1
|
Grim SL, Stuart DG, Aron P, Levin NE, Kinsman-Costello L, Waldbauer JR, Dick GJ. Seasonal shifts in community composition and proteome expression in a sulphur-cycling cyanobacterial mat. Environ Microbiol 2023; 25:2516-2533. [PMID: 37596970 DOI: 10.1111/1462-2920.16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/29/2023] [Indexed: 08/21/2023]
Abstract
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.
Collapse
Affiliation(s)
- Sharon L Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Dack G Stuart
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Phoebe Aron
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Naomi E Levin
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Nosalova L, Piknova M, Kolesarova M, Pristas P. Cold Sulfur Springs-Neglected Niche for Autotrophic Sulfur-Oxidizing Bacteria. Microorganisms 2023; 11:1436. [PMID: 37374938 DOI: 10.3390/microorganisms11061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Since the beginning of unicellular life, dissimilation reactions of autotrophic sulfur bacteria have been a crucial part of the biogeochemical sulfur cycle on Earth. A wide range of sulfur oxidation states is reflected in the diversity of metabolic pathways used by sulfur-oxidizing bacteria. This metabolically and phylogenetically diverse group of microorganisms inhabits a variety of environments, including extreme environments. Although they have been of interest to microbiologists for more than 150 years, meso- and psychrophilic chemolithoautotrophic sulfur-oxidizing microbiota are less studied compared to the microbiota of hot springs. Several recent studies suggested that cold sulfur waters harbor unique, yet not described, bacterial taxa.
Collapse
Affiliation(s)
- Lea Nosalova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Maria Piknova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Mariana Kolesarova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Peter Pristas
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| |
Collapse
|
3
|
Cobo F, Barca S, Flores C, Caixach J, Cobo MC, Vieira-Lanero R. Can cyanotoxins explain the clinical features of the thermal crisis in balneotherapy? HARMFUL ALGAE 2022; 115:102240. [PMID: 35623694 DOI: 10.1016/j.hal.2022.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Microbial biofilms communities in mineral waters and hot springs have a particular composition with species belonging to different groups such as epsilonproteobacteria and gammaproteobacteria or different siderobacteria and other chymoautrophic organisms, in addition to certain bacillaryophytes, chlorophytes and especially cyanobacteria. Balneotherapy can cause adverse reactions to the usual doses of application of treatments, that consists of a non-specific clinical picture, the so-called "thermal crisis" or "balneointoxication". Despite its clinical similarity (gastric discomfort, hepatic congestive outbreaks, cutaneous reactions, etc.) with that observed in acute cyanotoxin poisonings, thermal crisis has never been associated with the abundant growth of potentially toxic cyanobacteria in the mineral water sources. The aim of this work was to verify the hypothetical involvement of cyanotoxins in this clinical picture. Samples from mostly sulphurous water sources, with thermal characteristics ranging from cold to hyperthermal waters were analysed. ELISA (both in solution and in cellular matrix samples), LC-ESI-HRMS (in cellular matrix samples), and analysis of potential toxicity by means of a standardized bioassay were carried out. The toxic effect observed in the toxicity bioassays in one third of the sources may be related to the existence of microcystins and nodularins and even with other cyanobacterial peptides detected. In addition, several responses observed in the toxicity analyses reflect a pattern, probably linked to a type of hormetic response (hormesis is an adaptive response to low levels of stress, characterized by a biphasic dose-response curve).
Collapse
Affiliation(s)
- Fernando Cobo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela (A Coruña), Spain.
| | - Sandra Barca
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela (A Coruña), Spain.
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - M Carmen Cobo
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama. Tuscaloosa, United States of America
| | - Rufino Vieira-Lanero
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela (A Coruña), Spain
| |
Collapse
|
4
|
Martín-Clemente E, Melero-Jiménez IJ, Bañares-España E, Flores-Moya A, García-Sánchez MJ. Adaptation dynamics and evolutionary rescue under sulfide selection in cyanobacteria: a comparative study between Microcystis aeruginosa and Oscillatoria sp. (cyanobacteria). JOURNAL OF PHYCOLOGY 2019; 55:1348-1360. [PMID: 31393602 DOI: 10.1111/jpy.12911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Experimental evolution studies using cyanobacteria as model organisms are scarce despite the role of cyanobacteria in the evolution of photosynthesis. Three different experimental evolution approaches have been applied to shed light on the sulfide adaptation process, which played a key role in the evolution of this group. We used a Microcystis aeruginosa sulfide-sensitive strain, unable to grow above ~0.1 mM, and an Oscillatoria sp. strain, isolated from a sulfureous spa (~0.2 mM total sulfide). First, performing a fluctuation analysis design using the spa waters as selective agent, we proved that M. aeruginosa was able to adapt to this sulfide level by rare spontaneous mutations. Second, applying a ratchet protocol, we tested if the limit of adaptation to sulfide of the two taxa was dependent on their initial sulfide tolerance, finding that M. aeruginosa adapted to 0.4 mM sulfide, and Oscillatoria sp. to ~2 mM sulfide, twice it highest tolerance level. Third, using an evolutionary rescue approach, we observed that both speed of exposure to increasing sulfide concentrations (deterioration rate) and populations' genetic variation determined the survival of M. aeruginosa at lethal sulfide levels, with a higher dependence on genetic diversity. In conclusion, sulfide adaptation of sensitive cyanobacterial strains is possible by rare spontaneous mutations and the adaptation limits depend on the sulfide level present in strain's original habitat. The high genetic diversity of a sulfide-sensitive strain, even at fast environmental deterioration rates, could increase its possibility of survival even to a severe sulfide stress.
Collapse
Affiliation(s)
- Elena Martín-Clemente
- Departamento de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Ignacio J Melero-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Elena Bañares-España
- Departamento de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - María J García-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| |
Collapse
|
5
|
Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii. ISME JOURNAL 2018; 12:568-584. [PMID: 29328062 PMCID: PMC5776472 DOI: 10.1038/ismej.2017.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023]
Abstract
We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring—a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.
Collapse
|
6
|
Madinger HL, Wilson KP, Goldstein JA, Bernot MJ. Biogeochemistry and Nutrient Limitation of Microbial Biofilms in Devils Hole, Nevada. WEST N AM NATURALIST 2016. [DOI: 10.3398/064.076.0107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Noguerola I, Picazo A, Llirós M, Camacho A, Borrego CM. Diversity of freshwaterEpsilonproteobacteriaand dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake. FEMS Microbiol Ecol 2015. [PMID: 26195601 DOI: 10.1093/femsec/fiv086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Imma Noguerola
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology and Department of Microbiology and Ecology, Edificio de Investigación 'Jeroni Muñoz', Campus de Burjassot, Universitat de Valencia, E-46100, Burjassot, Valencia, Spain
| | - Marc Llirós
- Université Catholique de Louvain, Institut des Sciences de la Vie, Place Croix du Sud, 4/5 L07.07.06, B-1348 Louvain-La-Neuve, Belgium
| | - Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology and Department of Microbiology and Ecology, Edificio de Investigación 'Jeroni Muñoz', Campus de Burjassot, Universitat de Valencia, E-46100, Burjassot, Valencia, Spain
| | - Carles M Borrego
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain Water Quality and Microbial Diversity, Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, E-17003 Girona, Spain
| |
Collapse
|
8
|
Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs. DIVERSITY-BASEL 2014. [DOI: 10.3390/d6030597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Extreme environments are characterised by the presence of physicochemical stressors and provide unique study systems to address problems in evolutionary ecology research. Sulphide springs provide an example of extreme freshwater environments; because hydrogen sulphide’s adverse physiological effects induce mortality in metazoans even at micromolar concentrations. Sulphide springs occur worldwide, but while microbial communities in sulphide springs have received broad attention, little is known about macroinvertebrates and fish inhabiting these toxic environments. We reviewed qualitative occurrence records of sulphide spring faunas on a global scale and present a quantitative case study comparing diversity patterns in sulphidic and adjacent non-sulphidic habitats across replicated river drainages in Southern Mexico. While detailed studies in most regions of the world remain scarce, available data suggests that sulphide spring faunas are characterised by low species richness. Dipterans (among macroinvertebrates) and cyprinodontiforms (among fishes) appear to dominate the communities in these habitats. At least in fish, there is evidence for the presence of highly endemic species and populations exclusively inhabiting sulphide springs. We provide a detailed discussion of traits that might predispose certain taxonomic groups to colonize sulphide springs, how colonizers subsequently adapt to cope with sulphide toxicity, and how adaptation may be linked to speciation processes.
Collapse
|
9
|
Headd B, Engel AS. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs. Front Microbiol 2014; 5:473. [PMID: 25250021 PMCID: PMC4157610 DOI: 10.3389/fmicb.2014.00473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/21/2014] [Indexed: 11/13/2022] Open
Abstract
Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change.
Collapse
Affiliation(s)
- Brendan Headd
- Department of Earth and Planetary Sciences, University of Tennessee Knoxville, TN, USA
| | - Annette S Engel
- Department of Earth and Planetary Sciences, University of Tennessee Knoxville, TN, USA
| |
Collapse
|
10
|
Konkol NR, Bruckner JC, Aguilar C, Lovalvo D, Maki JS. Dominance of epiphytic filamentous Thiothrix spp. on an aquatic macrophyte in a hydrothermal vent flume in Sedge Bay, Yellowstone Lake, Wyoming. MICROBIAL ECOLOGY 2010; 60:528-538. [PMID: 20386899 DOI: 10.1007/s00248-010-9656-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
Sublacustrine hydrothermal vents, geysers, and fumaroles impart regions of Yellowstone Lake with distinctive chemical compositions that generate unique freshwater habitats and support diverse microbial life. Some microbial communities within Sedge Bay manifest themselves as accumulations of white-colored films on the surfaces of aquatic macrophytes located within the hydrothermal flow of vents. It was hypothesized that the white films were the product of microbial growth, particularly sulfur-oxidizing bacteria. An investigation of the relevant biological compounds in the vent waters was conducted. Microscopy, non-culture molecular techniques, and phylogenetic analysis were used to assay the bacterial diversity associated with the films. Microscopic analysis of the white films revealed the presence of long filaments (>200 μm) that contained sulfur granules. Filaments with these characteristics were not detected on the normal macrophyte samples. Nucleic acids were extracted from the surface of macrophyte coated with the white film (SB1, SB2) and from the surface of an uncoated macrophyte (SC). 16S ribosomal (rRNA) genes were amplified with the polymerase chain reaction (PCR) and cloned. Amplified ribosomal DNA restriction analysis (ARDRA) was used to examine 100 clones from each library and identify unique phylotypes. S(Chao1) and the Shannon Index, mathematical measures of richness and heterogeneity, were employed to assess the ARDRA pattern diversity of each sample. The SC community contained 50 unique phylotypes, predominantly cyanobacteria and proteobacteria, and was the most heterogeneous. SB1 and SB2 communities were less heterogeneous and dominated by Thiothrix. Dilution to extinction PCR conducted with specific primers indicated that the relative abundance of Thiothrix 16S rRNA gene copies in all three samples were similar. However, reduced sulfur compounds from the vent resulted in a more narrow habitat that supported the sulfur-oxidizing Thiothrix in the white film to the exclusion of cyanobacteria and other proteobacteria found on the normal macrophyte. The majority of 16S rRNA gene sequences obtained in this study displayed similarities ≤98% to any known sequence in public data bases which suggests an abundance of new bacterial species in Sedge Bay.
Collapse
Affiliation(s)
- Nick R Konkol
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA
| | | | | | | | | |
Collapse
|
11
|
Zeng J, Yang HM, Lou K. Prokaryotic diversity of a non-sulfide, low-salt cold spring sediment of Shawan County, China. J Basic Microbiol 2010; 50:484-93. [PMID: 20806248 DOI: 10.1002/jobm.200900411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prokaryotic diversity of a non-sulfide, low-salt cold spring sediment was investigated by constructing bacterial and archaeal clone libraries of the 16S rRNA gene. 241 bacterial clones were screened, which could be grouped into 86 ribotypes, based on restriction fragment length polymorphism (RFLP) analysis. These were divided into 11 phyla (Actinobacteria, Acidobacteria, Bacteroidetes, Chlorobi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria, Planctomycetes and Verrucomicrobia). Of these, Acidobacteria and Proteobacteria were the most dominant, representing 48% and 25% of the total bacteria clone library, respectively. For the archaeal clone library, 121 positive clones were screened and 22 ribotypes were determined. BLAST analysis indicated that all ribotypes were affiliated with the phylum Crenarchaeota. Phylogenetic analysis classified them into three subgroups (Groups I-III). Groups I and III, belonging to the Soil-Freshwater-subsurface group and Marine group I, respectively, were the dominant groups, representing 50% and 47% of the library, respectively. Of them, 20% of ribotypes were related to the cold-loving Crenarchaeota. These findings show that bacteria in spring sediments are more diverse than are archaea; in addition, the spring harbors a large number of novel bacterial and archaeal species and maybe exist novel lineages.
Collapse
Affiliation(s)
- Jun Zeng
- Institute of Microbiology, Xinjiang Academy of Agriculture Science, Urumqi, China
| | | | | |
Collapse
|
12
|
Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low Earth orbit. Appl Environ Microbiol 2010; 76:2115-21. [PMID: 20154120 DOI: 10.1128/aem.02547-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many cyanobacteria are known to tolerate environmental extremes. Motivated by an interest in selecting cyanobacteria for applications in space, we launched rocks from a limestone cliff in Beer, Devon, United Kingdom, containing an epilithic and endolithic rock-dwelling community of cyanobacteria into low Earth orbit (LEO) at a height of approximately 300 kilometers. The community was exposed for 10 days to isolate cyanobacteria that can survive exposure to the extreme radiation and desiccating conditions associated with space. Culture-independent (16S rRNA) and culture-dependent methods showed that the cyanobacterial community was composed of Pleurocapsales, Oscillatoriales, and Chroococcales. A single cyanobacterium, a previously uncharacterized extremophile, was isolated after exposure to LEO. We were able to isolate the cyanobacterium from the limestone cliff after exposing the rock-dwelling community to desiccation and vacuum (0.7 x 10(-3) kPa) in the laboratory. The ability of the organism to survive the conditions in space may be linked to the formation of dense colonies. These experiments show how extreme environmental conditions, including space, can be used to select for novel microorganisms. Furthermore, it improves our knowledge of environmental tolerances of extremophilic rock-dwelling cyanobacteria.
Collapse
|
13
|
Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. PLANT PHYSIOLOGY 2009; 151:2058-72. [PMID: 19783646 PMCID: PMC2785976 DOI: 10.1104/pp.109.145631] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/23/2009] [Indexed: 05/18/2023]
Abstract
In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.
Collapse
|
14
|
Wietz M, Hall MR, Høj L. Effects of seawater ozonation on biofilm development in aquaculture tanks. Syst Appl Microbiol 2009; 32:266-77. [PMID: 19446976 DOI: 10.1016/j.syapm.2009.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Indexed: 10/20/2022]
Abstract
Microbial biofilms developing in aquaculture tanks represent a reservoir for opportunistic bacterial pathogens, and procedures to control formation and bacterial composition of biofilms are important for the development of commercially viable aquaculture industries. This study investigated the effects of seawater ozonation on biofilm development on microscope glass slides placed in small-scale aquaculture tanks containing the live feed organism Artemia. Fluorescence in situ hybridization (FISH) demonstrated that ozonation accelerated the biofilm formation cycle, while it delayed the establishment of filamentous bacteria. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial groups in the biofilm for both water types, but ozonation influenced their dynamics. With ozonation, the bacterial community structure was relatively stable and dominated by Gammaproteobacteria throughout the experiment (21-66% of total bacteria). Without ozonation, the community showed larger fluctuations, and Alphaproteobacteria emerged as dominant after 18 days (up to 54% of total bacteria). Ozonation of seawater also affected the dynamics of less abundant populations in the biofilm such as Betaproteobacteria, Planctomycetales and the Cytophaga/Flavobacterium branch of phylum Bacteroidetes. The abundance of Thiothrix, a bacterial genus capable of filamentous growth and fouling of larvae, increased with time for both water types, while no temporal trend could be detected for the genus Vibrio. Denaturing gradient gel electrophoresis (DGGE) demonstrated temporal changes in the dominant bacterial populations for both water types. Sequencing of DGGE bands confirmed the FISH data, and sequences were related to bacterial groups commonly found in biofilms of aquaculture systems. Several populations were closely related to organisms involved in sulfur cycling. Improved Artemia survival rates in tanks receiving ozonated water suggested a positive effect of ozonation on animal health. Although the used ozonation protocol did not hinder biofilm formation, the results suggest ozonation as a promising approach for manipulation of bacterial populations in aquaculture systems, which can prove beneficial for cultured animals.
Collapse
Affiliation(s)
- Matthias Wietz
- Australian Institute of Marine Science, PMB 3 Townsville MC, Queensland 4810, Australia
| | | | | |
Collapse
|
15
|
Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan. Appl Environ Microbiol 2009; 75:5025-36. [PMID: 19542341 DOI: 10.1128/aem.00112-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H(2), 5.4 nM; CH(4), 2.70 microM) with concentrations of S(2-) (0.03 mM), SO(4)(2-) (14.8 mM), Ca(2+) (15.7 mM), and HCO(3)(-) (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments.
Collapse
|
16
|
Aguilera A, Souza-Egipsy V, Gómez F, Amils R. Development and structure of eukaryotic biofilms in an extreme acidic environment, rio tinto (SW, Spain). MICROBIAL ECOLOGY 2007; 53:294-305. [PMID: 17268880 DOI: 10.1007/s00248-006-9092-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 04/08/2006] [Indexed: 05/13/2023]
Abstract
An in situ colonization assay was performed to study the early stages of biofilm formation in Rio Tinto (SW, Spain), an extremely acidic environment (pH ca. 2). Eukaryotic assemblages were monitored at monthly intervals for 1 year. Diversity, colonization rates, and seasonal variations were analyzed. Structural features of naturally grown biofilms were explored by light and scanning electron microscopy in backscattered electron mode. A total of 14 taxa were recognized as constituents of the eukaryotic assemblages. The eukaryotic communities were dissimilar at the different sampling sites. The lowest diversity was found at the most extreme locations, in terms of pH and heavy metal concentrations. The biofilms were mainly formed by species from the genera Dunaliella and Cyanidium. Two genera of filamentous algae, Zygnemopsis and Klebsormidium, were principally responsible for the variability in the cell number throughout the year. These species appear in June to decrease almost completely between October and November. In contrast, the number of heterotrophic flagellates and ciliates remained constant throughout the year. The microcolonization sequence showed an initial accumulation of amorphous particles composed of bacteria and inorganic grains of minerals. By the end of the second month, the organic matrix was also populated by fungi, bacteria, and a few eukaryotic heterotrophs such as amoebae and small flagellates. Diatoms only showed significant colonization in regions where mycelial matrices were first established. Flagellated green algae such as Dunaliella or Chlamydomonas as well as Euglena were also present at the very beginning of the biofilm development, although in low numbers (<100 cells cm(-2)). After the flagellated cells, sessile species of algae such Chlorella or Cyanidium appeared. Filamentous algae were the last species to colonize the biofilms. Most of the naturally grown biofilms were found to be structures composed of different species organized in different layers separated, probably by extracellular polymeric substances, although more analysis should be done in this regard. The possible implications of the biofilm structure in the adaptation to this extreme habitat are discussed.
Collapse
Affiliation(s)
- Angeles Aguilera
- Centro de Astrobiologia, Instituto Nacional de Técnica Aeroespacial, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | |
Collapse
|