, and 1,186 clones formed 817 OTUs at 99% sequence similarity. Chao1 estimators for the total richness were also high, at 3,290 OTUs at 99% sequence similarity. The program RDPquery was developed to assign clones to taxonomic groups based upon comparisons to the RDP database. While most clones could be assigned to describe phyla, fewer than 30% of the clones could be assigned to a described order. Similarly, nearly 25% of the clones were only distantly related (<90% sequence similarity) to other environmental clones, illustrating the unique composition of this community. One quarter of the clones were related to one or more undescribed orders within the gamma-Proteobacteria. Other abundant groups included the delta-Proteobacteria, Bacteroidetes, and Cyanobacteria. While these phyla were abundant in other estuarine sediments, the specific members at Sapelo Island appeared to be different from those previously described in other locations, suggesting that great diversity exists between as well as within estuarine intertidal sediments. In spite of the large differences in pore water chemistry with season and depth, differences in the bacterial community were modest over the temporal and spatial scales examined and generally restricted to only certain taxa.
Collapse
Affiliation(s)
- Chris Lasher
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605 USA
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061 USA
| | - Glen Dyszynski
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605 USA
- 2521 Piedmont Rd NE #2427, Atlanta, GA 30324 USA
| | - Karin Everett
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605 USA
- 6006 172nd Place SW, Lynnwood, 98037 USA
| | - Jennifer Edmonds
- Department of Marine Sciences, University of Georgia, Athens, GA 30605 USA
- Department of Biological Sciences, University of Alabama, P.O. Box 870206, Tuscaloosa, AL 35487 USA
| | - Wenying Ye
- Department of Marine Sciences, University of Georgia, Athens, GA 30605 USA
- Synthetic Genomics, Inc., La Jolla, CA 92037 USA
| | - Wade Sheldon
- Department of Marine Sciences, University of Georgia, Athens, GA 30605 USA
| | - Shiyao Wang
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605 USA
| | - Samantha B. Joye
- Department of Marine Sciences, University of Georgia, Athens, GA 30605 USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA 30605 USA
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605 USA
| |
Collapse
|
23
|
Penesyan A, Marshall-Jones Z, Holmstrom C, Kjelleberg S, Egan S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol Ecol 2009; 69:113-24. [PMID: 19453738 DOI: 10.1111/j.1574-6941.2009.00688.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The surfaces of marine eukaryotes provide a unique habitat for colonizing microorganisms where competition between members of these communities and chemically mediated interactions with their host are thought to influence both microbial diversity and function. For example, it is believed that marine eukaryotes may use their surface-associated bacteria to produce bioactive compounds in defence against competition and to protect the host against further colonization. With the increasing need for novel drug discovery, marine epibiotic bacteria may thus represent a largely underexplored source of new antimicrobial compounds. In the current study, 325 bacterial isolates were obtained from the surfaces of marine algae Delisea pulchra and Ulva australis. Thirty-nine showed to have antimicrobial activity and were identified via 16S rRNA gene sequencing. The majority of those isolates belonged to Alpha- and Gammaproteobacteria. Interestingly, the most commonly isolated bacterial strain, Microbulbifer sp., from the surface of D. pulchra has previously been described as an ecologically significant epibiont of different marine eukaryotes. Other antimicrobial isolates obtained in this study belonged to the phyla Actinobacteria, Firmicutes and Bacteroidetes. Phylogenetically, little overlap was observed among the bacteria obtained from surfaces of D. pulchra and U. australis. The high abundance of cultured isolates that produce antimicrobials suggest that culturing remains a powerful resource for exploring novel bioactives of bacterial origin.
Collapse
Affiliation(s)
- Anahit Penesyan
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, University of New South Wales (UNSW), Sydney, NSW 2025, Australia
| | | | | | | | | |
Collapse
|
24
|
Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, Krooneman J, Larsen P, Thomsen TR, Nielsen PH. Identity, abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants. MICROBIOLOGY-SGM 2008; 154:886-894. [PMID: 18310034 DOI: 10.1099/mic.0.2007/011684-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Filamentous members of the Bacteroidetes are commonly observed in activated sludge samples originating from both municipal and industrial wastewater treatment plants (WWTP), where they occasionally can cause bulking. Several oligonucleotide 16S rRNA-targeted probes were designed to target filaments with a needle-like appearance similar to Haliscomenobacter hydrossis. The design of these probes was based on an isolate and a sequence obtained from a micromanipulated filament. The abundance of filamentous Bacteroidetes was determined in 126 industrial samples applying already published and the newly developed probes. Small populations were found in 62 % of the WWTP investigated. However, only relatively few WWTP (13 %) contained large populations of filamentous Bacteroidetes potentially responsible for bulking incidences. The identity of the most abundant filamentous Bacteroidetes with H. hydrossis morphology could be detected by probes CFB719, SAP-309 and the newly designed probe HHY-654. A comprehensive study on the ecophysiology of probe-defined Bacteroidetes populations was conducted on Danish and Czech samples. The studies revealed that they were specialized bacteria involved in degradation of sugars, e.g. glucose and N-acetylglucosamine, and may participate in the conversion of lipopolysaccharides and peptidoglycan liberated by decaying cells. Many surface-associated exo-enzymes were excreted, e.g. chitinase, glucuronidase, esterase and phosphatase, supporting conversion of polysaccharides and possibly other released cell components. The role of filamentous bacteria with a H. hydrossis-like morphology in the activated sludge ecosystem is discussed.
Collapse
Affiliation(s)
- Caroline Kragelund
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| | | | - Arjan Borger
- Grontmij, De Holle Bilt 22, 3732 HM De Bilt Postbus 203, 3730 AE De Bilt, The Netherlands
| | - Karin Thelen
- VERMICON AG, Emmy-Noether-Str. 2, 80992 Munich, Germany
| | - Dick Eikelboom
- ASIS vof, Deventerweg 38, 7203 AK Zutphen, The Netherlands
| | - Valter Tandoi
- CNR, Water Research Institute, Via Reno 1, 00198 Rome, Italy
| | - Yunhong Kong
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| | - Janneke Krooneman
- BIOCLEAR Environmental Biotechnology, Rozenburglaan 13, 9727 DL Groningen, The Netherlands
| | - Poul Larsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| | - Trine Rolighed Thomsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
| |
Collapse
|
25
|
Alonso C, Warnecke F, Amann R, Pernthaler J. High local and global diversity of Flavobacteria in marine plankton. Environ Microbiol 2007; 9:1253-66. [PMID: 17472638 DOI: 10.1111/j.1462-2920.2007.01244.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Members of the phylum Bacteroidetes are among the most abundant microbes in coastal marine waters, but it is unclear to which extent the diversity within this phylum is covered by currently available 16S rRNA gene sequence information. We, thus, obtained a comprehensive collection of sequence types affiliated with Bacteroidetes in coastal North Sea surface waters and we compared this local diversity with the available sequences of marine planktonic and other aquatic Bacteroidetes. Approximately 15% of > 600 clones from two libraries (August 2000, June 2001) were related to Bacteroidetes, specifically to the Flavobacteria. Local diversity appeared to be almost exhaustively sampled. However, the diversity of the two libraries virtually did not overlap, indicating a pronounced temporal variability of the planktonic Flavobacteria assemblage. The majority of sequence types represented novel phylogenetic lineages, adding 6-7% to the currently known genera and species of Bacteroidetes in marine waters. Different diversity estimators suggested that so far only approximately half of the global diversity of planktonic marine Bacteroidetes has been described. The data set moreover indicated that cultivation-independent techniques and isolation approaches have recovered almost equally sized and virtually non-overlapping fractions of the currently known diversity within this phylum. Interestingly, only 15% of genera of Bacteroidetes from various aquatic environments appear to occur in more than one habitat type.
Collapse
Affiliation(s)
- Cecilia Alonso
- Limnological Station Kilchberg, University of Zürich, Switzerland, and Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | |
Collapse
|
26
|
Das M, Royer TV, Leff LG. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 2006; 73:756-67. [PMID: 17142366 PMCID: PMC1800785 DOI: 10.1128/aem.01170-06] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although fungi, bacteria, and specific bacterial taxa, such as the actinomycetes, have been studied extensively in various habitats, few studies have examined them simultaneously, especially on decomposing leaves in streams. In this study, sugar maple and white oak leaves were incubated in a stream in northeastern Ohio for 181 days during which samples were collected at regular intervals. Following DNA extraction, PCR-denaturing gradient gel electrophoresis (DGGE) was performed using fungus-, bacterium-, and actinomycete-specific primers. In addition, fungal and bacterial biomass was estimated. Fungal biomass differed on different days but not between leaves of the two species and was always greater than bacterial biomass. There were significant differences in bacterial biomass through time and between leaf types on some days. Generally, on the basis of DGGE, few differences in community structure were found for different leaf types. However, the ribotype richness of fungi was significantly greater than those of the bacteria and actinomycetes, which were similar to each other. Ribotype richness decreased toward the end of the study for each group except bacteria. Lack of differences between the two leaf types suggests that the microorganisms colonizing the leaf biofilm were primarily generalists that could exploit the resources of the leaves of either species equally well. Thus, we conclude that factors, such as the ecological role of the taxa (generalists versus specialists), stage of decay, and time of exposure, appeared to be more important determinants of microbial community structure than leaf quality.
Collapse
Affiliation(s)
- Mitali Das
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | |
Collapse
|
27
|
Ueki A, Akasaka H, Suzuki D, Hattori S, Ueki K. Xylanibacter oryzae gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, xylanolytic bacterium isolated from rice-plant residue in flooded rice-field soil in Japan. Int J Syst Evol Microbiol 2006; 56:2215-2221. [PMID: 16957124 DOI: 10.1099/ijs.0.64364-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, xylanolytic bacterium, strain KB3T, isolated from rice-plant residue in flooded anoxic rice-field soil in Japan, was characterized phenotypically and phylogenetically. Cells were Gram-negative, non-motile, non-spore-forming, short to filamentous rods. Growth of the strain was remarkably stimulated by the addition of haemin to the medium. The novel strain utilized various sugars including xylan, xylose, pectin and carboxymethylcellulose and produced acetate, propionate and succinate with a small amount of malate. Propionate production was stimulated by the addition of a B-vitamin mixture or cobalamin to the medium. The novel strain was slightly acidophilic with an optimum pH 5.7–6.2 and the optimum growth temperature was 30 °C. Oxidase, catalase and nitrate-reducing activities were negative. Aesculin was hydrolysed. The major cellular fatty acids were anteiso-C15 : 0 and iso-3-OH C17 : 0. The major respiratory quinones were menaquinones MK-12(H2) and MK-13(H2). The genomic DNA G+C content was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence placed the strain in the phylum Bacteroidetes. The closest related species was Prevotella bivia with a 16S rRNA gene sequence similarity of 89.5 %. Prevotella albensis and Prevotella oulorum were the next closest recognized species with sequence similarities of 89.1 %. Based on a comprehensive examination of the differences in phylogenetic, ecological, physiological and chemotaxonomic characteristics of strain KB3T and those of related species, a novel genus and species, Xylanibacter oryzae gen. nov., sp. nov., is proposed to accommodate strain KB3T. The type strain of the novel species is KB3T (=JCM 13648T=DSM 17970T).
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan
| | - Hiroshi Akasaka
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan
| | - Daisuke Suzuki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan
| | - Satoshi Hattori
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka 997-8555, Japan
| |
Collapse
|
28
|
Kwon KK, Lee HS, Jung HB, Kang JH, Kim SJ. Yeosuana aromativorans gen. nov., sp. nov., a mesophilic marine bacterium belonging to the family Flavobacteriaceae, isolated from estuarine sediment of the South Sea, Korea. Int J Syst Evol Microbiol 2006; 56:727-732. [PMID: 16585684 DOI: 10.1099/ijs.0.64073-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A marine bacterium, GW1-1T, capable of degrading benzo[a]pyrene (BaP), was isolated from estuarine sediments of the South Sea (the Korea Strait), Korea, after an enrichment culture maintained for 2 years in a medium supplemented with a mixture of BaP and pyrene. The strain formed yellowish-brown colonies on marine agar 2216. Cells were strictly aerobic, non-motile, Gram-negative rods and produced non-diffusible carotenoid pigments. Optimal growth occurred in the presence of 1 % (w/v) NaCl and at pH 7 and 33–36 °C. No growth occurred without supplementation with either CaCl2 or MgCl2, even in the presence of NaCl. Phylogenetic analysis based on the nearly complete sequence of the 16S rRNA gene revealed that the isolate formed a phyletic lineage with the genera Gelidibacter (93·9–94·7 % gene sequence similarity), Subsaximicrobium (93·3 %) and Subsaxibacter (93·9 %). The isolate also showed high sequence similarities to Gaetbulibacter saemankumensis (94·5 %), Algibacter lectus (94·2 %), members of the genus Bizionia (93·6–94·3 %) and Formosa algae (93·2 %), even though it belonged to a different phyletic line. The major respiratory quinones of the isolate were menaquinones MK-5 and MK-6. The DNA G+C content was 51·4 mol%. Dominant fatty acids were i-15 : 0, a-15 : 0, i-15 : 1ω10c and 16 : 1. On the basis of this polyphasic taxonomic evidence, strain GW1-1T is classified as a member of a novel genus and species in the family Flavobacteriaceae, for which the name Yeosuana aromativorans gen. nov., sp. nov. is proposed. The type strain of the type species is GW1-1T (=KCCM 42019T=JCM 12862T).
Collapse
Affiliation(s)
- Kae Kyoung Kwon
- Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute, PO Box 29 Ansan, 425-600, Republic of Korea
| | - Hee-Soon Lee
- Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute, PO Box 29 Ansan, 425-600, Republic of Korea
| | - Hong-Bae Jung
- Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute, PO Box 29 Ansan, 425-600, Republic of Korea
| | - Ji-Hyun Kang
- Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute, PO Box 29 Ansan, 425-600, Republic of Korea
| | - Sang-Jin Kim
- Marine Biotechnology Research Centre, Korea Ocean Research and Development Institute, PO Box 29 Ansan, 425-600, Republic of Korea
| |
Collapse
|
29
|
Litchfield CD, Sikaroodi M, Gillevet PM. 21 Characterization of Natural Communities of Halophilic Microorganisms. METHODS IN MICROBIOLOGY 2006. [DOI: 10.1016/s0580-9517(08)70024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|