1
|
Mou H, Wu T, Ji X, Zhang H, Wu X, Fan H. Multi-Functional Repair and Long-Term Preservation of Paper Relics by Nano-MgO with Aminosilaned Bacterial Cellulose. Molecules 2024; 29:3959. [PMID: 39203037 PMCID: PMC11356947 DOI: 10.3390/molecules29163959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Paper relics, as carrieres of historical civilization's records and inheritance, could be severely acidic and brittle over time. In this study, the multi-functional dispersion of nanometer magnesium oxide (MgO) carried by 3-aminopropyl triethoxysilane-modified bacterial cellulose (KH550-BC) was applied in the impregnation process to repair aged paper, aiming at solving the key problems of anti-acid and strength recovery in the protection of ancient books. The KH550-BC/MgO treatment demonstrated enhanced functional efficacy in repairing aged paper, attributed to the homogeneous and stable distribution of MgO within the nanofibers of BC networks, with minimal impact on the paper's wettability and color. Furthermore, the treatment facilitated the formation of adequate alkali reserves and hydrogen bonding, resulting in superior anti-aging properties in the treated paper during prolonged preservation. Even after 30 days of hygrothermal aging tests, the paper repaired by KH550-BC/MgO was still in a gently alkaline environment (pH was about 7.56), alongside a 32.18% elevation compared to the untreated paper regarding the tear index. The results of this work indicate that KH550-BC/MgO is an effective reinforcement material for improving the long-term restoration of ancient books.
Collapse
Affiliation(s)
- Hongyan Mou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ting Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Hongjie Zhang
- National Engineering Laboratory for Pulp and Paper, Beijing 100102, China
| | - Xiao Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huiming Fan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Gadd GM, Fomina M, Pinzari F. Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiol Mol Biol Rev 2024; 88:e0020022. [PMID: 38179930 PMCID: PMC10966957 DOI: 10.1128/mmbr.00200-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/11/2023] [Indexed: 01/06/2024] Open
Abstract
SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- National Reserve “Sophia of Kyiv”, Kyiv, Ukraine
| | - Flavia Pinzari
- Institute for Biological Systems (ISB), Council of National Research of Italy (CNR), Monterotondo (RM), Italy
- Natural History Museum, London, United Kingdom
| |
Collapse
|
3
|
Sala-Luis A, Oliveira-Urquiri H, Bosch-Roig P, Martín-Rey S. Eco-Sustainable Approaches to Prevent and/or Eradicate Fungal Biodeterioration on Easel Painting. COATINGS 2024; 14:124. [DOI: 10.3390/coatings14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Eliminating and controlling fungal biodeterioration is one of the most important challenges of easel painting conservation. Historically, the pathologies produced by biodeterioration agents had been treated with non-specific products or with biocides specially designed for conservation but risky for human health or the environment due to their toxicity. In recent years, the number of research that studied more respectful solutions for the disinfection of paintings has increased, contributing to society’s efforts to achieve the Sustainable Development Goals (SDGs). Here, an overview of the biodeterioration issues of the easel paintings is presented, critically analyzing chemical and eco-sustainable approaches to prevent or eradicate biodeterioration. Concretely, Essential Oils and light radiations are studied in comparison with the most used chemical biocides in the field, including acids, alcohols, and quaternary ammonium salts. This review describes those strategies’ biocidal mechanisms, efficiency, and reported applications in vitro assays on plates, mockups, and real scale. Benefits and drawbacks are evaluated, including workability, easel painting material alterations, health risks, and environmental sustainability. This review shows innovative and eco-friendly methods from an easel painting conservation perspective, detecting its challenges and opportunities to develop biocontrol strategies to substitute traditional chemical products.
Collapse
Affiliation(s)
- Agustí Sala-Luis
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Haizea Oliveira-Urquiri
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pilar Bosch-Roig
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Susana Martín-Rey
- Instituto Universitario de Restauración del Patrimonio, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
4
|
Zalar P, Graf Hriberšek D, Gostinčar C, Breskvar M, Džeroski S, Matul M, Novak Babič M, Čremožnik Zupančič J, Kujović A, Gunde-Cimerman N, Kavkler K. Xerophilic fungi contaminating historically valuable easel paintings from Slovenia. Front Microbiol 2023; 14:1258670. [PMID: 38029120 PMCID: PMC10653331 DOI: 10.3389/fmicb.2023.1258670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Historically valuable canvas paintings are often exposed to conditions enabling microbial deterioration. Painting materials, mainly of organic origin, in combination with high humidity and other environmental conditions, favor microbial metabolism and growth. These preconditions are often present during exhibitions or storage in old buildings, such as churches and castles, and also in museum storage depositories. The accumulated dust serves as an inoculum for both indoor and outdoor fungi. In our study, we present the results on cultivable fungi isolated from 24 canvas paintings, mainly exhibited in Slovenian sacral buildings, dating from the 16th to 21st centuries. Fungi were isolated from the front and back of damaged and undamaged surfaces of the paintings using culture media with high- and low-water activity. A total of 465 isolates were identified using current taxonomic DNA markers and assigned to 37 genera and 98 species. The most abundant genus was Aspergillus, represented by 32 species, of which 9 xerophilic species are for the first time mentioned in contaminated paintings. In addition to the most abundant xerophilic A. vitricola, A. destruens, A. tardicrescens, and A. magnivesiculatus, xerophilic Wallemia muriae and W. canadensis, xerotolerant Penicillium chrysogenum, P. brevicompactum, P. corylophilum, and xerotolerant Cladosporium species were most frequent. When machine learning methods were used to predict the relationship between fungal contamination, damage to the painting, and the type of material present, proteins were identified as one of the most important factors and cracked paint was identified as a hotspot for fungal growth. Aspergillus species colonize paintings regardless of materials, while Wallemia spp. can be associated with animal fat. Culture media with low-water activity are suggested in such inventories to isolate and obtain an overview of fungi that are actively contaminating paintings stored indoors at low relative humidity.
Collapse
Affiliation(s)
- Polona Zalar
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Daša Graf Hriberšek
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostinčar
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Breskvar
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sašo Džeroski
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Mojca Matul
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Novak Babič
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerneja Čremožnik Zupančič
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Kavkler
- Institute for the Protection of Cultural Heritage of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
5
|
Corbu VM, Gheorghe-Barbu I, Dumbravă AȘ, Vrâncianu CO, Șesan TE. Current Insights in Fungal Importance-A Comprehensive Review. Microorganisms 2023; 11:1384. [PMID: 37374886 DOI: 10.3390/microorganisms11061384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Besides plants and animals, the Fungi kingdom describes several species characterized by various forms and applications. They can be found in all habitats and play an essential role in the excellent functioning of the ecosystem, for example, as decomposers of plant material for the cycling of carbon and nutrients or as symbionts of plants. Furthermore, fungi have been used in many sectors for centuries, from producing food, beverages, and medications. Recently, they have gained significant recognition for protecting the environment, agriculture, and several industrial applications. The current article intends to review the beneficial roles of fungi used for a vast range of applications, such as the production of several enzymes and pigments, applications regarding food and pharmaceutical industries, the environment, and research domains, as well as the negative impacts of fungi (secondary metabolites production, etiological agents of diseases in plants, animals, and humans, as well as deteriogenic agents).
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Genetics Department, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Corneliu Ovidiu Vrâncianu
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
| | - Tatiana Eugenia Șesan
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Academy of Agricultural Sciences and Forestry, 61 Bd. Mărăşti, District 1, 011464 Bucharest, Romania
| |
Collapse
|
6
|
Diversity and Metabolic Activity of Fungi Causing Biodeterioration of Canvas Paintings. J Fungi (Basel) 2022; 8:jof8060589. [PMID: 35736072 PMCID: PMC9224695 DOI: 10.3390/jof8060589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Research into the biodeteriorative potential of fungi can serve as an indicator of the condition of heritage items. Biodeterioration of canvas paintings as a result of fungal metabolic activity is understudied with respect to both the species diversity and mechanisms involved. This study brings new evidence for the physiology of fungi biodeteriorative capacity of canvas paintings. Twenty-one fungal isolates were recovered from four oil paintings (The Art Museum, Cluj-Napoca) and one gouache painting (private collection), dating from the 18th to 20th centuries. The species, identified based on the molecular markers Internal Transcribed Spacer (ITS), beta-tubulin (tub2), or translation elongation factor 1 (TEF-1), are common colonisers of canvas paintings or indoor environments (e.g., Penicillium spp., Aspergillus spp., Alternaria spp.). Fungi enzymatic profiles were investigated by means of hydrolysable substrates, included in culture media or in test strips, containing components commonly used in canvas paintings. The pigment solubilisation capacity was assessed in culture media for the primary pigments and studied in relation to the organic acid secretion. Caseinases, amylases, gelatinases, acid phosphatase, N-acetyl-β-glucosaminidase, naphthol-AS-BI-phosphohydrolase, and β-glucosidase were found to be the enzymes most likely involved in the processes of substrate colonisation and breakdown of its components. Aureobasidium genus was found to hold the strongest biodeteriorative potential, followed by Cladosporium, Penicillium, Trichoderma, and Aspergillus. Blue pigment solubilisation was detected, occurring as a result of organic acids secretion. Distinct clusters were delineated considering the metabolic activities detected, indicating that fungi specialise in utilisation of certain types of substrates. It was found that both aged and modern artworks are at risk of fungal biodeterioration, due to the enzymatic activities’ diversity and intensity, pigment solubilisation capacity or pigment secretion.
Collapse
|
7
|
A first report on the identification of a novel archaea, Methanospirillum lacunae from spoilt paints in Lagos, Nigeria using a metagenomic approach. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2021.e01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Vadrucci M, Borgognoni F, Cicero C, Perini N, Migliore L, Mercuri F, Orazi N, Rubechini A. Parchment processing and analysis: Ionizing radiation treatment by the REX source and multidisciplinary approach characterization. Appl Radiat Isot 2019; 149:159-164. [PMID: 31063965 DOI: 10.1016/j.apradiso.2019.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 11/24/2022]
Abstract
Library material, and thus parchment, is frequently subjected to bio-deterioration processes caused by microorganisms. Fungi and bacteria cause alterations in the parchment inducing, in some cases, even the partial detachments of the surface layer and the loss of any text present on it. An important contribution to disinfection of the cultural heritage artefacts is given by the use of ionizing radiation. In this work, a preliminary study on the applicability of X-ray radiation as treatment for bio-deterioration removal is proposed. The results on the microbial growth after different irradiation treatments are shown in order to detect the dose protocol for the bio-degradation removal. Furthermore, the evaluation of the irradiation effects on the parchment microstructure is presented in order to define the applicability of the method on parchment artefacts.
Collapse
Affiliation(s)
| | | | - C Cicero
- Dept. Industrial Engineering, Tor Vergata University, Rome, Italy
| | - N Perini
- Dept. Biology, Tor Vergata University, Rome, Italy
| | - L Migliore
- Dept. Biology, Tor Vergata University, Rome, Italy
| | - F Mercuri
- Dept. Industrial Engineering, Tor Vergata University, Rome, Italy
| | - N Orazi
- Dept. Industrial Engineering, Tor Vergata University, Rome, Italy
| | - A Rubechini
- Archivio Segreto Vaticano, Vatican City State
| |
Collapse
|
9
|
Sanmartín P, DeAraujo A, Vasanthakumar A. Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials. MICROBIAL ECOLOGY 2018; 76:64-80. [PMID: 27117796 DOI: 10.1007/s00248-016-0770-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Microbial activity has an important impact on the maintenance of cultural heritage materials, owing to the key role of microorganisms in many deterioration processes. In order to minimize such deleterious effects, there is a need to fine-tune methods that detect and characterize microorganisms. Trends in microbiology indicate that this need can be met by incorporating modern techniques. All of the methods considered in this review paper are employed in the identification, surveillance, and control of microorganisms, and they have two points in common: They are currently used in microbial ecology (only literature from 2009 to 2015 is included), and they are often applied in the cultural heritage sector. More than 75 peer-reviewed journal articles addressing three different approaches were considered: molecular, sensory and morphological, and biocontrol methods. The goal of this review is to highlight the usefulness of the traditional as well as the modern methods. The general theme in the literature cited suggests using an integrated approach.
Collapse
Affiliation(s)
- Patricia Sanmartín
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA
- Departamento de Edafología y Química Agrícola, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alice DeAraujo
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA
| | - Archana Vasanthakumar
- Laboratory of Applied Microbiology, School of Engineering and Applied Sciences, Harvard University, 58 Oxford St., Room 301, Cambridge, MA, 02138, USA.
| |
Collapse
|
10
|
Duan Y, Wu F, Wang W, He D, Gu JD, Feng H, Chen T, Liu G, An L. The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. PLoS One 2017; 12:e0179718. [PMID: 28678844 PMCID: PMC5497971 DOI: 10.1371/journal.pone.0179718] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/02/2017] [Indexed: 11/29/2022] Open
Abstract
In this study, a culture-independent Illumina MiSeq sequencing strategy was applied to investigate the microbial communities colonizing the ancient painted sculptures of the Maijishan Grottoes, a famous World Cultural Heritage site listed by UNESCO in China. Four mixed samples were collected from Cave 4–4 of the Maijishan Grottoes, the so-called Upper Seven Buddha Pavilion, which was built during the Northern Zhou Dynasty (557-581AD). The 16/18S rRNA gene-based sequences revealed a rich bacterial diversity and a relatively low fungal abundance, including the bacterial groups Actinobacteria, Acidobacteria, Bacteroidetes, Cyanobacteria, Chloroflexi, Firmicutes, Proteobacteria and Verrucomicrobia and the fungal groups Ascomycota, Basidiomycota and Chytridiomycota. Among them, the bacteria genera of Pseudonocardia and Rubrobacter and unclassified fungi in the order of Capnodiales were dominant. The relative abundance of Pseudonocardia in the painted layer samples was higher than that in the dust sample, while Cyanobacteria dominated in the dust sample. Many of them have been discovered at other cultural heritage sites and associated with the biodeterioration of cultural relics. The presence and activity of these pioneering microorganisms may lead to an unexpected deterioration of the painted sculptures that are preserved in this heritage site. Thus, proper management strategies and potential risk monitoring should be used in the Maijishan Grottoes to improve the conservation of these precious painted sculptures.
Collapse
Affiliation(s)
- Yulong Duan
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, P.R.China
| | - Fasi Wu
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, Gansu, P.R.China
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R.China
| | - Wanfu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, P.R.China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, Gansu, P.R.China
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R.China
- * E-mail: (WFW); (HYF)
| | - Dongpeng He
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang Academy, Dunhuang, Gansu, P.R.China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R.China
- * E-mail: (WFW); (HYF)
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, P.R.China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, P.R.China
| | - Lizhe An
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Northwest Institute of Eco-Environment and Resources, University of Chinese Academy of Sciences, Lanzhou, P.R.China
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R.China
| |
Collapse
|
11
|
Abd El Monssef RA, Hassan EA, Ramadan EM. Production of laccase enzyme for their potential application to decolorize fungal pigments on aging paper and parchment. ANNALS OF AGRICULTURAL SCIENCES 2016; 61:145-154. [DOI: 10.1016/j.aoas.2015.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Wu F, An L, Wang W, Gu JD, Feng H. The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci Rep 2015; 5:7752. [PMID: 25583346 PMCID: PMC4291566 DOI: 10.1038/srep07752] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/21/2014] [Indexed: 11/30/2022] Open
Abstract
In this study, we compared the microbial communities colonising ancient cave wall paintings of the Mogao Grottoes exhibiting signs of biodeterioration. Ten samples were collected from five different caves built during different time periods and analysed using culture-independent and culture-dependent methods. The clone library results revealed high microbial diversity, including the bacterial groups Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Chloroflexi and the fungal groups Euascomycetes, Dothideomycetes, Eurotiomycetes, Sordariomycetes, Saccharomycetes, Plectomycetes, Pezizomycetes, Zygomycota, and Basidiomycota. The bacterial community structures differed among the samples, with no consistent temporal or spatial trends. However, the fungal community diversity index correlated with the building time of the caves independent of environmental factors (e.g., temperature or relative humidity). The enrichment cultures revealed that many culturable strains were highly resistant to various stresses and thus may be responsible for the damage to cave paintings in the Mogao Grottoes.
Collapse
Affiliation(s)
- Yantian Ma
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - He Zhang
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ye Du
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Tian Tian
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Ting Xiang
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiande Liu
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Fasi Wu
- The Conservation Research Institute of Dunhuang Academy, Dunhuang, Gansu 736200, People's Republic of China
| | - Lizhe An
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Wanfu Wang
- The Conservation Research Institute of Dunhuang Academy, Dunhuang, Gansu 736200, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Huyuan Feng
- School of Life Sciences, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
13
|
Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art--tilting at windmills? Appl Microbiol Biotechnol 2013; 97:9637-46. [PMID: 24100684 PMCID: PMC3825568 DOI: 10.1007/s00253-013-5283-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/02/2022]
Abstract
Microorganisms (bacteria, archaea and fungi), in addition to lichens and insect pests, cause problems in the conservation of cultural heritage because of their biodeteriorative potential. This holds true for all types of historic artefacts, and even for art made of modern materials, in public buildings, museums and private art collections. The variety of biodeterioration phenomena observed on materials of cultural heritage is determined by several factors, such as the chemical composition and nature of the material itself, the climate and exposure of the object, in addition to the manner and frequency of surface cleaning and housekeeping in museums. This study offers a review of a variety of well-known biodeterioration phenomena observed on different materials, such as stone and building materials, objects exhibited in museums and libraries, as well as human remains and burial-related materials. The decontamination of infected artefacts, exhibition rooms and depots incurs high expenditure for museums. Nevertheless, the question has to be raised: whether the process of biodeterioration of cultural heritage can or should be stopped under all circumstances, or whether we have to accept it as a natural and an implicit consecution of its creation. This study also highlights critically the pros and cons of biocide treatments and gives some prominent examples of successful and unsuccessful conservation treatments. Furthermore, an outlook on the future research needs and developments in this highly interesting field is given.
Collapse
Affiliation(s)
- Katja Sterflinger
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria,
| | | |
Collapse
|
14
|
López-Miras M, Piñar G, Romero-Noguera J, Bolívar-Galiano FC, Ettenauer J, Sterflinger K, Martín-Sánchez I. Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. AEROBIOLOGIA 2013; 29:301-314. [PMID: 23576841 PMCID: PMC3618409 DOI: 10.1007/s10453-012-9281-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 11/06/2012] [Indexed: 05/28/2023]
Abstract
In this study, we investigated and compared the microbial communities adhering to the obverse and the reverse sides of an oil painting on canvas exhibiting signs of biodeterioration. Samples showing no visible damage were investigated as controls. Air samples were also analysed, in order to investigate the presence of airborne microorganisms suspended in the indoor atmosphere. The diversity of the cultivable microorganisms adhering to the surface was analysed by molecular techniques, such as RAPD analysis and gene sequencing. DGGE fingerprints derived from DNA directly extracted from canvas material in combination with clone libraries and sequencing were used to evaluate the non-cultivable fraction of the microbial communities associated with the material. By using culture-dependent methods, most of the bacterial strains were found to be common airborne, spore-forming microorganisms and belonged to the phyla Actinobacteria and Firmicutes, whereas culture-independent techniques identified sequenced clones affiliated with members of the phyla Actinobacteria and Proteobacteria. The diversity of fungi was shown to be much lower than that observed for bacteria, and only species of Penicillium spp. could be detected by cultivation techniques. The selected strategy revealed a higher microbial diversity on the obverse than on the reverse side of the painting and the near absence of actively growing microorganisms on areas showing no visible damage. Furthermore, enzymatic activity tests revealed that the most widespread activities involved in biodeterioration were esterase and esterase lipase among the isolated bacterial strains, and esterase and N-acetyl-β-glucosaminidase among fungi strains.
Collapse
Affiliation(s)
- M. López-Miras
- Department of Microbiology, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain
| | - G. Piñar
- Department of Biotechnology, VIBT-Vienna Institute of Bio Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - J. Romero-Noguera
- Department of Painting, Faculty of Fine Arts, University of Granada, Avda. Andalucía s/n, 18071 Granada, Spain
| | - F. C. Bolívar-Galiano
- Department of Painting, Faculty of Fine Arts, University of Granada, Avda. Andalucía s/n, 18071 Granada, Spain
| | - J. Ettenauer
- Department of Biotechnology, VIBT-Vienna Institute of Bio Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - K. Sterflinger
- Department of Biotechnology, VIBT-Vienna Institute of Bio Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - I. Martín-Sánchez
- Department of Microbiology, Faculty of Sciences, University of Granada, Avda. Fuentenueva, 18071 Granada, Spain
| |
Collapse
|
15
|
Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 2011; 75:583-609. [PMID: 22126995 PMCID: PMC3232736 DOI: 10.1128/mmbr.00020-11] [Citation(s) in RCA: 488] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi can form a range of physical associations that depend on various modes of molecular communication for their development and functioning. These bacterial-fungal interactions often result in changes to the pathogenicity or the nutritional influence of one or both partners toward plants or animals (including humans). They can also result in unique contributions to biogeochemical cycles and biotechnological processes. Thus, the interactions between bacteria and fungi are of central importance to numerous biological questions in agriculture, forestry, environmental science, food production, and medicine. Here we present a structured review of bacterial-fungal interactions, illustrated by examples sourced from many diverse scientific fields. We consider the general and specific properties of these interactions, providing a global perspective across this emerging multidisciplinary research area. We show that in many cases, parallels can be drawn between different scenarios in which bacterial-fungal interactions are important. Finally, we discuss how new avenues of investigation may enhance our ability to combat, manipulate, or exploit bacterial-fungal complexes for the economic and practical benefit of humanity as well as reshape our current understanding of bacterial and fungal ecology.
Collapse
Affiliation(s)
- P Frey-Klett
- INRA, UMR1136 Interactions Arbres-Microorganismes, 54280 Champenoux, France.
| | | | | | | | | | | |
Collapse
|