1
|
Cheng D, Xiong J, Dong L, Wong JWC, Liu X. Spatial distribution of PAHs and microbial communities in intertidal sediments of the Pearl River Estuary, South China. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109992. [PMID: 39084352 DOI: 10.1016/j.cbpc.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The exploration of sediment pollution caused by PAHs and its impact on microbial communities can provide valuable insights for the remediation of sediments. The spatial distribution of PAHs and their impact on the microbial community within the Pearl River Estuary were investigated in this study. The findings revealed that the total concentration ranges of 16 PAHs were between 24.26 and 3075.93 ng/g, with naphthalene, fluorene, and phenanthrene potentially exerting adverse biological effects. More PAHs were found to accumulate in subsurface sediments, and their average accumulation rates gradually decreased as the number of rings in PAHs increased, ranging from 180 % for 2-ring to 36 % for 6-ring. The phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Chloroflexi were found to dominate both surface and subsurface sediments The correlation between microbial genera and PAHs contents was weak in sediments with low levels of PAHs contamination, while a more significant positive relationship was observed in sediments with high levels of PAHs contamination. The physicochemical properties of sediments, such as pH, soil structure and Cu significantly influence bacterial community composition in highly contaminated sediments. Additionally, the network analysis revealed that certain bacterial genera, including Novosphingobium, Robiginitalea and Synechococcus_CC9902, played a pivotal role in the degradation of PAHs. These findings are significant in comprehending the correlation between bacterial communities and environmental factors in intertidal ecosystems, and establish a scientific foundation for bioremediation of intertidal zones.
Collapse
Affiliation(s)
- Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Jisen Xiong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lu Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jonathan Woon Chung Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Xinhui Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Stancheva R, Sethuraman A, Khadivar H, Archambeau J, Caughran E, Chang A, Hunter B, Ihenyen C, Onwukwe M, Palacios D, La Prairie C, Read N, Tsang J, Vega B, Velasquez C, Zhang X, Becket E, Read B. Characterizing the microbial metagenome of calcareous stromatolite formations in the San Felipe Creek in the Anza Borrego Desert. Microbiol Resour Announc 2024; 13:e0088123. [PMID: 38436258 PMCID: PMC11008161 DOI: 10.1128/mra.00881-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
We describe the metagenome composition, community functional annotation, and prokaryote diversity in calcareous stromatolites from a dry stream bed of the San Felipe Creek in the Anza Borrego Desert. Analyses show a community capable of nitrogen fixation, assimilatory nitrate reduction, biofilm formation, quorum sensing, and potential thick-walled akinete formation for desiccation resistance.
Collapse
Affiliation(s)
- Rosalina Stancheva
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Hossein Khadivar
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Jenna Archambeau
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Chemistry, American University, Washington, DC, USA
| | - Ella Caughran
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Ashley Chang
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Mathematics, Amherst College, Amherst, Massachusetts, USA
| | - Brad Hunter
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Christian Ihenyen
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Biology, Howard University, Washington DC, USA
| | - Marvin Onwukwe
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Biological Sciences, University of Maryland, Baltimore County, Maryland, USA
| | - Dariana Palacios
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Biosciences, Farmingdale State College, Farmingdale, New York, USA
| | - Chloe La Prairie
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Biology, Millikin University, Decatur, Illinois, USA
| | - Nicole Read
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Julianna Tsang
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
- Department of Biological Sciences, Willamette University, Salem, Oregon, USA
| | - Brianna Vega
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Cristina Velasquez
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Xiaoyu Zhang
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Elinne Becket
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Betsy Read
- Department of Biological Sciences, California State University San Marcos, San Marcos, California, USA
| |
Collapse
|
3
|
Medina-Chávez NO, Viladomat-Jasso M, Zarza E, Islas-Robles A, Valdivia-Anistro J, Thalasso-Siret F, Eguiarte LE, Olmedo-Álvarez G, Souza V, De la Torre-Zavala S. A Transiently Hypersaline Microbial Mat Harbors a Diverse and Stable Archaeal Community in the Cuatro Cienegas Basin, Mexico. ASTROBIOLOGY 2023; 23:796-811. [PMID: 37279013 DOI: 10.1089/ast.2021.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial mats are biologically diverse communities that are analogs to some of the earliest ecosystems on Earth. In this study, we describe a unique transiently hypersaline microbial mat uncovered in a shallow pond within the Cuatro Cienegas Basin (CCB) in northern México. The CCB is an endemism-rich site that harbors living stromatolites that have been studied to understand the conditions of the Precambrian Earth. These microbial mats form elastic domes filled with biogenic gas, and the mats have a relatively large and stable subpopulation of archaea. For this reason, this site has been termed archaean domes (AD). The AD microbial community was analyzed by metagenomics over three seasons. The mat exhibited a highly diverse prokaryotic community dominated by bacteria. Bacterial sequences are represented in 37 phyla, mainly Proteobacteria, Firmicutes, and Actinobacteria, that together comprised >50% of the sequences from the mat. Archaea represented up to 5% of the retrieved sequences, with up to 230 different archaeal species that belong to 5 phyla (Euryarchaeota, Crenarchaeota, Thaumarchaeota, Korarchaeota, and Nanoarchaeota). The archaeal taxa showed low variation despite fluctuations in water and nutrient availability. In addition, predicted functions highlight stress responses to extreme conditions present in the AD, including salinity, pH, and water/drought fluctuation. The observed complexity of the AD mat thriving in high pH and fluctuating water and salt conditions within the CCB provides an extant model of great value for evolutionary studies, as well as a suitable analog to the early Earth and Mars.
Collapse
Affiliation(s)
- Nahui-Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, México
| | | | - Eugenia Zarza
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Tapachula, Mexico
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. Campus Irapuato, Irapuato, México
| | - Jorge Valdivia-Anistro
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, México
| | - Frédéric Thalasso-Siret
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Gabriela Olmedo-Álvarez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. Campus Irapuato, Irapuato, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, México
| |
Collapse
|
4
|
Perron A, Stalport F, Dupraz S, Person A, Coll P, Szopa C, Navarro-González R, Glavin D, Vaulay MJ, Ménez B. Thermal Stability of (Bio)Carbonates: A Potential Signature for Detecting Life on Mars? ASTROBIOLOGY 2023; 23:359-371. [PMID: 37017440 DOI: 10.1089/ast.2021.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The environmental conditions that prevail on the surface of Mars (i.e., high levels of radiation and oxidants) are not favorable for the long-term preservation of organic compounds on which all strategies for finding life on Mars have been based to date. Since life commonly produces minerals that are considered more resilient, the search for biominerals could constitute a promising alternative approach. Carbonates are major biominerals on Earth, and although they have not been detected in large amounts at the martian surface, recent observations show that they could constitute a significant part of the inorganic component in the martian soil. Previous studies have shown that calcite and aragonite produced by eukaryotes thermally decompose at temperatures 15°C lower than those of their abiotic counterparts. By using carbonate concretions formed by microorganisms, we find that natural and experimental carbonates produced by prokaryotes decompose at 28°C below their abiotic counterparts. The study of this sample set serves as a proof of concept for the differential thermal analysis approach to distinguish abiotic from bio-related carbonates. This difference in carbonate decomposition temperature can be used as a first physical evidence of life on Mars to be searched by in situ space exploration missions with the resolution and the technical constraints of the available onboard instruments.
Collapse
Affiliation(s)
- Alexandra Perron
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Fabien Stalport
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Sébastien Dupraz
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| | - Alain Person
- Laboratoire de Biominéralisations et Paléoenvironnements, Sorbonne Université, Paris, France
| | - Patrice Coll
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS UMR 7583, Université Paris Est Créteil et Université Paris Cité, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Cyril Szopa
- Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre Simon Laplace (IPSL), CNRS UMR 8190, UVSQ Université Paris-Saclay, Sorbonne Université, Guyancourt, France
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Mexico
| | - Daniel Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Marie Josèphe Vaulay
- Laboratoire Interfaces Traitements Organisation et DYnamique des Systèmes (ITODYS), CNRS UMR 7086, Université Paris Cité, Paris, France
| | - Bénédicte Ménez
- Université Paris Cité, Institut de physique du globe de Paris, CNRS UMR 7154, Paris, France
| |
Collapse
|
5
|
Waterworth SC, Isemonger EW, Rees ER, Dorrington RA, Kwan JC. Conserved bacterial genomes from two geographically isolated peritidal stromatolite formations shed light on potential functional guilds. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:126-137. [PMID: 33369160 PMCID: PMC8408775 DOI: 10.1111/1758-2229.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 05/24/2023]
Abstract
Stromatolites are complex microbial mats that form lithified layers. Fossilized stromatolites are the oldest evidence of cellular life on Earth, dating back over 3.4 billion years. Modern stromatolites are relatively rare but may provide clues about the function and evolution of their ancient counterparts. In this study, we focus on peritidal stromatolites occurring at Cape Recife and Schoenmakerskop on the southeastern South African coastline, the former being morphologically and structurally similar to fossilized phosphatic stromatolites formations. Using assembled shotgun metagenomic analysis, we obtained 183 genomic bins, of which the most dominant taxa were from the Cyanobacteria phylum. We identified functional gene sets in genomic bins conserved across two geographically isolated stromatolite formations, which included relatively high copy numbers of genes involved in the reduction of nitrates and phosphatic compounds. Additionally, we found little evidence of Archaeal species in these stromatolites, suggesting that they may not play an important role in peritidal stromatolite formations, as proposed for hypersaline formations.
Collapse
Affiliation(s)
- Samantha C. Waterworth
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Eric W. Isemonger
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Evan R. Rees
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Rosemary A. Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Buetti-Dinh A, Ruinelli M, Czerski D, Scapozza C, Martignier A, Roman S, Caminada A, Tonolla M. Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps. PLoS One 2021; 16:e0248877. [PMID: 33784327 PMCID: PMC8009434 DOI: 10.1371/journal.pone.0248877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/07/2021] [Indexed: 12/02/2022] Open
Abstract
The Swiss Alpine environments are poorly described from a microbiological perspective. Near the Greina plateau in the Camadra valley in Ticino (southern Swiss Alps), a green-turquoise-coloured water spring streams off the mountain cliffs. Geochemical profiling revealed naturally elevated concentrations of heavy metals such as copper, lithium, zinc and cadmium, which are highly unusual for the geomorphology of the region. Of particular interest, was the presence of a thick biofilm, that was revealed by microscopic analysis to be mainly composed of Cyanobacteria. A metagenome was further assembled to detail the genes found in this environment. A multitude of genes for resistance/tolerance to high heavy metal concentrations were indeed found, such as, various transport systems, and genes involved in the synthesis of extracellular polymeric substances (EPS). EPS have been evoked as a central component in photosynthetic environments rich in heavy metals, for their ability to drive the sequestration of toxic, positively-charged metal ions under high regimes of cyanobacteria-driven photosynthesis. The results of this study provide a geochemical and microbiological description of this unusual environment in the southern Swiss Alps, the role of cyanobacterial photosynthesis in metal resistance, and the potential role of such microbial community in bioremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (ABD); (MT)
| | - Michela Ruinelli
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Dorota Czerski
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Cristian Scapozza
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Agathe Martignier
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Annapaola Caminada
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (ABD); (MT)
| |
Collapse
|
7
|
Lee J, Kim T, Yoon SJ, Kim S, Lee AH, Kwon BO, Allam AA, Al-Khedhairy AA, Lee H, Kim JJ, Hong S, Khim JS. Multiple evaluation of the potential toxic effects of sediments and biota collected from an oil-polluted area around Abu Ali Island, Saudi Arabia, Arabian Gulf. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109547. [PMID: 31408817 DOI: 10.1016/j.ecoenv.2019.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
After the Gulf War Oil Spill, there have been many investigations about distributions of oil-derived pollutants nearby areas, but lacking in ecotoxicological assessment. We evaluated the potential toxicity of asphalt mats, sediments, and biota (polychaetes, chitons, snapping shrimps, and crabs) by combining two bioassays (H4IIE-luc and Vibrio fischeri) and in situ microbial community (eDNA). Samples were collected from Abu Ali Island, and organic extracts were bioassayed and further fractionated according to the chemical polarity using silica gel column. Great aryl hydrocarbon receptor (AhR)-mediated potencies and inhibition of bioluminescence were mainly found in aromatics (F2) and saturates (F1) fractions of asphalt mat and sediments, respectively, while great toxicological responses in biota samples were found in resins and polar (F3) fraction. We also confirmed that potential toxicities of biota were species-specific; great AhR-mediated potencies were found in polychaetes and great bioluminescence inhibitions were found in crabs. In microbial communities, most genera (up to 90%) were associated with polycyclic aromatic hydrocarbons (PAHs)-degrading bacteria, supporting that PAHs are the primary stressors of the benthic community around Abu Ali Island. The present study provides useful information on the contamination status, risk assessment of environmental matrices and benthic organisms in Abu Ali Island.
Collapse
Affiliation(s)
- Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seonju Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Aslan Hwanhwi Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | | | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, Republic of Korea.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Sánchez-Quinto A, Falcón LI. Metagenome of Acropora palmata coral rubble: Potential metabolic pathways and diversity in the reef ecosystem. PLoS One 2019; 14:e0220117. [PMID: 31394568 PMCID: PMC6687439 DOI: 10.1371/journal.pone.0220117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/09/2019] [Indexed: 01/24/2023] Open
Abstract
Over the past 30 years, the stony coral Acropora palmata has experienced an excessive loss of individuals showing few signs of recovery throughout the Mexican Caribbean, resulting in long stretches of coral rubble structures. When the coral dies, the skeleton begins to be colonized by algae, sponges, virus, bacteria and other microorganisms, forming a new community. Here we analyze, using a metagenomic approach, the diversity and biogeochemical cycles associated to coral rubble in La Bocana (Puerto Morelos, QRoo, Mexico). This study provides the first broad characterization of coral rubble associated communities and their role in biogeochemical cycling, suggesting a potential view of a world where coral reefs are no longer dominated by corals.
Collapse
Affiliation(s)
- Andrés Sánchez-Quinto
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, México
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, CDMX, México
| | - Luisa I. Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, CDMX, México
- * E-mail:
| |
Collapse
|
9
|
Methods for extracting 'omes from microbialites. J Microbiol Methods 2019; 160:1-10. [PMID: 30877015 DOI: 10.1016/j.mimet.2019.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
Abstract
Microbialites are organo-sedimentary structures formed by complex microbial communities that interact with abiotic factors to form carbonate rich fabrics. Extraction of DNA or total RNA from microbialites can be difficult because of the high carbonate mineral concentration and exopolymeric substances. The methods employed until now include substances such as cetyltrimethylammonium bromide, sodium dodecyl sulfate, xanthogenate, lysozyme and proteinase K, as well as mechanical disruption. Additionally, several commercial kits have been used to improve DNA and total RNA extraction. This minireview presents different methods applied for DNA and RNA extraction from microbialites and discusses their advantages and disadvantages. Moreover, extraction of all 'omes (DNA, RNA, Protein, Lipids, polar metabolites) using multiomic extraction methods (MPlex), as well as the state of art for extraction of viruses from microbialites, are also discussed.
Collapse
|
10
|
Prieto-Barajas CM, Valencia-Cantero E, Santoyo G. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Saghaï A, Zivanovic Y, Moreira D, Benzerara K, Bertolino P, Ragon M, Tavera R, López-Archilla AI, López-García P. Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Environ Microbiol 2016; 18:4990-5004. [PMID: 27422734 PMCID: PMC5477898 DOI: 10.1111/1462-2920.13456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022]
Abstract
Modern microbialites are often used as analogs of Precambrian stromatolites; therefore, studying the metabolic interplay within their associated microbial communities can help formulating hypotheses on their formation and long-term preservation within the fossil record. We performed a comparative metagenomic analysis of microbialite samples collected at two sites and along a depth gradient in Lake Alchichica (Mexico). The community structure inferred from single-copy gene family identification and long-contig (>10 kb) assignation, consistently with previous rRNA gene surveys, showed a wide prokaryotic diversity dominated by Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria, and Bacteroidetes, while eukaryotes were largely dominated by green algae or diatoms. Functional analyses based on RefSeq, COG and SEED assignations revealed the importance of housekeeping functions, with an overrepresentation of genes involved in carbohydrate metabolism, as compared with other metabolic capacities. The search for genes diagnostic of specific metabolic functions revealed the important involvement of Alphaproteobacteria in anoxygenic photosynthesis and sulfide oxidation, and Cyanobacteria in oxygenic photosynthesis and nitrogen fixation. Surprisingly, sulfate reduction appeared negligible. Comparative analyses suggested functional similarities among various microbial mat and microbialite metagenomes as compared with soil or oceans, but showed differences in microbial processes among microbialite types linked to local environmental conditions.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Yvan Zivanovic
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Sud Orsay, Université Paris-Saclay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie et de Physique des Matériaux et de Cosmochimie, CNRS, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Marie Ragon
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Rosaluz Tavera
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, DF Mexico, Mexico
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
12
|
Nitrogen fixation in a non-heterocystous cyanobacterial mat from a mountain river. Sci Rep 2016; 6:30920. [PMID: 27476439 PMCID: PMC4967917 DOI: 10.1038/srep30920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/11/2016] [Indexed: 11/08/2022] Open
Abstract
In situ nitrogen fixation was investigated in a cyanobacterial mat growing on the bed of rocks of the Muga River, Spain. The filamentous non-heterocystous cyanobacterium Schizothrix dominated the mat, showing nitrogenase activity in the light at similar rates to those found in nearby heterocystous Rivularia colonies. N2 fixation in the light was significantly increased by an inhibitor of PSII and oxygen evolution, DCMU (3-[3,4-dichlorophenyl]-1,1-dimethylurea), and anaerobic conditions. However, no nitrogenase activity was found in the dark. Addition of fructose as a respiratory substrate induced nitrogenase activity in samples incubated under aerobic conditions in the dark but not in anaerobic conditions. Microelectrode oxygen profiles showed internal microaerobic microzones where nitrogen fixation might concentrate. Analyses of the 16S rRNA gene revealed only the presence of sequences belonging to filamentous non-heterocystous cyanobacteria. nifH gene diversity showed that the major phylotypes also belonged to this group. One of the three strains isolated from the Schizothrix mat was capable of fixing N2 and growing in the absence of combined N. This was consistent with the nifH gene analysis. These results suggest a relevant contribution of non-heterocystous cyanobacteria to nitrogen fixation in these mats.
Collapse
|
13
|
Casaburi G, Duscher AA, Reid RP, Foster JS. Characterization of the stromatolite microbiome from Little Darby Island, The Bahamas using predictive and whole shotgun metagenomic analysis. Environ Microbiol 2015; 18:1452-69. [PMID: 26471001 DOI: 10.1111/1462-2920.13094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 02/01/2023]
Abstract
Modern stromatolites represent ideal ecosystems to understand the biological processes required for the precipitation of carbonate due to their long evolutionary history and occurrence in a wide range of habitats. However, most of the prior molecular work on stromatolites has focused on understanding the taxonomic complexity and not fully elucidating the functional capabilities of these systems. Here, we begin to characterize the microbiome associated with stromatolites of Little Darby Island, The Bahamas using predictive metagenomics of the 16S rRNA gene coupled with direct whole shotgun sequencing. The metagenomic analysis of the Little Darby stromatolites revealed many shared taxa and core pathways associated with biologically induced carbonate precipitation, suggesting functional convergence within Bahamian stromatolites. A comparison of the Little Darby stromatolites with other lithifying microbial ecosystems also revealed that although factors, such as geographic location and salinity, do drive some differences within the population, there are extensive similarities within the microbial populations. These results suggest that for stromatolite formation, 'who' is in the community is not as critical as metabolic activities and environmental interactions. Together, these analyses help improve our understanding of the similarities among lithifying ecosystems and provide an important first step in characterizing the shared microbiome of modern stromatolites.
Collapse
Affiliation(s)
- Giorgio Casaburi
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| | - Alexandrea A Duscher
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| | - R Pamela Reid
- Rosenstiel School of Marine Sciences, University of Miami, Miami, FL, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| |
Collapse
|
14
|
Mobberley JM, Khodadad CLM, Visscher PT, Reid RP, Hagan P, Foster JS. Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Sci Rep 2015. [PMID: 26213359 PMCID: PMC4515876 DOI: 10.1038/srep12601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems.
Collapse
Affiliation(s)
- J M Mobberley
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab-Exploration Park, Merritt Island, FL 32953
| | - C L M Khodadad
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab-Exploration Park, Merritt Island, FL 32953
| | - P T Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340
| | - R P Reid
- Rosenstiel School of Marine Sciences, University of Miami, Miami, FL, 33149
| | - P Hagan
- Rosenstiel School of Marine Sciences, University of Miami, Miami, FL, 33149
| | - J S Foster
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab-Exploration Park, Merritt Island, FL 32953
| |
Collapse
|
15
|
Johannesson KH, Telfeyan K, Chevis DA, Rosenheim BE, Leybourne MI. Rare Earth Elements in Stromatolites—1. Evidence that Modern Terrestrial Stromatolites Fractionate Rare Earth Elements During Incorporation from Ambient Waters. MODERN APPROACHES IN SOLID EARTH SCIENCES 2014. [DOI: 10.1007/978-94-007-7615-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L. The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 2013; 8:e53497. [PMID: 23308236 PMCID: PMC3538587 DOI: 10.1371/journal.pone.0053497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022] Open
Abstract
We describe stromatolites forming at an altitude of 3570 m at the shore of a volcanic lake Socompa, Argentinean Andes. The water at the site of stromatolites formation is alkaline, hypersaline, rich in inorganic nutrients, very rich in arsenic, and warm (20-24°C) due to a hydrothermal input. The stromatolites do not lithify, but form broad, rounded and low-domed bioherms dominated by diatom frustules and aragonite micro-crystals agglutinated by extracellular substances. In comparison to other modern stromatolites, they harbour an atypical microbial community characterized by highly abundant representatives of Deinococcus-Thermus, Rhodobacteraceae, Desulfobacterales and Spirochaetes. Additionally, a high proportion of the sequences that could not be classified at phylum level showed less than 80% identity to the best hit in the NCBI database, suggesting the presence of novel distant lineages. The primary production in the stromatolites is generally high and likely dominated by Microcoleus sp. Through negative phototaxis, the location of these cyanobacteria in the stromatolites is controlled by UV light, which greatly influences their photosynthetic activity. Diatoms, dominated by Amphora sp., are abundant in the anoxic, sulfidic and essentially dark parts of the stromatolites. Although their origin in the stromatolites is unclear, they are possibly an important source of anaerobically degraded organic matter that induces in situ aragonite precipitation. To the best of our knowledge, this is so far the highest altitude with documented actively forming stromatolites. Their generally rich, diverse and to a large extent novel microbial community likely harbours valuable genetic and proteomic reserves, and thus deserves active protection. Furthermore, since the stromatolites flourish in an environment characterized by a multitude of extremes, including high exposure to UV radiation, they can be an excellent model system for studying microbial adaptations under conditions that, at least in part, resemble those during the early phase of life evolution on Earth.
Collapse
Affiliation(s)
- María E. Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Nicolás Rascovan
- Instituto de Agrobiotecnologia Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Diego M. Toneatti
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Virginia H. Albarracín
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - María R. Flores
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Daniel G. Poiré
- Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Mónica M. Collavino
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - O. Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Martin P. Vazquez
- Instituto de Agrobiotecnologia Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Lubos Polerecky
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
17
|
The Role of Sulfate Reduction in Stromatolites and Microbial Mats: Ancient and Modern Perspectives. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-94-007-0397-1_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
18
|
Severin I, Acinas SG, Stal LJ. Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol 2010; 73:514-25. [DOI: 10.1111/j.1574-6941.2010.00925.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the number 8 Kumano Knoll in the Kumano Basin, offshore of Japan. Appl Environ Microbiol 2009; 75:7153-62. [PMID: 19783748 DOI: 10.1128/aem.01184-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential for microbial nitrogen fixation in the anoxic methane seep sediments in a mud volcano, the number 8 Kumano Knoll, was characterized by molecular phylogenetic analyses. A total of 111 of the nifH (a gene coding a nitrogen fixation enzyme, Fe protein) clones were obtained from different depths of the core sediments, and the phylogenetic analysis of the clones indicated the genetic diversity of nifH genes. The predominant group detected (methane seep group 2), representing 74% of clonal abundance, was phylogenetically related to the nifH sequences obtained from the Methanosarcina species but was most closely related to the nifH sequences potentially derived from the anoxic methanotrophic archaea (ANME-2 archaea). The recovery of the nif gene clusters including the nifH sequences of the methane seep group 2 and the subsequent reverse transcription-PCR detection of the nifD and nifH genes strongly suggested that the genetic components of the gene clusters would be operative for the in situ assimilation of molecular nitrogen (N(2)) by the host microorganisms. DNA-based quantitative PCR of the archaeal 16S rRNA gene, the group-specific mcrA (a gene encoding the methyl-coenzyme M reductase alpha subunit) gene, and the nifD and nifH genes demonstrated the similar distribution patterns of the archaeal 16S rRNA gene, the mcrA groups c-d and e, and the nifD and nifH genes through the core sediments. These results supported the idea that the anoxic methanotrophic archaea ANME-2c could be the microorganisms hosting the nif gene clusters and could play an important role in not only the in situ carbon (methane) cycle but also the nitrogen cycle in subseafloor sediments.
Collapse
|
20
|
Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Edwards R, Souza V, Rohwer F, Hollander D. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ Microbiol 2008; 11:16-34. [PMID: 18764874 DOI: 10.1111/j.1462-2920.2008.01725.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ancient biologically mediated sedimentary carbonate deposits, including stromatolites and other microbialites, provide insight into environmental conditions on early Earth. The primary limitation to interpreting these records is our lack of understanding regarding microbial processes and the preservation of geochemical signatures in contemporary microbialite systems. Using a combination of metagenomic sequencing and isotopic analyses, this study describes the identity, metabolic potential and chemical processes of microbial communities from living microbialites from Cuatro Ciénegas, Mexico. Metagenomic sequencing revealed a diverse, redox-dependent microbial community associated with the microbialites. The microbialite community is distinct from other marine and freshwater microbial communities, and demonstrates extensive environmental adaptation. The microbialite metagenomes contain a large number of genes involved in the production of exopolymeric substances and the formation of biofilms, creating a complex, spatially structured environment. In addition to the spatial complexity of the biofilm, microbial activity is tightly controlled by sensory and regulatory systems, which allow for coordination of autotrophic and heterotrophic processes. Isotopic measurements of the intracrystalline organic matter demonstrate the importance of heterotrophic respiration of photoautotrophic biomass in the precipitation of calcium carbonate. The genomic and stable isotopic data presented here significantly enhance our evolving knowledge of contemporary biomineralization processes, and are directly applicable to studies of ancient microbialites.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc Natl Acad Sci U S A 2008; 105:5803-8. [PMID: 18408155 DOI: 10.1073/pnas.0800981105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cuatro Ciénegas Basin (CCB) in the central part of the Chihuahan desert (Coahuila, Mexico) hosts a wide diversity of microorganisms contained within springs thought to be geomorphological relics of an ancient sea. A major question remaining to be answered is whether bacteria from CCB are ancient marine bacteria that adapted to an oligotrophic system poor in NaCl, rich in sulfates, and with extremely low phosphorus levels (<0.3 microM). Here, we report the complete genome sequence of Bacillus coahuilensis, a sporulating bacterium isolated from the water column of a desiccation lagoon in CCB. At 3.35 Megabases this is the smallest genome sequenced to date of a Bacillus species and provides insights into the origin, evolution, and adaptation of B. coahuilensis to the CCB environment. We propose that the size and complexity of the B. coahuilensis genome reflects the adaptation of an ancient marine bacterium to a novel environment, providing support to a "marine isolation origin hypothesis" that is consistent with the geology of CCB. This genomic adaptation includes the acquisition through horizontal gene transfer of genes involved in phosphorous utilization efficiency and adaptation to high-light environments. The B. coahuilensis genome sequence also revealed important ecological features of the bacterial community in CCB and offers opportunities for a unique glimpse of a microbe-dominated world last seen in the Precambrian.
Collapse
|