1
|
Gupta N, Koley A, Banerjee S, Ghosh A, Hoque RR, Balachandran S. Nanomaterial-mediated strategies for enhancing bioremediation of polycyclic aromatic hydrocarbons: A systematic review. HYBRID ADVANCES 2024; 7:None. [PMID: 39758813 PMCID: PMC11698305 DOI: 10.1016/j.hybadv.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in the environment that are formed as an outcome of partial combustion of organic matter. PAHs pose a significant threat to ecological systems and human health due to their cytotoxic and genotoxic effects. Therefore, an immediate need for effective PAH remediation methods is crucial. Although nanomaterials are effective for remediation of PAHs, concerns regarding environmental compatibility and sustainability remains. Therefore, this study emphasizes integration of nanomaterials with bioremediation methods, which might offer a more sustainable and ecofriendly approach to PAHs remediation. A systematic search was conducted through scholarly databases from 2013 to 2023. A total of 360 articles were scrutinized, among which 26 articles were selected that resonated with the application of nano-bioremediation. These literatures comprise both comparative analysis of bioremediation only as well as nano-bioremediation. There is an elevation of 18.9 % in PAHs removal of liquid-phase samples, when comparing bioremediation (52.2 %) with nano-bioremediation (71.1 %). A consistent trend was observed in soil samples, with bioremediation and nano-bioremediation that successfully remove PAHs, with 60.8 % and 75.1 % respectively, indicating a 14.3 % improvement. Furthermore, the review elaborated on the various features of nanomaterials that led to their efficiency in the bioremediation of PAH. The review also discussed the strategies of nano-bioremediation namely nanomaterial-assisted microbial degradation, nanomaterial-assisted enzyme-enhanced microbial activity, nanomaterial-immobilized microbial cells, nanomaterial-facilitated electron transfer, and even some eco-green approaches to remediate PAHs, like biogenic nanomaterial for PAHs.
Collapse
Affiliation(s)
- Nitu Gupta
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Apurba Koley
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Sandipan Banerjee
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 165 00, Czech Republic
| | - Anudeb Ghosh
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | | |
Collapse
|
2
|
Banerjee S, Gupta N, Pramanik K, Gope M, GhoshThakur R, Karmakar A, Gogoi N, Hoque RR, Mandal NC, Balachandran S. Microbes and microbial strategies in carcinogenic polycyclic aromatic hydrocarbons remediation: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1811-1840. [PMID: 38063960 DOI: 10.1007/s11356-023-31140-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Degradation, detoxification, or removal of the omnipresent polycyclic aromatic hydrocarbons (PAHs) from the ecosphere as well as their prevention from entering into food chain has never appeared simple. In this context, cost-effective, eco-friendly, and sustainable solutions like microbe-mediated strategies have been adopted worldwide. With this connection, measures have been taken by multifarious modes of microbial remedial strategies, i.e., enzymatic degradation, biofilm and biosurfactant production, application of biochar-immobilized microbes, lactic acid bacteria, rhizospheric-phyllospheric-endophytic microorganisms, genetically engineered microorganisms, and bioelectrochemical techniques like microbial fuel cell. In this review, a nine-way directional approach which is based on the microbial resources reported over the last couple of decades has been described. Fungi were found to be the most dominant taxa among the CPAH-degrading microbial community constituting 52.2%, while bacteria, algae, and yeasts occupied 37.4%, 9.1%, and 1.3%, respectively. In addition to these, category-wise CPAH degrading efficiencies of each microbial taxon, consortium-based applications, CPAH degradation-related molecular tools, and factors affecting CPAH degradation are the other important aspects of this review in light of their appropriate selection and application in the PAH-contaminated environment for better human-health management in order to achieve a sustainable ecosystem.
Collapse
Affiliation(s)
- Sandipan Banerjee
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Nitu Gupta
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Krishnendu Pramanik
- Microbiology and Microbial Bioinformatics Laboratory, Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, 736101, West Bengal, India
| | - Manash Gope
- Department of Environmental Science, The University of Burdwan, Golapbag, 713104, West Bengal, India
| | - Richik GhoshThakur
- Department of Environmental Studies, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Animesh Karmakar
- Department of Chemistry, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Nayanmoni Gogoi
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Visva-Bharati, Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
3
|
Ding P, Wu P, Cao Q, Liu H, Chen C, Cui MH, Liu H. Advantages of residual phenol in coal chemical wastewater as a co-metabolic substrate for naphthalene degradation by microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166342. [PMID: 37611718 DOI: 10.1016/j.scitotenv.2023.166342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
The use of co-metabolic substrates is effective for polycyclic aromatic hydrocarbons (PAHs) removal, but the potential of the high phenol concentrations in coal chemical wastewater (CCW) as a co-metabolic substrate in microbial electrolysis cell (MEC) has been neglected. In this study, the efficacy of varying phenol concentrations in comparison to simple substrates for degrading naphthalene in MEC under comparable COD has been explored. Results showed that phenol as a co-metabolic substrate outperformed sodium acetate and glucose in facilitating naphthalene degradation efficiency at 50 mg-COD/L. The naphthalene removal efficiency from RP, RA, and RG was found to be 84.11 ± 0.44 %, 73.80 ± 0.27 % and 72.43 ± 0.34 %, respectively. Similarly, phenol not only enhanced microbial biomass more effectively, but also exhibited optimal COD metabolism capacity. The addition of phenol resulted in a stepwise reduction in the molecular weight of naphthalene, whereas sodium acetate and glucose led to more diverse degradation pathways. Some bacteria with the potential ability to degrade PAHs were detected in phenol-added MEC, including Alicycliphilus, Azospira, Stenotrophomonas, Pseudomonas, and Sedimentibacter. Besides, phenol enhanced the expression of ncrA and nmsA genes, leading to more efficient degradation of naphthalene, with ncrA responsible for mediating the reduction of the benzene ring in naphthalene and nmsA closely associated with the decarboxylation of naphthalene. This study provides guidance for the effective co-degradation of PAHs in CCW with MEC, demonstrating the effectiveness of using phenol as a co-substrate relative to simple substrates in the removal of naphthalene.
Collapse
Affiliation(s)
- Peng Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ping Wu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qihao Cao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongbo Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chongjun Chen
- Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Min-Hua Cui
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Das S, Das N, Choure K, Pandey P. Biodegradation of asphaltene by lipopeptide-biosurfactant producing hydrocarbonoclastic, crude oil degrading Bacillus spp. BIORESOURCE TECHNOLOGY 2023; 382:129198. [PMID: 37201870 DOI: 10.1016/j.biortech.2023.129198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
Asphaltene is the most recalcitrant compound in crude oil. Bacteria were isolated from crude oil contaminated soil and their efficiency for hydrocarbon degradation was determined using GC-MS and isolates were screened for biosurfactant production using FT-IR. Two Bacillus spp. having hydrocarbonoclastic and lipo-peptide biosurfactant-producing abilities were experimented for their asphaltene removal potential through oil removal efficiency (ORE%) and asphaltene degradation efficiency (ADE%). B. thuringeinsis SSL1 and B. cereus SSL3 could degrade 76.4% and 67.4% of asphaltene (20gL-1), in vitro, respectively, which is much higher than previous reports. B. thuringiensis SSL1 is recommended for effective breakdown of asphaltene, total petroleum hydrocarbon, and polyaromatic hydrocarbon degradation, aided by its biosurfactants, which is useful for crude oil cleanup. Biosurfactants are important for enhancing the availability of hydrophobic hydrocarbons to bacteria, which is beneficial for efficient crude oil remediation. These findings could lead to more effective strategies for complete clean-up of crude oil pollution.
Collapse
Affiliation(s)
- Sandeep Das
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Nandita Das
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna 485001, Madhya Pradesh, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
5
|
Rondon-Afanador C, Pinilla-Meza G, Casallas-Cuervo FC, Diaz-Vanegas C, Barreto-Gomez D, Benavides C, Buitrago N, Calvo M, Forero-Forero C, Galvis-Ibarra V, Moscoso-Urdaneta V, Perdomo-Rengifo MC, Torres L, Arbeli Z, Brigmon RL, Roldan F. Bioremediation of heavy oily sludge: a microcosms study. Biodegradation 2023; 34:1-20. [PMID: 36463546 PMCID: PMC9935733 DOI: 10.1007/s10532-022-10006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2022]
Abstract
Oily sludge is a residue from the petroleum industry composed of a mixture of sand, water, metals, and high content of hydrocarbons (HCs). The heavy oily sludge used in this study originated from Colombian crude oil with high density and low American Petroleum Institute (API) gravity. The residual waste from heavy oil processing was subject to thermal and centrifugal extraction, resulting in heavy oily sludge with very high density and viscosity. Biodegradation of the total petroleum hydrocarbons (TPH) was tested in microcosms using several bioremediation approaches, including: biostimulation with bulking agents and nutrients, the surfactant Tween 80, and bioaugmentation. Select HC degrading bacteria were isolated based on their ability to grow and produce clear zones on different HCs. Degradation of TPH in the microcosms was monitored gravimetrically and with gas chromatography (GC). The TPH removal in all treatments ranged between 2 and 67%, regardless of the addition of microbial consortiums, amendments, or surfactants within the tested parameters. The results of this study demonstrated that bioremediation of heavy oily sludge presents greater challenges to achieve regulatory requirements. Additional physicochemical treatments analysis to remediate this recalcitrant material may be required to achieve a desirable degradation rate.
Collapse
Affiliation(s)
- Cinthya Rondon-Afanador
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Gustavo Pinilla-Meza
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Francy C. Casallas-Cuervo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Camila Diaz-Vanegas
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Daniela Barreto-Gomez
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Carolina Benavides
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Nicole Buitrago
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Melissa Calvo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Camila Forero-Forero
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Valentina Galvis-Ibarra
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Victoria Moscoso-Urdaneta
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Maria C. Perdomo-Rengifo
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Laura Torres
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | - Ziv Arbeli
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC Colombia
| | | | - Fabio Roldan
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia.
| |
Collapse
|
6
|
Kracmarova M, Uhlik O, Strejcek M, Szakova J, Cerny J, Balik J, Tlustos P, Kohout P, Demnerova K, Stiborova H. Soil microbial communities following 20 years of fertilization and crop rotation practices in the Czech Republic. ENVIRONMENTAL MICROBIOME 2022; 17:13. [PMID: 35346385 PMCID: PMC8962459 DOI: 10.1186/s40793-022-00406-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/08/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world. In these soils, potato (Solanum tuberosum L.), winter wheat (Triticum aestivum L.), and spring barley (Hordeum vulgare L.) were rotated every three years. RESULTS Soil chemistry, which was significantly associated with location, fertilization, crop rotation, and the interaction of fertilization and location, was the dominant driver of soil microbial communities, both prokaryotic and fungal. A direct effect of long-term crop rotation and fertilization on the structure of their communities was confirmed, although there was no evidence of their influence on microbial diversity. Fungal and bacterial communities responded differently to fertilization treatments; prokaryotic communities were only significantly different from the control soil (CF) in soils treated with MF and SF3x, while fungal communities differed across all treatments. Indicator genera were identified for different treatments. These taxa were either specific for their decomposition activities or fungal plant pathogens. Sequential rotation of the three crops restricted the growth of several of the indicator plant pathogens. CONCLUSIONS Long-term fertilization and crop rotation significantly altered microbial community structure in the soil. While fertilization affected soil microorganisms mainly through changes in nutrient profile, crop rotations lead to the attraction and repulsion of specific plant pathogens. Such changes in soil microbial communities need to be considered when planning soil management.
Collapse
Affiliation(s)
- Martina Kracmarova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Jirina Szakova
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Jindrich Cerny
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Jiri Balik
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague - Suchdol, Czech Republic
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Videnska 1083, 142 20, Praha 4, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Praha 2, Czech Republic
| | - Katerina Demnerova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Hana Stiborova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
7
|
Sha W, Cai F, Li Y, Wang Y, Liu C, Wang R, Gao P. Biomarker responses and histological damage in the gill, liver, and gonad of Cyprinus carpio with benzo(a)pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61290-61301. [PMID: 34176044 DOI: 10.1007/s11356-021-15065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The risk of polycyclic aromatic hydrocarbon exposure in aquatic organisms is a global concern. In this study, we investigated the toxic effects of different doses of benzo(a)pyrene (BaP) on Cyprinus carpio in microcosms from the following aspects: superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content in the gill, liver, and gonad; glutathione s-transferase (GST), aromatic hydroxylase (AHH), and 7-ethoxyresorufin-O-deethylase (EROD) activity in the liver; and altered tissue and cellular structures of the gill, liver,and gonad. SOD and POD activity in the gill, liver, and gonad increased in low-dose BaP groups and significantly decreased with an increase in BaP. MDA content increased continuously with an increase in BaP in the gill, liver, and gonad. The activity of enzymes related to detoxification, specifically GST, AHH, and EROD, gradually increased in the liver with an increase in BaP. Upon exposure to BaP, gill hypertrophy, bulging, necrosis, and cavitation occurred, gonadal cells became larger, with an increase in pyknotic or vacuolar nuclei, bulging and cavitation of organelles, and cytoplasm leakage, and nuclear membrane lysis was observed in the liver. Collectively, BaP exposure changed the SOD and POD activity in the gill, liver, and gonad of carp with increases in MDA content, increased GST, AHH, and EROD activity in liver, and damaged the tissue and cellular structures of the gill, liver, and gonad, revealing the toxic effects of BaP exposure on carp.
Collapse
Affiliation(s)
- Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| | - Fengsen Cai
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Yu Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Ying Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| |
Collapse
|
8
|
Wang H, Kuang S, Lang Q, Wang L. Bacterial community structure of aged oil sludge contaminated soil revealed by illumina high-throughput sequencing in East China. World J Microbiol Biotechnol 2021; 37:183. [PMID: 34580778 DOI: 10.1007/s11274-021-03059-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Screening of the dominant or core oil resistant bacteria in Aged Oil Sludge (AOS) contaminated soil in Daqing and Shengli oilfields (DQ and SL) in China was investigated through High-Throughput Sequencing method. Enhanced total organic carbon (TOC, 12.53 to 28.35 g/kg in DQ and 3.07 to 4.97 g/kg in SL) and total petroleum hydrocarbons (TPHs, 21 to 2837 mg/mg in DQ and 13 to 1558 mg/kg in SL) were observed. The internal transcribed spacer (ITS) sequencing by Illumine Miseq platform at each taxonomic level revealed the notable toxicological effect of AOS on the diversity and community structure of bacteria. In this study, sequence analyses showed 77-89% and 92-98% reduction of Firmicutes at phylum level in DQ and SL respectively after treated with AOS. Enhanced universal gene location was observed in Proteobacteria, Actinobacteria, Gemmatimonadetes and Bacteroidetes in DQ and SL. The universal dominant family in the two oilfields was anaerolineaceae. At the genus level, Algiphilus in DQ and Pseudomonas in SL were the majority respectively. In total, 3 negligible genera (Perlucidibaca, Alcanivorax and Algiphilus) in DQ and 13 negligible genera (Salinisphaera, Microbulbifer and Idiomarina, et al.,) in SL were significantly enriched after oil treatment indicating their possible role in the attenuation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Huihui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China.
| | - Qiaolin Lang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China
| | - Lei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, College of Chemistry and Molecular Engineering, MOE, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, People's Republic of China
| |
Collapse
|
9
|
Redfern LK, Jayasundara N, Singleton DR, Di Giulio RT, Carlson J, Sumner SJ, Gunsch CK. The role of gut microbial community and metabolomic shifts in adaptive resistance of Atlantic killifish (Fundulus heteroclitus) to polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145955. [PMID: 33647645 PMCID: PMC8294123 DOI: 10.1016/j.scitotenv.2021.145955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 05/14/2023]
Abstract
Altered gut microbiomes may play a role in rapid evolution to anthropogenic change but remain poorly understood. Atlantic killifish (Fundulus heteroclitus) in the Elizabeth River, VA have evolved resistance to polycyclic aromatic hydrocarbons (PAHs) and provide a unique opportunity to examine the links between shifts in the commensal microbiome and organismal physiology associated with evolved resistance. Here, 16S rRNA sequence libraries derived from fish guts and sediments sampled from a highly PAH contaminated site revealed significant differences collected at similar samples from an uncontaminated site. Phylogenetic groups enriched in the libraries derived from PAH-resistant fish were dissimilar to their associated sediment libraries, suggesting the specific environment within the PAH-resistant fish intestine influence the gut microbiome composition. Gut metabolite analysis revealed shifts between PAH-resistant and non-resistant subpopulations. Notably, PAH-resistant fish exhibited reduced levels of tryptophan and increased levels of sphingolipids. Exposure to PAHs appears to impact several bacterial in the gut microbiome, particularly sphingolipid containing bacteria. Bacterial phylotypes known to include species containing sphingolipids were generally lower in the intestines of fish subpopulations exposed to high concentrations of PAHs, inferring a complex host-microbiome relationship. Overall, killifish microbial community shifts appear to be related to a suppression of overall metabolite level, indicating a potential role of the gut in organismal response to anthropogenic environmental change. These results on microbial and metabolomics shifts are potentially linked to altered bioenergetic phenotype observed in the same PAH-resistant killifish populations in other studies.
Collapse
Affiliation(s)
- Lauren K Redfern
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States of America; Department of Environmental and Civil Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States of America
| | - David R Singleton
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States of America
| | - Richard T Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27713, United States of America
| | - James Carlson
- Alternative BioMedical Solutions, Carrollton, TX 75006, United States of America
| | - Susan J Sumner
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Claudia K Gunsch
- Pratt School of Engineering, Department of Civil and Environmental Engineering, Duke University, Durham, NC 27713, United States of America.
| |
Collapse
|
10
|
Sun S, Wang H, Yan K, Lou J, Ding J, Snyder SA, Wu L, Xu J. Metabolic interactions in a bacterial co-culture accelerate phenanthrene degradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123825. [PMID: 33264917 DOI: 10.1016/j.jhazmat.2020.123825] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 05/22/2023]
Abstract
A highly eff ;ective phenanthrene (PHE)-degrading co-culture containing Rhodococcus sp. WB9 and Mycobacterium sp. WY10 was constructed and completely degraded 100 mg L-1 PHE within 36 h, showing improved degradation rate compared to their monocultures. In the co-culture, strain WY10 played a predominant role in PHE degradation. 1-hydroxy-2-naphthoic acid was an end-product of PHE degradation by strain WB9 and accumulated in the culture medium to serve as a substrate for strain WY10 growth, thereby accelerating PHE degradation. In turn, strain WY10 degraded PHE and 1-hydroxy-2-naphthoic acid intracellularly to form phthalate and protocatechuate that were exported to the culture medium through efflux transporters. However, strain WY10 cannot take up extracellular phthalate due to the absence of phthalate transporters, restricting phthalate degradation and PHE mineralization. In the co-culture, phthalate and protocatechuate accumulated in the culture medium were taken up and degraded towards TCA cycle by strain WB9. Therefore, the metabolic cross-feeding of strains WB9 and WY10 accelerated PHE degradation and mineralization. These findings exhibiting the synergistic degradation of PHE in the bacterial co-culture will facilitate its bioremediation application.
Collapse
Affiliation(s)
- Shanshan Sun
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Kang Yan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jun Lou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jiahui Ding
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Shane A Snyder
- Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore 637141, Singapore
| | - Laosheng Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Balu S, Bhunia S, Gachhui R, Mukherjee J. Assessment of polycyclic aromatic hydrocarbon contamination in the Sundarbans, the world's largest tidal mangrove forest and indigenous microbial mixed biofilm-based removal of the contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115270. [PMID: 32798981 DOI: 10.1016/j.envpol.2020.115270] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/18/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the surface water and sediments in five regions of the Indian Sundarbans was assessed. The capability of microbial biofilm communities to sequester PAHs in a biofilm-promoting vessel was evaluated. The total PAH concentration of water and sediments ranged from undetectable to 125 ng ml-1 and 4880 to 2 × 104 ng g-1 dry weight respectively. The total PAHs concentration of sediments exceeded the Effects Range-Low value and the recommended Effects Range-Median values, implying the PAHs might adversely affect the biota of the Sundarbans. Pyrogenic and petrogenic sources of PAH contamination were identified in most of the sampling sites. Indigenous biofilms were cultivated in a patented biofilm-promoting culture vessel containing liquid media spiked with 16 priority PAHs. Biofilm-mediated 97-100% removal efficiency of 16 PAHs was attained in all media. There was no significant difference between the mean residual PAH from the liquid media collected from hydrophobic and hydrophilic flasks. Residual amounts of acenaphthene (Ace), anthracene (Ant), benzo(b)fluoranthene [B(b)F], benzo(a)pyrene [B(a)P] and benzo(g,h,i)perylene [B(g,h,i)P] showed differences when cultivated in hydrophobic and hydrophilic flasks. The mean residual amounts of total PAHs extracted from biofilm biomasses were variable. A biofilm obtained from a specific sampling site cultured in the hydrophobic flask showed higher PAH sequestration when compared to the removal attained in the hydrophilic flask. Relative abundances of different microbial communities in PAH-sequestering biofilms revealed bacterial phyla including Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chloroflexi and Planctomycetes as well as members of Ascomycota phylum of fungi. The dominance of Candida tropicalis, Clostridium butyricum, Sphingobacterium multivorum and Paecilomyces fulvus were established.
Collapse
Affiliation(s)
- Saranya Balu
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| | - Shantanu Bhunia
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| | - Ratan Gachhui
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
12
|
Holochová P, Mašlaňová I, Sedláček I, Švec P, Králová S, Kovařovic V, Busse HJ, Staňková E, Barták M, Pantůček R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst Appl Microbiol 2020; 43:126112. [PMID: 32847787 DOI: 10.1016/j.syapm.2020.126112] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Bacteria of the genus Massilia often colonize extreme ecosystems, however, a detailed study of the massilias from the Antarctic environment has not yet been performed. Here, sixty-four Gram-stain-negative, aerobic, motile rods isolated from different environmental samples on James Ross Island (Antarctica) were subjected to a polyphasic taxonomic study. The psychrophilic isolates exhibited slowly growing, moderately slimy colonies revealing bold pink-red pigmentation on R2A agar. The set of strains exhibited the highest 16S rRNA gene sequence similarities (99.5-99.9%) to Massilia violaceinigra B2T and Massilia atriviolacea SODT and formed several phylogenetic groups based on the analysis of gyrB and lepA genes. Phenotypic characteristics allowed four of them to be distinguished from each other and from their closest relatives. Compared to the nearest phylogenetic neighbours the set of six genome-sequenced representatives exhibited considerable phylogenetic distance at the whole-genome level. Bioinformatic analysis of the genomic sequences revealed a high number of putative genes involved in oxidative stress response, heavy-metal resistance, bacteriocin production, the presence of putative genes involved in nitrogen metabolism and auxin biosynthesis. The identification of putative genes encoding aromatic dioxygenases suggests the biotechnology potential of the strains. Based on these results four novel species and one genomospecies of the genus Massilia are described and named Massilia rubra sp. nov. (P3094T=CCM 8692T=LMG 31213T), Massilia aquatica sp. nov. (P3165T=CCM 8693T=LMG 31211T), Massilia mucilaginosa sp. nov. (P5902T=CCM 8733T=LMG 31210T), and Massilia frigida sp. nov. (P5534T=CCM 8695T=LMG 31212T).
Collapse
Affiliation(s)
- Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vojtěch Kovařovic
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, A-1210 Wien, Austria
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Section of Experimental Plant Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic.
| |
Collapse
|
13
|
Dai Y, Liu R, Zhou Y, Li N, Hou L, Ma Q, Gao B. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. ENVIRONMENT INTERNATIONAL 2020; 136:105421. [PMID: 31884414 DOI: 10.1016/j.envint.2019.105421] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 05/13/2023]
Abstract
Pot experiments were conducted in a growth chamber to evaluate the phytoremediation efficiency and rhizosphere regulation mechanism of Fire Phoenix (a mixture of Festuca L.) in polycyclic aromatic hydrocarbon-cadmium (PAH-Cd) co-contaminated soils. Plant biomass, removal rates of PAHs and Cd, soil enzyme activity, and soil bacterial community were determined. After 150 days of planting, the removal rates of the total 4 PAHs and Cd reached 64.57% and 40.93% in co-contaminated soils with low-PAH (104.79-144.87 mg·kg-1), and 68.29% and 25.40% in co-contaminated soils with high-PAH (169.17-197.44 mg·kg-1), respectively. The polyphenol oxidase (PPO) activity decreased in soils having Fire Phoenix, while the dehydrogenase (DHO) activity increased as the changes of DHO activity had a strong positive correlation with the removal rates of PAHs and Cd in the low-PAH soils (r = 0.862 (P < 0.006) and 0.913 (P < 0.002), respectively). Meanwhile, successional changes in the bacterial communities were detected using high-throughput 454 Gs-FLX pyrosequencing of the 16S rRNA, and these changes were especially apparent for the co-contaminated soils with the low PAH concentration. The Fire Phoenix could promote the growth of Mycobacterium, Dokdonella, Gordonia and Kaistobacter, which played important roles in PAHs degradation or Cd dissipation. These results indicated that Fire Phoenix could effectively motivate the soil enzyme and bacterial community and enhance the potential for phytoremediation of PAH-Cd co-contaminated soils.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
| | - Yuemei Zhou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Na Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqun Hou
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Zhou Y, Zou Q, Fan M, Xu Y, Chen Y. Highly efficient anaerobic co-degradation of complex persistent polycyclic aromatic hydrocarbons by a bioelectrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120945. [PMID: 31421548 DOI: 10.1016/j.jhazmat.2019.120945] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) that undergo long-distance migration and have strong biological toxicity are a great threat to the health of ecosystems. In this study, the biodegradation characteristics and combined effects of mixed PAHs in bioelectrochemical systems (BESs) were studied. The results showed that, compared with a mono-carbon source, low-molecular-weight PAHs (LMW PAHs)-naphthalene (NAP) served as the co-substrate to promote the degradation of phenanthrene (PHE) and pyrene (PYR). The maximum degradation rates of PHE and PYR were 89.20% and 51.40% at 0.2500 mg/L in NAP-PHE and NAP-PYR at the degradation time of 120 h, respectively. Intermediate products were also detected, which indicated that the appending of relatively LMW PAHs had different effects on the metabolism of high-molecular-weight PAHs (HMW PAHs). The microbe species under different substrates (NAP-B, PHE-B, PYR-B, NAP-PHE, NAP-PYR, PHE-PYR) are highly similar, although the structure of the microbial community changed on the anode in the BES. In this study, the degradation regularity of mixed PAHs in BES was studied and provided theoretical guidance for the effective co-degradation of PAHs in the environment.
Collapse
Affiliation(s)
- Yukang Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qingping Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Mengjie Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yuan Xu
- College of Architecture and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
15
|
Sun X, Chu L, Mercando E, Romero I, Hollander D, Kostka JE. Dispersant Enhances Hydrocarbon Degradation and Alters the Structure of Metabolically Active Microbial Communities in Shallow Seawater From the Northeastern Gulf of Mexico. Front Microbiol 2019; 10:2387. [PMID: 31749769 PMCID: PMC6842959 DOI: 10.3389/fmicb.2019.02387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023] Open
Abstract
Dispersant application is a primary emergency oil spill response strategy and yet the efficacy and unintended consequences of this approach in marine ecosystems remain controversial. To address these uncertainties, ex situ incubations were conducted to quantify the impact of dispersant on petroleum hydrocarbon (PHC) biodegradation rates and microbial community structure at as close as realistically possible to approximated in situ conditions [2 ppm v/v oil with or without dispersant, at a dispersant to oil ratio (DOR) of 1:15] in surface seawater. Biodegradation rates were not substantially affected by dispersant application at low mixing conditions, while under completely dispersed conditions, biodegradation was substantially enhanced, decreasing the overall half-life of total PHC compounds from 15.4 to 8.8 days. While microbial respiration and growth were not substantially altered by dispersant treatment, RNA analysis revealed that dispersant application resulted in pronounced changes to the composition of metabolically active microbial communities, and the abundance of nitrogen-fixing prokaryotes, as determined by qPCR of nitrogenase (nifH) genes, showed a large increase. While the Gammaproteobacteria were enriched in all treatments, the Betaproteobacteria and different families of Alphaproteobacteria predominated in the oil and dispersant treatment, respectively. Results show that mixing conditions regulate the efficacy of dispersant application in an oil slick, and the quantitative increase in the nitrogen-fixing microbial community indicates a selection pressure for nitrogen fixation in response to a readily biodegradable, nitrogen-poor substrate.
Collapse
Affiliation(s)
- Xiaoxu Sun
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou, China
| | - Lena Chu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Elisa Mercando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Isabel Romero
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - David Hollander
- College of Marine Science, University of South Florida, St. Petersburg, St. Petersburg, FL, United States
| | - Joel E Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
16
|
Payette G, Geoffroy V, Martineau C, Villemur R. Dynamics of a methanol-fed marine denitrifying biofilm: 1-Impact of environmental changes on the denitrification and the co-occurrence of Methylophaga nitratireducenticrescens and Hyphomicrobium nitrativorans. PeerJ 2019; 7:e7497. [PMID: 31423363 PMCID: PMC6697038 DOI: 10.7717/peerj.7497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The biofilm of a methanol-fed denitrification system that treated a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans strain NL23 and Methylophaga nitratireducenticrescens strain JAM1 are the principal bacteria involved in the denitrifying activities. Here, we report the capacity of the denitrifying biofilm to sustain environmental changes, and the impact of these changes on the co-occurrence of H. nitrativorans and M. nitratireducenticrescens. METHODS In a first set of assays, the original biofilm (OB) was cultivated in an artificial seawater (ASW) medium under anoxic conditions to colonize new carriers. The new formed biofilm was then subjected to short exposures (1-5 days) of a range of NaCl, methanol, nitrate (NO3 -) and nitrite (NO2 -) concentrations, and to different pHs and temperatures. In a second set of assays, the OB was cultivated in ASW medium for five weeks with (i) a range of NaCl concentrations, (ii) four combinations of NO3 -/methanol concentrations and temperatures, (iii) NO2 -, and (iv) under oxic conditions. Finally, the OB was cultivated for five weeks in the commercial Instant Ocean (IO) seawater. The growth of the biofilm and the dynamics of NO3 - and NO2 - were determined. The levels of M. nitratireducenticrescens and H. nitrativorans were measured by qPCR. RESULTS In the first set of assays, the biofilm cultures had the capacity to sustain denitrifying activities in most of the tested conditions. Inhibition occurred when they were exposed to high pH (10) or to high methanol concentration (1.5%). In the second set of assays, the highest specific denitrification rates occurred with the biofilm cultures cultivated at 64.3 mM NO3 - and 0.45% methanol, and at 30 °C. Poor biofilm development occurred with the biofilm cultures cultivated at 5% and 8% NaCl. In all biofilm cultures cultivated in ASW at 2.75% NaCl, H. nitrativorans strain NL23 decreased by three orders of magnitude in concentrations compared to that found in OB. This decrease coincided with the increase of the same magnitude of a subpopulation of M. nitratireducenticrescens (strain GP59 as representative). In the biofilm cultures cultivated at low NaCl concentrations (0% to 1.0%), persistence of H. nitrativorans strain NL23 was observed, with the gradual increase in concentrations of M. nitratireducenticrescens strain GP59. High levels of H. nitrativorans strain NL23 were found in the IO biofilm cultures. The concentrations of M. nitratireducenticrescens strain JAM1 were lower in most of the biofilms cultures than in OB. CONCLUSIONS These results demonstrate the plasticity of the marine methylotrophic denitrifying biofilm in adapting to different environmental changes. The NaCl concentration is a crucial factor in the dynamics of H. nitrativorans strain NL23, for which growth was impaired above 1% NaCl in the ASW-based biofilm cultures in favor of M. nitratireducenticrescens strain GP59.
Collapse
Affiliation(s)
- Geneviève Payette
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| | | | | | - Richard Villemur
- INRS-Centre Armand-Frappier Santé et Biotechnologie, Laval, Québec, Canada
| |
Collapse
|
17
|
Jia R, Yang D, Abd Rahman HB, Gu T. An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel. CORROSION SCIENCE 2018; 139:301-308. [DOI: 10.1016/j.corsci.2018.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
18
|
Cao B, Zhang Y, Wang Z, Li M, Yang F, Jiang D, Jiang Z. Insight Into the Variation of Bacterial Structure in Atrazine-Contaminated Soil Regulating by Potential Phytoremediator: Pennisetum americanum (L.) K. Schum. Front Microbiol 2018; 9:864. [PMID: 29780374 PMCID: PMC5945882 DOI: 10.3389/fmicb.2018.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Although plants of the genus Pennisetum can accelerate the removal of atrazine from its rhizosphere, the roles played by this plant in adjusting the soil environment and soil microorganism properties that might contribute to pollutant removal are incompletely understood. We selected Pennisetum americanum (L.) K. Schum (P. americanum) as the test plant and investigated the interaction between P. americanum and atrazine-contaminated soil, focusing on the adjustment of the soil biochemical properties as well as bacterial functional and community diversity in the rhizosphere using Biolog EcoPlates and high-throughput sequencing of the 16S rRNA gene. The results demonstrate that the rhizosphere soil of P. americanum exhibited higher catalase activity, urease activity and water soluble organic carbon (WSOC) content, as well as a suitable pH for microorganisms after a 28-day incubation. The bacterial functional diversity indices (Shannon and McIntosh) for rhizosphere soil were 3.17 ± 0.04 and 6.43 ± 0.86 respectively, while these indices for non-rhizosphere soil were 2.95 ± 0.06 and 3.98 ± 0.27. Thus, bacteria in the P. americanum rhizosphere exhibited better carbon substrate utilization than non-rhizosphere bacteria. Though atrazine decreased the richness of the soil bacterial community, rhizosphere soil had higher bacterial community traits. For example, the Shannon diversity indices for rhizosphere and non-rhizosphere soil were 5.821 and 5.670 respectively. Meanwhile, some bacteria, such as those of the genera Paenibacillus, Rhizobium, Sphingobium, and Mycoplana, which facilitate soil nutrient cycling or organic pollutants degradation, were only found in rhizosphere soil after a 28-day remediation. Moreover, redundancy analysis suggests that the soil biochemical properties that were adjusted by the test plant exhibited correlations with the bacterial community composition and functional diversity. These results suggest that the soil environment and bacterial properties could be adjusted by P. americanum during phytoremediation of atrazine-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
19
|
Vilela Steiner L, Toledo Ramos D, Rubini Liedke AM, Serbent MP, Corseuil HX. Ethanol content in different gasohol blend spills influences the decision-making on remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:8-16. [PMID: 29427942 DOI: 10.1016/j.jenvman.2018.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Gasohol blend spills with variable ethanol content exert different electron acceptor demands in groundwater and the distinct dynamics undergone by these blends underscores the need for field-based information to aid decision-making on suitable remediation technologies for each gasohol blend spill. In this study, a comparison of two gasohol releases (E10 (10:90 ethanol and gasoline, v/v) and E25 (25:75 ethanol and gasoline, v/v) under monitored natural attenuation (MNA) and nitrate biostimulation, respectively) was conducted to assess the most effective remediation strategy for each gasohol release. Microbial communities were assessed to support geochemical data as well as to enable the characterization of important population shifts that evolve during biodegradation processes in E25 and E10 field experiments. Results revealed that natural attenuation processes sufficiently supported ethanol and BTEX compounds biodegradation in E10 release, due to the lower biochemical oxygen demand they exert relative to E25 blend. In E25 release, nitrate reduction was largely responsible for BTEX and ethanol biodegradation, as intended. First-order decay constants demonstrated that ethanol degradation rates were similar (p < 0.05) for both remediation technologies (2.05 ± 0.15 and 2.22 ± 0.23, for E25 and E10, respectively) whilst BTEX compounds exhibited different degradation rates (p > 0.05) that were higher for the experiment under MNA (0.33 ± 0.06 and 0.43 ± 0.03, for E25 and E10, respectively). Therefore, ethanol content in different gasohol blends can influence the decision-making on the most suitable remediation technology, as MNA processes can be applied for the remediation of gasohol blends with lower ethanol content (i.e., 10% v/v), once the aquifer geochemical conditions provide a sufficient electron acceptor pool. To the best of our knowledge, this is the first field study to monitor two long-term gasohol releases over various time scales in order to assess feasible remediation technologies for each scenario.
Collapse
Affiliation(s)
- Leonardo Vilela Steiner
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil
| | - Débora Toledo Ramos
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil
| | - Ana Maria Rubini Liedke
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil
| | - Maria Pilar Serbent
- State University of Santa Catarina, Department of Sanitary Engineering, Ibirama, Santa Catarina, Brazil
| | - Henry Xavier Corseuil
- Federal University of Santa Catarina, Department of Sanitary and Environmental Engineering, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
20
|
Aziz A, Agamuthu P, Alaribe FO, Fauziah SH. Biodegradation of benzo[a]pyrene by bacterial consortium isolated from mangrove sediment. ENVIRONMENTAL TECHNOLOGY 2018; 39:527-535. [PMID: 28281885 DOI: 10.1080/09593330.2017.1305455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.
Collapse
Affiliation(s)
- A Aziz
- a Lasbela University of Agriculture, Water and Marine Sciences , Uthal , Pakistan
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - P Agamuthu
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - F O Alaribe
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - S H Fauziah
- b Institute of Biological Sciences, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
- c Center for Research in Waste Management, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
21
|
Blain NP, Helgason BL, Germida JJ. Endophytic root bacteria associated with the natural vegetation growing at the hydrocarbon-contaminated Bitumount Provincial Historic site. Can J Microbiol 2017; 63:502-515. [DOI: 10.1139/cjm-2017-0039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bitumount Provincial Historic site is the location of 2 of the world’s first oil-extracting and -refining operations. Despite hydrocarbon levels ranging from 330 to 24 700 mg·(kg soil)−1, plants have been able to recolonize the site through means of natural revegetation. This study was designed to achieve a better understanding of the plant-root-associated bacterial partnerships occurring within naturally revegetated hydrocarbon-contaminated soils. Root endophytic bacterial communities were characterized from representative plant species throughout the site by both high-throughput sequencing and culturing techniques. Population abundance of rhizosphere and root endosphere bacteria was significantly influenced (p < 0.05) by plant species and sampling location. In general, members of the Actinomycetales, Rhizobiales, Pseudomonadales, Burkholderiales, and Sphingomonadales orders were the most commonly identified orders. Community structure of root-associated bacteria was influenced by both plant species and sampling location. Quantitative real-time polymerase chain reaction was used to determine the potential functional diversity of the root endophytic bacteria. The gene copy numbers of 16S rRNA and 2 hydrocarbon-degrading genes (CYP153 and alkB) were significantly affected (p < 0.05) by the interaction of plant species and sampling location. Our findings suggest that some of the bacterial communities detected are known to exhibit plant growth promotion characteristics.
Collapse
Affiliation(s)
- Natalie P. Blain
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada
| | - Bobbi L. Helgason
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - James J. Germida
- Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada
| |
Collapse
|
22
|
Huang X, Xiong W, Liu W, Guo X. Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized riverside wetland, China. J Environ Sci (China) 2017; 55:58-68. [PMID: 28477834 DOI: 10.1016/j.jes.2016.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 06/07/2023]
Abstract
In order to evaluate the impact of reclaimed water on the ecology of bacterial communities in the Typha angustifolia L. rhizosphere soil, bacterial community structure was investigated using a combination of terminal restriction fragment length polymorphism and 16S rRNA gene clone library. The results revealed significant spatial variation of bacterial communities along the river from upstream and downstream. For example, a higher relative abundance of γ-Proteobacteria, Firmicutes, Chloroflexi and a lower proportion of β-Proteobacteria and ε-Proteobacteria was detected at the downstream site compared to the upstream site. Additionally, with an increase of the reclaimed water interference intensity, the rhizosphere bacterial community showed a decrease in taxon richness, evenness and diversity. The relative abundance of bacteria closely related to the resistant of heavy-metal was markedly increased, while the bacteria related for carbon/nitrogen/phosphorus/sulfur cycling wasn't strikingly changed. Besides that, the pathogenic bacteria markedly increased in the downstream rhizosphere soil since reclaimed water supplement, while the possible plant growth-promoting rhizobacteria obviously reduced in the downstream sediment. Together these data suggest cause and effect between reclaimed water input into the wetland, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of contaminants.
Collapse
Affiliation(s)
- Xingru Huang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China.
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Liu
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China; Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048, China; Urban Environmental Processes and Digital Modeling Laboratory, Beijing 100048, China.
| |
Collapse
|
23
|
Petroleum Contaminated Oil Sludge Degradation by Defined Consortium: Influence of Biosurfactant Production. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0778-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Song M, Jiang L, Zhang D, Luo C, Wang Y, Yu Z, Yin H, Zhang G. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:50-57. [PMID: 26808242 DOI: 10.1016/j.jhazmat.2016.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually (13)C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota.
Collapse
Affiliation(s)
- Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Longfei Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Yu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hua Yin
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
25
|
Li CY, Zhang D, Li XX, Mbadinga SM, Yang SZ, Liu JF, Gu JD, Mu BZ. The biofilm property and its correlationship with high-molecular-weight polyacrylamide degradation in a water injection pipeline of Daqing oilfield. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:388-399. [PMID: 26595898 DOI: 10.1016/j.jhazmat.2015.10.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Biofilms increase dragging force for liquid transportation, cause power consumption, and result in equipment corrosion in polymer-flooding oilfields. To reveal the responsible microorganisms for biofilm formation and stability of high-molecular-weight polyacrylamide (PAM), a biofilm, developed on the sieve of a piston plunger pump in a water transport and injection pipeline with partial hydrolyzed polyacrylamide (HPAM) in Daqing Oilfield, was collected and analyzed by molecular microbiology, chemical and physical methods. Diverse bacterial groups (11 families) were detected in the biofilm, including Pseudomonadaceae, Rhodocyclaceae, Desulfobulbaceae, Alcaligenaceae, Comamonadaceae, Oxalobacteraceae, Bacteriovoracaceae, Campylobacteraceae, Flavobacteriaceae, Clostridiales Incertae Sedis XIII and Moraxellaceae. Three archaeal orders of methanogens including Methanomicrobiales, Methanosarcinales and Thermoplasmatales were also detected separately. HPAM was degraded into lower molecular weight polymers and organic fragments with its amide groups hydrolyzed into carboxylic groups by the microorganisms. The microenvironment of the biofilm contained diverse bacterial and archaeal communities, correlating with the extracellular polymeric substance (EPS) and HPAM biodegradation. The results are helpful to provide information for biofilm control in oil fields.
Collapse
Affiliation(s)
- Cai-Yun Li
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Dong Zhang
- The fourth oil production Company of Daqing Oilfield Limited Company, PetroChina, Daqing 163511, Heilongjiang, PR China.
| | - Xiao-Xiao Li
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Serge Maurice Mbadinga
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center of Biomanufacturing Technology, Shanghai 200237, PR China.
| |
Collapse
|
26
|
Al-Kindi S, Abed RMM. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil. Front Microbiol 2016; 7:240. [PMID: 26973618 PMCID: PMC4777724 DOI: 10.3389/fmicb.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.
Collapse
Affiliation(s)
- Sumaiya Al-Kindi
- Biology Department, College of Science, Sultan Qaboos University Muscat, Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University Muscat, Oman
| |
Collapse
|
27
|
Tauler M, Vila J, Nieto JM, Grifoll M. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Appl Microbiol Biotechnol 2015; 100:3321-36. [DOI: 10.1007/s00253-015-7195-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/31/2022]
|
28
|
Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 2015; 33:95-102. [DOI: 10.1016/j.copbio.2015.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022]
|
29
|
Villemur R, Juteau P, Bougie V, Ménard J, Déziel E. Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate. BIORESOURCE TECHNOLOGY 2015; 181:254-262. [PMID: 25656870 DOI: 10.1016/j.biortech.2015.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Two trains (A and B) of four-stage moving bed biofilm reactors (MBBRs) were developed for the degradation of thiocyanate (SCN(-)), cyanate (OCN(-)) and ammonia (NH3). A pre-denitrification configuration was established in the first-stage reactor of the B train using SCN(-) and OCN(-) as the sole carbon source. SCN(-), OCN(-) and NH3 were completely removed in both trains. The highest removal of total nitrogen equivalent (total-N) occurred at a loading rate of 5.6 mg-N L(-1) h(-1). The pre-denitrification configuration resulted in increased total-N removal in the B train (62.6%) compared to the A train (38.5%). Thiobacillus spp. were the predominant bacteria in all MBBRs. Bacteria related to bioprocesses involving anaerobic ammonium oxidation were present in the B train, suggesting that part of nitrogen removal occurs via this pathway. Our results showed that the pre-denitrification configuration increases the efficiency of removal of total-N compounds in the SCN(-)/OCN(-)-degrading MBBR process.
Collapse
Affiliation(s)
- Richard Villemur
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada.
| | - Pierre Juteau
- Department of Water and Environment, CEGEP St-Laurent, Montréal, Québec H4L 3X7, Canada; Centre des technologies de l'eau, Montréal, Québec H4L 3Y2, Canada
| | - Veronique Bougie
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Julie Ménard
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| | - Eric Déziel
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
30
|
Abed RMM, Al-Kindi S, Al-Kharusi S. Diversity of bacterial communities along a petroleum contamination gradient in desert soils. MICROBIAL ECOLOGY 2015; 69:95-105. [PMID: 25103912 DOI: 10.1007/s00248-014-0475-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Microbial communities in oil-polluted desert soils have been rarely studied compared to their counterparts from freshwater and marine environments. We investigated bacterial diversity and changes therein in five desert soils exposed to different levels of oil pollution. Automated rRNA intergenic spacer (ARISA) analysis profiles showed that the bacterial communities of the five soils were profoundly different (analysis of similarities (ANOSIM), R = 0.45, P < 0.0001) and shared less than 20 % of their operational taxonomic units (OTUs). OTU richness was relatively higher in the soils with the higher oil pollution levels. Multivariate analyses of ARISA profiles revealed that the microbial communities in the S soil, which contains the highest level of contamination, were different from the other soils and formed a completely separate cluster. A total of 16,657 ribosomal sequences were obtained, with 42-89 % of these sequences belonging to the phylum Proteobacteria. While sequences belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, and Actinobacteria were encountered in all soils, sequences belonging to anaerobic bacteria from the classes Deltaproteobacteria, Clostridia, and Anaerolineae were only detected in the S soil. Sequences belonging to the genus Terriglobus of the class Acidobacteria were only detected in the B3 soil with the lowest level of contamination. Redundancy analysis (RDA) showed that oil contamination level was the most determinant factor that explained variations in the microbial communities. We conclude that the exposure to different levels of oil contamination exerts a strong selective pressure on bacterial communities and that desert soils are rich in aerobic and anaerobic bacteria that could potentially contribute to the degradation of hydrocarbons.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P.O. Box: 36, 123 Al Khoud, Muscat, Sultanate of Oman,
| | | | | |
Collapse
|
31
|
Luo S, Chen B, Lin L, Wang X, Tam NFY, Luan T. Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13917-13924. [PMID: 25382552 DOI: 10.1021/es503761j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Abundant microbes including bacteria, fungi, or algae are capable of biodegrading polycyclic hydrocarbons (PAHs). However, pure cultures never occur in the contaminated environments. This study aimed to understand the general potential mechanisms of interactions between microbes under pollution stress by constructing a consortium of PAH-degrading microalga (Selenastrum capricornutum) and bacterium (Mycobacterium sp. strain A1-PYR). Bacteria alone could grow on the pyrene, whereas the growth of algae alone was substantially inhibited by the pyrene of 10 mg L(-1). In the mixing culture of algae and bacteria, the growth rate of algae was significantly increased from day 4 onward. Rapid bacterial degradation of pyrene might mitigate the toxicity of pyrene to algae. Phenolic acids, the bacterial degradation products of pyrene, could serve as the phytohormone for promoting algal growth in the coculture of algae and bacteria. In turn, bacterial growth was also enhanced by the algae presented in the mixing culture. Consequently, the fastest degradation of pyrene among all biodegradation systems was achieved by the consortium of algae and bacteria probably due to such interactions between the two species by virtue of degradation products. This study reveals that the consortium containing multiple microbial species is high potential for microbial remediation of pyrene-contaminated environments, and provides a new strategy to degrade the recalcitrant PAHs.
Collapse
Affiliation(s)
- Shusheng Luo
- MOE Key Laboratory of Aquatic Product Safety, School of Marine Sciences, School of Life Sciences, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Bacosa HP, Inoue C. Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:689-697. [PMID: 25464311 DOI: 10.1016/j.jhazmat.2014.09.068] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/22/2014] [Accepted: 09/27/2014] [Indexed: 06/04/2023]
Abstract
The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.
Collapse
Affiliation(s)
- Hernando Pactao Bacosa
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
33
|
Wongwongsee W, Chareanpat P, Pinyakong O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. MARINE POLLUTION BULLETIN 2013; 74:95-104. [PMID: 23928000 DOI: 10.1016/j.marpolbul.2013.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50-76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.
Collapse
Affiliation(s)
- Wanwasan Wongwongsee
- Microbiology Program in Science, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | |
Collapse
|
34
|
Biodegradation of endocrine disruptors in solid-liquid two-phase partitioning systems by enrichment cultures. Appl Environ Microbiol 2013; 79:4701-11. [PMID: 23728808 DOI: 10.1128/aem.01239-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents.
Collapse
|
35
|
Simarro R, González N, Bautista LF, Molina MC. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures. FEMS Microbiol Ecol 2012; 83:438-49. [DOI: 10.1111/1574-6941.12006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 08/28/2012] [Accepted: 09/02/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Raquel Simarro
- Department of Biology and Geology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| | - Natalia González
- Department of Biology and Geology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| | - Maria Carmen Molina
- Department of Biology and Geology; ESCET; Universidad Rey Juan Carlos; Madrid; Spain
| |
Collapse
|
36
|
Auclair J, Lépine F, Villemur R. A liquid chromatography - mass spectrometry method to measure ¹³C-isotope enrichment for DNA stable-isotope probing. Can J Microbiol 2012; 58:287-92. [PMID: 22356592 DOI: 10.1139/w11-133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA stable-isotope probing (DNA-SIP) is a cultivation-independent technique that makes it possible to associate metabolic function and taxonomic identity in a wide range of terrestrial and aquatic environments. In DNA-SIP, DNA is labeled via the assimilation of a labeled growth substrate that is subsequently used to identify microorganisms involved in assimilation of the substrate. However, the labeling time has to be sufficient to obtain labeled DNA but not so long such that cross-feeding of ¹³C-labeled metabolites from the primary consumers to nontarget species can occur. Confirmation that the DNA is isotopically labeled in DNA-SIP assays can be achieved using an isotope ratio mass spectrometer. In this study, we describe the development of a method using liquid chromatography (HPLC) coupled to a quadrupole mass spectrometer (QMS) to measure the ¹³C enrichment of thymine incorporated into DNA in Escherichia coli cultures fed with [¹³C]acetate. The method involved the hydrolysis of DNA extracted from the cultures that released the nucleotides, followed by the separation of the thymine by HPLC on a reverse-phase C₈ column in isocratic elution mode and the detection and quantification of ¹³C-labeled thymine by QMS. To mimic a DNA-SIP assay, a DNA mixture was made using ¹³C-labeled E. coli DNA with DNA extracted from five bacterial species. The HPLC-MS method was able to measure the correct proportion of ¹³C-DNA in the mix. This method can then be used as an alternative to the use of isotope ratio mass spectrometry in DNA-SIP assays.
Collapse
Affiliation(s)
- Julie Auclair
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | | |
Collapse
|
37
|
Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition. Int J Microbiol 2011; 2011:673136. [PMID: 22046187 PMCID: PMC3199179 DOI: 10.1155/2011/673136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition.
Collapse
|
38
|
Stable isotope probing identifies anthracene degraders under methanogenic conditions. Biodegradation 2011; 23:221-30. [DOI: 10.1007/s10532-011-9501-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
39
|
Jones MD, Crandell DW, Singleton DR, Aitken MD. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 2011; 13:2623-32. [PMID: 21564459 DOI: 10.1111/j.1462-2920.2011.02501.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacteria responsible for the degradation of naphthalene, phenanthrene, pyrene, fluoranthene or benz[a]anthracene in a polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated by DNA-based stable-isotope probing (SIP). Clone libraries of 16S rRNA genes were generated from the (13) C-enriched ('heavy') DNA recovered from each SIP experiment, and quantitative PCR primers targeting the 16S rRNA gene were developed to measure the abundances of many of the SIP-identified sequences. Clone libraries from the SIP experiments with naphthalene, phenanthrene and fluoranthene primarily contained sequences related to bacteria previously associated with the degradation of those compounds. However, Pigmentiphaga-related sequences were newly associated with naphthalene and phenanthrene degradation, and sequences from a group of uncultivated γ-Proteobacteria known as Pyrene Group 2 were newly associated with fluoranthene and benz[a]anthracene degradation. Pyrene Group 2-related sequences were the only sequences recovered from the clone library generated from SIP with pyrene, and they were 82% of the sequences recovered from the clone library generated from SIP with benz[a]anthracene. In time-course experiments with each substrate in unlabelled form, the abundance of each of the measured groups increased in response to the corresponding substrate. These results provide a comprehensive description of the microbial ecology of a PAH-contaminated soil as it relates to the biodegradation of PAHs from two to four rings, and they underscore that bacteria in Pyrene Group 2 are well-suited for the degradation of four-ring PAHs.
Collapse
Affiliation(s)
- Maiysha D Jones
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431 Chapel Hill, NC 27599-7431, USA.
| | | | | | | |
Collapse
|
40
|
Brooijmans RJW, Pastink MI, Siezen RJ. Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2011; 2:587-94. [PMID: 21255292 PMCID: PMC3815313 DOI: 10.1111/j.1751-7915.2009.00151.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rob J W Brooijmans
- Kluyver Centre for Genomics of Industrial Fermentation, TI Food and Nutrition, 6700AN Wageningen, The Netherlands
| | | | | |
Collapse
|
41
|
Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil. Appl Environ Microbiol 2011; 77:2984-91. [PMID: 21398486 DOI: 10.1128/aem.01942-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the (13)C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-(13)C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from (13)C-enriched DNA and were designated "anthracene group 1." Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP.
Collapse
|
42
|
Zhong Y, Luan T, Lin L, Liu H, Tam NFY. Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp. BIORESOURCE TECHNOLOGY 2011; 102:2965-2972. [PMID: 21036605 DOI: 10.1016/j.biortech.2010.09.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 05/30/2023]
Abstract
The effects of the mixed culture of Mycobacterium sp. strain A1-PYR and Sphingomonas sp. strain PheB4 on the degradation characteristics of single polycyclic aromatic hydrocarbon were investigated. In the mixed bacterial culture, phenanthrene, fluoranthene and pyrene were degraded by 100% at Day 3, 71.2% and 50% at Day 7, respectively. Compared to their respective pure cultures, the degradation of phenanthrene and fluoranthene decreased, but that of pyrene increased significantly. Based on GC-MS analysis, eight and six new metabolites were produced from the biodegradation of phenanthrene and fluoranthene, respectively, while only two new metabolites were formed from pyrene. To our knowledge, this is the first report that the mixed bacterial culture could increase the diversity of metabolites from PAH, but the diverse metabolite pattern was not necessarily beneficial to the degradation of the recalcitrant PAH. The enhancement on pyrene degradation was possibly attributed to the rapid growth of strain PheB4.
Collapse
Affiliation(s)
- Yin Zhong
- MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Disnard J, Beaulieu C, Villemur R. Composition of the bacterial biota in slime developed in two machines at a Canadian paper mill. Can J Microbiol 2011; 57:91-104. [DOI: 10.1139/w10-109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the process of papermaking by pulp and paper plants, a thick and viscous deposits, termed slime, is quickly formed around the paper machines, which can affect the papermaking process. In this study, we explored the composition of the bacterial biota in slime that developed on shower pipes from 2 machines at a Canadian paper mill. Firstly, the composition was assessed for 12 months by DNA profiling with polymerase chain reaction coupled with denaturing gradient gel electrophoresis. Except for short periods (2–3 months), clustered analyses showed that the bacterial composition of the slime varied substantially over the year, with less than 50% similarity between the denaturing gradient gel electrophoresis profiles. Secondly, the screening of 16S rRNA gene libraries derived from 2 slime samples showed that the most abundant bacteria were related to 6 lineages, including Chloroflexi, candidate division OP10, Clostridiales, Bacillales, Burkholderiales, and the genus Deinococcus . Finally, the proportion of 8 bacterial lineages, such as Deinococcus sp., Meiothermus sp., and Chloroflexi, was determined by the Catalyzed Reporter Deposition – Fluorescence In Situ Hybridization in 2 slime samples. The results showed a high proportion of Chloroflexi, Tepidimonas spp., and Schlegelella spp. in the slime samples.
Collapse
Affiliation(s)
- Julie Disnard
- INRS – Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
- Département de biologie, Université de Sherbrooke, 2500 boulevard de l’Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Carole Beaulieu
- INRS – Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
- Département de biologie, Université de Sherbrooke, 2500 boulevard de l’Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Richard Villemur
- INRS – Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada
- Département de biologie, Université de Sherbrooke, 2500 boulevard de l’Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
44
|
Shi Z, Tian L, Zhang Y. Molecular biology approaches for understanding microbial polycyclic aromatic hydrocarbons (PAHs) degradation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.chnaes.2010.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Dissimilatory reduction of nitrate in seawater by a Methylophaga strain containing two highly divergent narG sequences. ISME JOURNAL 2010; 4:1302-13. [DOI: 10.1038/ismej.2010.47] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010; 3:136-64. [PMID: 21255317 PMCID: PMC3836582 DOI: 10.1111/j.1751-7915.2009.00130.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022] Open
Abstract
Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome Systems, Faculty of Bionanoscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Kanagawa-ken, Yokohama 236-0027, Japan.
| | | |
Collapse
|
47
|
Sun R, Jin J, Sun G, Liu Y, Liu Z. Screening and degrading characteristics and community structure of a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterial consortium from contaminated soil. J Environ Sci (China) 2010; 22:1576-1585. [PMID: 21235189 DOI: 10.1016/s1001-0742(09)60292-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with high level of high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), a bacterial consortium capable of degrading HMW-PAHs, designated 1-18-1, was enriched and screened from HMW-PAHs contaminated soil. Its degrading ability was analyzed by high performance liquid chromatography (HPLC), and the community structure was investigated by construction and analyses of the 16S rRNA gene clone libraries (A, B and F) at different transfers. The results indicated that 1-18-1 was able to utilize pyrene, fluoranthene and benzo[a]pyrene as sole carbon and energy source for growth. The degradation rate of pyrene and fluoranthene reached 82.8% and 96.2% after incubation for 8 days at 30 degrees C, respectively; while the degradation rate of benzo[a]pyrene was only 65.1% after incubation for 28 days at 30 degrees C. Totally, 108, 100 and 100 valid clones were randomly selected and sequenced from the libraries A, B, and F. Phylogenetic analyses showed that all the clones could be divided into 5 groups, Bacteroidetes, alpha-Proteobacteria, Actinobacteria, beta-Proteobacteria and gamma-Proteobacteria. Sequence similarity analyses showed total 39 operational taxonomic units (OTUs) in the libraries. The predominant bacterial groups were alpha-Proteobacteria (19 OTUs, 48.7%), gamma-Proteobacteria (9 OTUs, 23.1%) and beta-Proteobacteria (8 OTUs, 20.5%). During the transfer process, the proportions of alpha-Proteobacteria and beta-Proteobacteria increased greatly (from 47% to 93%), while gamma-Proteobacteria decreased from 32% (library A) to 6% (library F); and Bacteroidetes group disappeared in libraries B and F.
Collapse
Affiliation(s)
- Run Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | |
Collapse
|
48
|
Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040. Biodegradation 2009; 21:59-69. [DOI: 10.1007/s10532-009-9281-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|